An Improved Fick Model for Predicting Carbonation Depth of Concrete
Abstract
:1. Introduction
2. Fick Model and the Improved Model
3. Case Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Men, P.; Wang, X.; Liu, D.; Zhang, Z.; Zhang, Q.; Lu, Y. On use of polyvinylpyrrolidone to modify polyethylene fi-bers for improving tensile properties of high strength ECC. Constr. Build. Mater. 2024, 417, 135354. [Google Scholar] [CrossRef]
- Zhang, G.Z.; Liu, C.; Cheng, P.F.; Li, Z.; Han, Y.; Wang, X.Y. Enhancing the Interfacial Compatibility and Self-Healing Performance of Microbial Mortars by Nano-SiO2-Modified Basalt Fibers. Cem. Concr. Composites. 2024, 152, 105650. [Google Scholar] [CrossRef]
- Peng, X.; Shi, F.; Yang, J.; Yang, Q.; Wang, H.; Zhang, J. Modification of construction waste derived recycled aggre-gate via CO2 curing to enhance corrosive freeze-thaw durability of concrete. J. Clean. Production. 2023, 405, 137016. [Google Scholar] [CrossRef]
- Kim, D.; Lee, Y.; Lee, M. Development of risk-based bridge maintenance prioritization methodology. KSCE J. Civ. Eng. 2018, 22, 3718–3725. [Google Scholar] [CrossRef]
- Hamidpour, S.; Scattarreggia, N.; Nascimbene, R.; Monteiro, R. A risk-based quantitative approach for priority assessment of ageing bridges accounting for deterioration. Struct. Infrastruct. Eng. 2024, 4, 1–16. [Google Scholar] [CrossRef]
- Feng, H. The influencing factors and control measures of concrete carbonation. Chin. Foreign Archit. 2015, 8, 143–145. [Google Scholar]
- Felix, F.E.; Carrazedo, R.; Possan, E. Carbonation model for fly ash concrete based on artificial neural network: Development and parametric analysis. Constr. Build. Mater. 2021, 266 Pt A, 121050. [Google Scholar] [CrossRef]
- Paul, S.C.; Panda, B.; Huang, Y.; Garg, A.; Peng, X. An empirical model design for evaluation and estimation of carbonation depth in concrete. Measurement 2018, 124, 205–210. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, P.; Cao, S.; Wang, H.; Liu, Y.; Wang, Z.; Zhao, W. Prediction of Carbonation Depth for Concrete Containing Mineral Admixtures Based on Machine Learning. Arab. J. Sci. Eng. 2023, 48, 13211–13225. [Google Scholar] [CrossRef]
- Niu, D.; Zhang, B.; Liu, J.; Zhang, B. Prediction model for length of partially carbonized zone in concrete under natural exposure environment. Ind. Build. 2022, 52, 146–151+106. [Google Scholar]
- Silva, R.V.; Silva, A.; Neves, R.; de Brito, J. Statistical modeling of carbonation in concrete incorporating recycled aggregates. J. Mater. Civ. Eng. 2016, 28, 04015082. [Google Scholar] [CrossRef]
- Qu, F.; Xia, W.; Sun, C.; Hou, H.; Huang, B.; Wang, G.; Hu, S. Modeling carbonation depth of recycled aggregate concrete containing chlorinated salts. Constr. Build. Mater. 2024, 430, 136478. [Google Scholar] [CrossRef]
- Qin, H.; Wang, J. Probabilistic prediction model of concrete carbonation depth considering the influence of multiple factors. Struct. Concr. 2023, 24, 6209–6238. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, P.; He, Z.; Ma, J. Statistical Modelling of Carbonation Process in Reinforced Concrete Structure. Materials 2022, 15, 2711. [Google Scholar] [CrossRef]
- Jaynes, D.B.; Rogowski, A.S. Applicability of Fick’s law to gas diffusion. Soil Sci. Soc. Am. J. 1983, 47, 425–430. [Google Scholar] [CrossRef]
- Thorstenson, D.C.; Pollock, D.W. Gas transport in unsaturated zones: Multicomponent systems and the adequacy of Fick’s laws. Water Resour. Res. 1989, 25, 477–507. [Google Scholar] [CrossRef]
