Study on the Performances of Toughening UV-LED-Cured Epoxy Electronic Encapsulants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Reagents
- -
- One alicyclic epoxy resin as 3,4-Epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate (EEC), CELLOXIDE 2021P, Daicel, Osaka, Japan;
- -
- Triarylsulfonium hexafluoroantimonate salt (PAG), PAG20102, industrial grade, Qiangli Chemical, China;
- -
- Core–shell rubber particles (CSR) with a core–shell rubber dispersion solution, MX553, Kaneka, Osaka, Japan;
- -
- Nano-silica particles (NSPs) with a nano-silica dispersion solution, Nanopox E601, Evonik, Shanghai, China;
- -
- and Epoxidized PolyButadiene (EPB), EPOLEAD PB3600, Daicel, Osaka, Japan.
- -
- Spherical silica, FB35, Denka, Tokyo, Japan.
2.2. Sample Preparation
2.3. Experimental Testing and Characterization
3. Results and Discussion
3.1. UV-DSC Analysis
3.2. UV Curing Depth
3.3. Thermal Properties of UV Epoxy Adhesive Modified by Different Tougheners
3.3.1. Dynamic Mechanical Analysis (DMA)
3.3.2. Thermomechanical Analysis (TMA)
3.3.3. Thermogravimetric Analysis (TGA)
3.4. Mechanical Properties and Fractured Surfaces of UV Epoxy Adhesive Modified by Different Tougheners
3.5. Chiplet Adhesion (DSS)
3.6. Water Absorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Remya, V.P.; Parani, S.; Sakho, E.H.M.; Rajendran, J.V.; Maluleke, R.; Lebepe, T.C.; Masha, S.; Hameed, N.; Thomas, S.; Oluwafemi, O.S. Highly Toughened Nanostructured Self-Assembled Epoxy-Based Material—Correlation Study between Nanostructured Morphology and Fracture Toughness—Impact Characteristics. Polymers 2023, 15, 1689. [Google Scholar] [CrossRef] [PubMed]
- Białkowska, A.; Bakar, M.; Kucharczyk, W.; Zarzyka, I. Hybrid Epoxy Nanocomposites: Improvement in Mechanical Properties and Toughening Mechanisms—A Review. Polymers 2023, 15, 1398. [Google Scholar] [CrossRef] [PubMed]
- Rybak, A. Functional polymer composite with core-shell ceramic filler: Ii. Rheology, thermal, mechanical, and dielectric properties. Polymers 2021, 13, 2161. [Google Scholar] [CrossRef] [PubMed]
- Noè, C.; Hakkarainen, M.; Sangermano, M. Cationic UV-Curing of Epoxidized Biobased Resins. Polymers 2021, 13, 89. [Google Scholar] [CrossRef]
- Shukla, M.K.; Sharma, K. Effect of Carbon Nanofillers on the Mechanical and Interfacial Properties of Epoxy Based Nanocomposites. Polym. Sci. Ser. A 2019, 61, 439–460. [Google Scholar] [CrossRef]
- Liang, Y.L.; Pearson, R.A. Toughening mechanisms in epoxy–silica nanocomposites (ESNs). Polymer 2009, 50, 4895–4905. [Google Scholar] [CrossRef]
- Ladani, R.B.; Wu, S.; Kinloch, A.J.; Ghorbani, K.; Zhang, J.; Mouritz, A.P.; Wang, C.H. Multifunctional properties of epoxy nanocomposites reinforced by aligned nanoscale carbon. Mater. Des. 2016, 94, 554–564. [Google Scholar] [CrossRef]
- Srivastava, I.; Koratkar, N. Fatigue and fracture toughness of epoxy nanocomposites. JOM 2010, 62, 50–57. [Google Scholar] [CrossRef]
- Wang, C.; Li, H.; Zhang, H.; Wang, H.; Liu, L.; Xu, Z.; Liu, P.; Peng, Z. Influence of addition of hydroxyl-terminated liquid nitrile rubber on dielectric properties and relaxation behavior of epoxy resin. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2258–2269. [Google Scholar] [CrossRef]
- Mohan, P. A critical review: The modification, properties, and applications of epoxy resins. Polymer 2013, 52, 107–125. [Google Scholar] [CrossRef]
- Bajpai, A.; Carlotti, S. The effect of hybridized carbon nanotubes, silica nanoparticles, and core-shell rubber on tensile, fracture mechanics and electrical properties of epoxy nanocomposites. Nanomaterials 2019, 9, 1057. [Google Scholar] [CrossRef] [PubMed]
- Tsang, W.L.; Taylor, A.C. Fracture and toughening mechanisms of silica-and core-shell rubber-toughened epoxy at ambient and low temperature. J. Mater. Sci. 2019, 54, 13938–13958. [Google Scholar] [CrossRef]
