Corrosion Behavior of High-Pressure Cold-Sprayed Zn30Al Alloy Coating on Q235 Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Powder and Substrate Materials
2.2. Coatings Preparation
2.3. Characterization
2.4. Corrosion Resistance Test
3. Results and Discussion
3.1. Microstructure of Zn30Al Alloy Coatings
3.2. Corrosion Morphology of Zn30Al Alloy Coatings
3.3. Electrochemical Performance of Zn30Al Alloy Coatings
4. Conclusions
- Cold-sprayed and thermal-sprayed Zn30Al alloy coatings are composed of Zn and Al without obvious oxide impurities. Owing to the advanced solid-state deposition, the CS-Zn30Al coating shows a much denser microstructure with a porosity of only 0.32%. In contrast, the porosity of the FS-Zn30Al alloy coating is significantly higher, reaching 1.8%.
- The dominant corrosion products in both Zn30Al coatings are Zn5(OH)8Cl2·H2O and Zn6Al2(OH)16CO3·4H2O, and take the form of flakes and clusters. Notably, the CS-Zn30Al coating exhibits significantly smaller flake sizes, forming a dense corrosion product layer that offers enhanced protection against corrosive media.
- Upon immersion in a 3.5 wt.% NaCl solution for 720 h, the weight loss of the CS-Zn30Al coating was less than one-third of that of the FS-Zn30Al coating. Furthermore, electrochemical tests have validated the significantly lower corrosion current of the CS-Zn30Al coating, demonstrating the remarkable corrosion resistance offered by cold-sprayed coatings.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, Y.; Liu, W.; Li, S.; Chowwanonthapunya, T.; Wongpat, B.; Zhao, Y.; Dong, B.; Zhang, T.; Li, X. Evolution of rust layers on carbon steel and weathering steel in high humidity and heat marine atmospheric corrosion. J. Mater. Sci. Technol. 2020, 39, 190–199. [Google Scholar] [CrossRef]
- Guo, M.; Pan, C.; Wang, Z.; Han, W. A study on the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial atmosphere. Acta Metall. Sin. 2017, 54, 65–75. [Google Scholar]
- Zhou, X.; Wang, X.; Wang, Q.; Wu, T.; Li, C.; Luo, J.; Yin, F. Study on Corrosion Behavior of Q235 Steel in a Simulated Marine Tidal Environment. J. Mater. Eng. Perform. 2022, 31, 4459–4471. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, H.; Fan, Y.; Xu, D. Microbially Influenced Corrosion of Steel in Marine Environments: A Review from Mechanisms to Prevention. Microorganisms 2023, 11, 2299. [Google Scholar] [CrossRef]
- Luiz, L.A.; Andrade, J.; Pesqueira, C.M.; Siqueira, I.; Sucharski, G.B.; Sousa, M.J. Corrosion Behavior and Galvanic Corrosion Resistance of WC and Cr3C2 Cermet Coatings in Madeira River Water. J. Therm. Spray Technol. 2021, 30, 205–221. [Google Scholar] [CrossRef]
- Procópio, L. The role of biofilms in the corrosion of steel in marine environments. World J. Microbiol. Biotechnol. 2019, 35, 73. [Google Scholar] [CrossRef]
- Qi, Y.; Liang, W.; Miao, Q.; Lin, H.; An, H.; Liu, Y.; Zuo, S.; Ma, H. Corrosion behavior and antifouling ability of Cu-Zn-Al/Zn-Al composite coating on Q235 steel. Surf. Coat. Technol. 2021, 405, 126614. [Google Scholar] [CrossRef]
- Xu, L.; Cui, C.; Lu, Q.; Yang, H.; Zhang, W. Characterization of microstructural and corrosion behavior of cold sprayed Zn11Al3Mg alloy coating. Surf. Coat. Technol. 2023, 471, 129890. [Google Scholar] [CrossRef]
- Xu, L.; Liu, F.; Han, E.H.; Ke, W. Corrosion resistance and mechanism of one-component organic Zn15Al-rich coating. Prog. Org. Coat. 2019, 132, 305–315. [Google Scholar] [CrossRef]
- Ganesan, S.; Prabhu, G.; Popov, B.N. Electrodeposition and characterization of Zn-Mn coatings for corrosion protection. Surf. Coat. Technol. 2014, 238, 143–151. [Google Scholar] [CrossRef]
- Zhong, X.; Liang, R.; Liu, G.; Pan, W. Zinc coating on steel by atmosphere plasma spray and their anticorrosion behavior. Mater. Lett. 2022, 314, 131825. [Google Scholar] [CrossRef]
- Papavinasam, S.; Attard, M.; Arseneult, B.; Revie, R.W. State-of-the-Art of Thermal Spray Coatings for Corrosion Protection. Corros. Rev. 2008, 26, 105–145. [Google Scholar] [CrossRef]
- Zhi, X.Z.; Jiao, Z.; Zhen, W.L.; Yua, D.M.; Gui, M.L.; Liang, L.W.; Zhong, N.G. Study on the corrosion electrochemistry behavior and wear resistance of the arc thermal sprayed Zn–Al alloy coating. J. Mater. Res. Technol. 2023, 24, 8414–8428. [Google Scholar]