- Ta, V.; Bonnet, S.; Kiesse, S.T.; Ventura, A. A new meta-model to calculate carbonation front depth within concrete structures. Constr. Build. Mater. 2016, 129, 172–181. [Google Scholar] [CrossRef]
- Zhang, K.; Xiao, J. Prediction model of carbonation depth for recycled aggregate concrete. Cem. Concr. Compos. 2018, 88, 86–99. [Google Scholar] [CrossRef]
- He, R.; Li, S.; Fu, C.; Zhou, K.; Dong, Z. Influence of cyclic drying–wetting and carbonation on oxygen diffusivity of cementitious materials: Interpretation from the perspective of microstructure. J. Mater. Civ. Eng. 2022, 34, 04022256. [Google Scholar] [CrossRef]
- Jiang, C.; Huang, Q.; Gu, X.; Zhang, W. Modeling the effects of fatigue damage on concrete carbonation. Constr. Build. Mater. 2018, 191, 942–962. [Google Scholar] [CrossRef]
- Li, S.; Chen, Y.; Tang, C.; Wang, J.; Liu, R.; Wang, H. Experimental and Theoretical Study on Carbonization Coefficient Model of NS/SAP Concrete. Buildings 2022, 12, 2227. [Google Scholar] [CrossRef]
- He, H.; Li, R.; Chen, K. Durability evolution of RC bridge under coupling action of chloride corrosion and carbonization based on DLA model. Math. Probl. Eng. 2015, 2015, 951846. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, X.; Zhou, H.; Gao, K.; Wang, Z. Studies on forecasting of carbonation depth of slag high performance concrete considering gas permeability. Appl. Clay Sci. 2013, 79, 36–40. [Google Scholar] [CrossRef]
- Chen, D.; Liu, S.; Shen, J.; Sun, G.; Shi, J. Experimental study and modelling of concrete carbonation under the coupling effect of freeze-thaw cycles and sustained loads. J. Build. Eng. 2022, 52, 104390. [Google Scholar] [CrossRef]
- Possan, E.; Andrade, J.J.O.; Dal Molin, D.C.C.; Ribeiro, J.L.D. Model to estimate concrete carbonation depth and service life prediction. In Hygrothermal Behaviour and Building Pathologies; Springer: Berlin/Heidelberg, Germany, 2021; pp. 67–97. [Google Scholar]
- Peng, J.; Tang, H.; Zhang, J.; Cai, S.C.S. Numerical Simulation on Carbonation Depth of Concrete Structures considering Time-and Temperature-Dependent Carbonation Process. Adv. Mater. Sci. Eng. 2018, 2018, 2326017. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Q.; Peng, X.; Qin, F. A Review of Concrete Carbonation Depth Evaluation Models. Coatings 2024, 14, 386. [Google Scholar] [CrossRef]
- Papadakis, V.G.; Vayenas, C.G.; Fardis, M.N. Fundamental modeling and experimental investigation of concrete carbonation. Mater. J. 1991, 88, 363–373. [Google Scholar]
- Papadakis, V.G. Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress. Cem. Concr. Res. 2000, 30, 291–299. [Google Scholar] [CrossRef]
- Du, T.; Qu, P.Y.; Ji, X.K.; Li, Z.Y.; Wang, B.W.; Chen, S. Predictions for the carbonation depth of marine concrete under various temperature and humidity environments based on the Levenberg-Marquardt algorithm. Ind. Constr. 2024, 54, 217–222. [Google Scholar]
- Zhang, X.H.; Liu, B.W.; Yang, L.; Luo, Y.M.; Yang, C.Q. Experimental study on concrete carbonation performance under the influence of different temperature and strength. Build. Struct. 2020, 50, 110–115. [Google Scholar]
- Ning, C.P.; Yang, Y. Experimental Study on Carbonation Performance of Fly Ash Concrete under Freeze-thaw Dry Wet Coupling. Fly Ash Compr. Util. 2020, 34, 77–81. [Google Scholar]
- Xu, X.H.; Xie, J.F.; Xia, W.H.; Li, B.X. Influence of mineral admixtures on performance and microstructure of bridge tower concrete. China Harb. Eng. 2021, 41, 40–45. [Google Scholar]
Carbonation Conditions | Fick Model | New Model |
---|---|---|
20 °C Carbonation | ||
30 °C Carbonation |
Carbonation Conditions | Statistical Indicators | Fick Model | New Model |