- Liu, S.; Fan, X.; He, C. Improving the fracture toughness of epoxy with nanosilica-rubber core-shell nanoparticles. Compos. Sci. Technol. 2016, 125, 132–140. [Google Scholar] [CrossRef]
- Jin, J.; Lee, J.J.; Bae, B.S.; Park, S.J.; Yoo, S.; Jung, K. Silica nanoparticle-embedded sol–gel organic/inorganic hybrid nanocomposite for transparent OLED encapsulation. Org. Electron. 2012, 13, 53–57. [Google Scholar] [CrossRef]
- MacKinnon, A.J.; Jenkins, S.D.; McGrail, P.T.; Pethrick, R.A. A dielectric, mechanical, rheological and electron microscopy study of cure and properties of a thermoplastic-modified epoxy resin. Macromolecules 1992, 25, 3492–3499. [Google Scholar] [CrossRef]
- Hosseini, M.; Esfandeh, M.; Razavi-Nouri, M.; Rezadoust, A.M. Effect of Hybridization of Carboxyl-Terminated Acrylonitrile Butadiene Liquid Rubber and Alumina Nanoparticles on the Fracture Toughness of Epoxy Nanocomposites. Polym. Compos. 2019, 40, 2700–2711. [Google Scholar] [CrossRef]
- Wang, Q.; Curtis, P.; Chen, G. Effect of nano-fillers on electrical breakdown behavior of epoxy resin. In Proceedings of the 2010 Annual Report Conference on Electrical Insulation and Dielectic Phenomena, West Lafayette, IN, USA, 17–20 October 2010; pp. 1–4. [Google Scholar]
- Chen, Y.; Lin, C.; Wang, L.; Wu, Z.; Fan, Y.; Lei, Q. Characteristic and properties of nano-SiO2-Al2O3/EP-PU composite. In Proceedings of the 2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Shenzhen, China, 20–23 October 2013; pp. 842–845. [Google Scholar]
- Guerzoni, S.; Deplaine, H.; Bennagi, J.; Amorós, P.; Pradas, M.; Edlund, U.; Gallego Ferrer, G. Combination of silica nanoparticles with hydroxyapatite reinforces poly (L-lactide acid) scaffolds without loss of bioactivity. J. Bioact. Compat. Polym. 2013, 29, 15–31. [Google Scholar] [CrossRef]
- Raja Othman, R.N.; Subramaniam, D.K.; Ezani, N.A.; Abdullah, M.F.; Ku Ahmad, K.Z. The synergistic effects of hybrid micro and nano silica in influencing the mechanical properties of epoxy composites—A new model. Polymers 2022, 14, 3969. [Google Scholar] [CrossRef]
- Tertyshnaya, Y.; Karpova, S.; Moskovskiy, M.; Dorokhov, A. Electrospun Polylactide/Natural Rubber Fibers: Effect Natural Rubber Content on Fiber Morphology and Properties. Polymers 2021, 13, 2232. [Google Scholar] [CrossRef]
- Zhou, W.; Cai, J. Mechanical, thermal and electrical proper ties of epoxy modified with a reactive hydroxyl-terminated polystyrene-butadiene liquid rubber. J. Reinf. Plast. Compos. 2013, 32, 1359–1369. [Google Scholar] [CrossRef]
- Kou, Y.; Zhou, W.; Li, B.; Dong, L.; Duan, Y.-E.; Hou, Q.; Liu, X.; Cai, H.; Chen, Q.; Dang, Z.-M. Enhanced mechanical and dielectric properties of an epoxy resin modified with hydroxyl-terminated polybutadiene. Compos. Part A 2018, 114, 97–106. [Google Scholar] [CrossRef]
- Gong, L.X.; Zhao, L.; Tang, L.C.; Liu, H.Y.; Mai, Y.W. Balanced electrical, thermal and mechanical properties of epoxy composites filled with chemically reduced graphene oxide and rubber nanoparticles. Compos. Sci. Technol. 2015, 121, 104–114. [Google Scholar] [CrossRef]
- Wang, C.; Sun, Q.; Lei, K.; Chen, C.; Yao, L.; Peng, Z. Effect of Toughening with Different Liquid Rubber on Dielectric Relaxation Properties of Epoxy Resin. Polymers 2020, 12, 433. [Google Scholar] [CrossRef] [PubMed]
- Injorhor, P.; Inphonlek, S.; Ruksakulpiwat, Y.; Ruksakulpiwat, C. Effect of Modified Natural Rubber on the Mechanical and Thermal Properties of Poly (Lactic Acid) and Its Composites with Nanoparticles from Biowaste. Polymers 2024, 16, 812. [Google Scholar] [CrossRef]
- Decker, C. New developments in UV radiation curing of protective coatings. Surface Coatings International, Part, B. Coatings Transactions: The Science and Technology of Paints. Inks Relat. Coat. Their Raw Mater. 2005, 88, 9–17. [Google Scholar]
- Dominika, C.; Barbara, P. Progress in development of UV curable powder coatings. Prog. Org. Coat. 2021, 158, 106355. [Google Scholar]
- El Fouhaili, B.; Ibrahim, A.; Dietlin, C.; Chemtob, A.; Allonas, X.; Croutxé-Barghorn, C. Single-step formation of superhydrophobic surfaces using photobase-catalyzed sol-gel process. Prog. Org. Coat. 2019, 137, 105293. [Google Scholar] [CrossRef]
- Noè, C.; Malburet, S.; Bouvet-Marchand, A.; Graillot, A.; Loubat, C.; Sangermano, M. Cationic photopolymerization of bio-renewable epoxidized monomers. Prog. Org. Coat. 2019, 133, 131–138. [Google Scholar] [CrossRef]
- Zhou, R.; Jin, M.; Malval, J.P.; Pan, H.; Wan, D. Bicarbazole-based oxalates as photoinitiating systems for photopolymerization under UV–Vis LEDs. J. Polym. Sci. 2020, 58, 1079–1091. [Google Scholar] [CrossRef]
- Kaboorani, A.; Auclair, N.; Riedl, B.; Landry, V. Mechanical properties of UV-cured cellulose nanocrystal (CNC) nanocomposite coating for wood furniture. Prog. Org. Coat. 2017, 104, 91–96. [Google Scholar] [CrossRef]
- Kim, W.H.; Koo, D.H.; Noh, J.H.; Lee, K.W.; Jeon, S.W.; Kim, J.P.; Yeo, I.S. Optical Properties of UV LEDs depending on Encapsulate Method using Silicone Encapsulants with Different Refractive Indices. J. Korean Inst. Illum. Electr. Install. Eng. 2015, 29, 39–44. [Google Scholar]
- GBT 7124-2008; Adhesive–Determination of Tensile Lap-Shear Strength of Rigid-to-Rigid Bonded Assemblies. Standards Press of China: Beijing, China, 2008.
- Pramanik, M.; Fowler, E.W.; Rawlins, J.W. Cure kinetics of several epoxy-amine systems at ambient and high temperatures. J. Coat. Tech. Res. 2014, 11, 143–157. [Google Scholar] [CrossRef]
- Baek, D.; Sim, K.-B.; Kim, H.-J. Mechanical Characterization of Core-Shell Rubber/Epoxy Polymers for Automotive Structural Adhesives as a Function of Operating Temperature. Polymers 2021, 13, 734. [Google Scholar] [CrossRef] [PubMed]
Formulations | Blank | NSP (E601) | CSR (MX553) | EPB (PB3600) |
---|---|---|---|---|
EEC | 20 | 20 | 20 | 20 |
PAG | 1 | 1 | 1 | 1 |
Spherical Silica * | 30 | 30 | 30 | 30 |
NSP | 0 | 5 | 0 | 0 |
CSR | 0 | 0 | 5 | 0 |
EPB | 0 | 0 | 0 | 5 |
Formulations | Heat Flow Peak (W/g) | Exothermic Energy (J/g) |
---|---|---|
Blank | 15.16 | 117.2 |
NSP | 20.43 | 144.0 |
CSR | 20.23 | 140.2 |
EPB | 17.94 | 123.0 |
Formulations | CTE Below Tg (µm/(mꞏ°C)) | CTE Above Tg (µm/(mꞏ°C)) | Tg (°C) |
---|---|---|---|
Blank | 27 | 84 | 113 |
NSP | 27 | 73 | 130 |
CSR | 32 | 92 | 120 |
EPB | 33 | 84 | 107 |
Formulations | T5% (°C) | Weight Loss at 300 °C (%) | Residual Weight (%) |
---|---|---|---|
Blank | 339.5 | 2.0 | 3.3 |
NSP | 351.3 | 1.5 | 10.4 |
CSR | 347.2 | 1.4 | 1.5 |
EPB | 346.2 | 1.2 | 1.4 |
Formulations | Compressive Stress (MPa) | Load (N) |
---|---|---|
Blank | 127 | 212 |
NSP | 120 | 201 |
CSR | 116 | 194 |
EPB | 97 | 161 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, X.; Li, J. Study on the Performances of Toughening UV-LED-Cured Epoxy Electronic Encapsulants. Coatings 2024, 14, 1347. https://doi.org/10.3390/coatings14111347
Dai X, Li J. Study on the Performances of Toughening UV-LED-Cured Epoxy Electronic Encapsulants. Coatings. 2024; 14(11):1347. https://doi.org/10.3390/coatings14111347
Chicago/Turabian StyleDai, Xiaolong, and Jianbo Li. 2024. "Study on the Performances of Toughening UV-LED-Cured Epoxy Electronic Encapsulants" Coatings 14, no. 11: 1347. https://doi.org/10.3390/coatings14111347
APA StyleDai, X., & Li, J. (2024). Study on the Performances of Toughening UV-LED-Cured Epoxy Electronic Encapsulants. Coatings, 14(11), 1347. https://doi.org/10.3390/coatings14111347