---|---|---|---|
20 °C Carbonation | Mean error value | 0.0180 | 0.0078 |
Standard deviation | 0.0191 | 0.0035 | |
30 °C Carbonation | Mean error value | 0.0667 | 0.0267 |
Standard deviation | 0.0770 | 0.0339 |
Carbonation Conditions | Fick Model | New Model |
---|---|---|
Standard carbonation | ||
Freeze–thaw cycling carbonation | ||
Dry–wet cycling carbonation | ||
Coupled carbonation |
Carbonation Conditions | Statistical Indicators | Fick Model | New Model |
---|---|---|---|
Standard carbonation | Mean error value | 0.1253 | 0.0407 |
Standard deviation | 0.1104 | 0.0117 | |
Freeze–thaw cycling carbonation | Mean error value | 0.1955 | 0.0492 |
Standard deviation | 0.2109 | 0.0324 | |
Dry–wet cycling carbonation | Mean error value | 0.1543 | 0.0411 |
Standard deviation | 0.1247 | 0.0258 | |
Coupled carbonation | Mean error value | 0.1931 | 0.0095 |
Standard deviation | 0.2249 | 0.0056 |
Carbonation Conditions | Fick Model | New Model |
---|---|---|
Standard carbonation | ||
Freeze–thaw cycling carbonation | ||
Dry–wet cycling carbonation | ||
Coupled carbonation |
Carbonation Conditions | Statistical Indicators | Fick Model | New Model |
---|---|---|---|
Standard carbonation | Mean error value | 0.0751 | 0.0082 |
Standard deviation | 0.0710 | 0.0044 | |
Freeze–thaw cycling carbonation | Mean error value | 0.1711 | 0.0559 |
Standard deviation | 0.2477 | 0.0230 | |
Dry–wet cycling carbonation | Mean error value | 0.1008 | 0.0161 |
Standard deviation | 0.0957 | 0.0122 | |
Coupled carbonation | Mean error value | 0.2092 | 0.0434 |
Standard deviation | 0.2759 | 0.0210 |
Carbonation Conditions | Fick Model | New Model |
---|---|---|
Standard carbonation | ||
Freeze–thaw cycling carbonation | ||
Dry–wet cycling carbonation | ||
Coupled carbonation |
Carbonation Conditions | Statistical Indicators | Fick Model | New Model |
---|---|---|---|
Standard carbonation | Mean error value | 0.0739 | 0.0225 |
Standard deviation | 0.1038 | 0.0111 | |
Freeze–thaw cycling carbonation | Mean error value | 0.0674 | 0.0481 |
Standard deviation | 0.0897 | 0.0294 | |
Dry–wet cycling carbonation | Mean error value | 0.0926 | 0.0212 |
Standard deviation | 0.1338 | 0.0125 | |
Coupled carbonation | Mean error value | 0.1680 | 0.0617 |
Standard deviation | 0.2283 | 0.0270 |
Time | 3d | 7d | 14d | 28d | 56d |
---|---|---|---|---|---|
Carbonation depth | 0.2 mm | 1.0 mm | 2.5 mm | 4.0 mm | 6.6 mm |
Bridge Tower Concrete Carbonation | Fick Model | New Model |
---|---|---|
Equation |
Time: The 56th Day | Measured Value | Predicted Value | ||||
---|---|---|---|---|---|---|
Fick Model | New Model | ANN with = 3 | ANN with = 4 |
ANN with = 5 | ||
Carbonation depth (mm) | 6.6 | 4.8228 | 6.4428 | 4.5008 | 5.7763 | 4.8487 |
Relative error of prediction | / | 27% | 2% | 32% | 12% | 27% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, H.; Xu, Z.; Peng, X. An Improved Fick Model for Predicting Carbonation Depth of Concrete. Coatings 2024, 14, 1345. https://doi.org/10.3390/coatings14111345
Cao H, Xu Z, Peng X. An Improved Fick Model for Predicting Carbonation Depth of Concrete. Coatings. 2024; 14(11):1345. https://doi.org/10.3390/coatings14111345
Chicago/Turabian StyleCao, Hongfei, Zhenjie Xu, and Xi Peng. 2024. "An Improved Fick Model for Predicting Carbonation Depth of Concrete" Coatings 14, no. 11: 1345. https://doi.org/10.3390/coatings14111345
APA StyleCao, H., Xu, Z., & Peng, X. (2024). An Improved Fick Model for Predicting Carbonation Depth of Concrete. Coatings, 14(11), 1345. https://doi.org/10.3390/coatings14111345