- Ding, Y.; Zhang, F.; Zhou, H.; Cheng, S.; Xu, K.; Wang, Z.; Xie, S.; Tian, J. Effect of Al Content on the Long-Term Corrosion Behavior of Arc-Sprayed ZnAl Alloy Coatings. Coatings 2023, 13, 1720. [Google Scholar] [CrossRef]
- Katayama, H.; Kuroda, S. Long-term atmospheric corrosion properties of thermally sprayed Zn, Al, and Zn–Al coatings exposed in a coastal area. Corros. Sci. 2013, 76, 35–41. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, P.; Wei, D.; Su, F. Microstructure and corrosion behavior of arc sprayed Zn-xAl (x = 15, 30, 50) alloy coatings in NaCl solution. Mater. Res. Express 2019, 6, 1065–1067. [Google Scholar] [CrossRef]
- Yasoda, R.D.; Huang, Y.; Qi, X. Corrosion Performance of Wire Arc Deposited Zinc Aluminum Pseudo Alloy and Zinc 15 Aluminum Alloy Coatings on Steel in Chloride Environment. J. Therm. Spray Technol. 2022, 31, 1918–1933. [Google Scholar] [CrossRef]
- Yasoda, R.D.; Huang, Y.; Qi, X. The Effect of Exposure Conditions on the Long-Term Performance Evaluation of Undamaged and Damaged Wire-Arc-Sprayed Zinc-Aluminum Alloy Coatings. J. Therm. Spray Technol. 2024, 33, 398–422. [Google Scholar] [CrossRef]
- Lu, X.; Wang, S.; Xiong, T.; Wen, D.; Wang, G.; Du, H. Anticorrosion Properties of Zn-Al Composite Coating Prepared by Cold Spraying. Coatings 2019, 9, 210. [Google Scholar] [CrossRef]
- Poza, P.; Garrido-Maneiro, M.Á. Cold-sprayed coatings: Microstructure, mechanical properties, and wear behavior-progress in Materials Science. Prog. Mater. Sci. 2022, 123, 100839. [Google Scholar] [CrossRef]
- Prashar, G.; Vasudev, H. A comprehensive review on sustainable cold spray additive manufacturing: State of the art, challenges, and future challenges. J. Clean Prod. 2021, 310, 127606. [Google Scholar] [CrossRef]
- Xu, L.; Li, J.W.; Cui, C.Y.; Lu, Q.; Yang, H.; Zhao, C.C. Corrosion Behavior of Cold Sprayed Zn15Al Alloy Coating on Q235 Carbon Steel in NaCl Aqueous Solution. Chin. J. Mater. Res. 2024, 38, 208–220. [Google Scholar]
- Zhao, Z.; Tang, J.; Tariq, N.H.; Wang, J.; Cui, X.; Xiong, T. Microstructure and Corrosion Behavior of Cold-Sprayed Zn-Al Composite Coating. Coatings 2020, 10, 931. [Google Scholar] [CrossRef]
- Li, Y.J.; Luo, X.T.; Li, C.J. Dependency of deposition behavior, microstructure and properties of cold sprayed Cu on morphology and porosity of the powder. Surf. Coat. Technol. 2017, 328, 304–312. [Google Scholar] [CrossRef]
- Wei, Y.K.; Luo, X.T.; Chu, X.; Ge, Y.; Huang, G.S.; Xie, Y.C.; Huang, R.Z.; Li, C.J. Ni coatings for corrosion protection of Mg alloys prepared by an in-situ micro-forging assisted cold spray: Effect of powder feedstock characteristics. Corros. Sci. 2021, 184, 109397. [Google Scholar] [CrossRef]
- Li, R.Q.; Ding, X.; Ding, Z.X. Study on the microstructure and mechanical properties of cold sprayed Zn-Al alloy coatings. J. Funct. Mater. 2024, 55, 3107–3112. [Google Scholar]
- Lee, H.S.; Singh, J.K. Deposition and corrosion studies of plasma arc thermal sprayed Zn and 85Zn-15Al films on steel surface. J. Mater. Sci. 2022, 57, 19650–19665. [Google Scholar] [CrossRef]
- Meydanoglu, O.; Jodoin, B.; Kayali, E.S. Microstructure, mechanical properties and corrosion performance of 7075 Al matrix ceramic particle reinforced composite coatings produced by the cold gas dynamic spraying process. Surf. Coat. Technol. 2013, 235, 108–116. [Google Scholar] [CrossRef]
- Vaz, R.F.; Luzin, V.; Salvemini, F.; Ribamar, G.G.; Ávila, J.A.; Albaladejo, V.; Sanchez, J.; Cano, I.G. The Effect of the Deposition Strategy and Heat Treatment on Cold Spray Additive Manufactured 316L Stainless Steel. Adv. Eng. Mater. 2024, 26, 2302156. [Google Scholar] [CrossRef]
- De la Fuente, D.; Castaño, J.G.; Morcillo, M. Long-term atmospheric corrosion of zinc. Corros. Sci. 2007, 49, 1420–1436. [Google Scholar] [CrossRef]
- Yoo, J.D.; Volovitch, P.; Abdel Aal, A.; Allely, C.; Ogle, K. The effect of an artificially synthesized simonkolleite layer on the corrosion of electro-galvanized steel. Corros. Sci. 2013, 70, 1–10. [Google Scholar] [CrossRef]
- Chen, J.L.; Liang, F.; Fang, W.; Zeng, X.G.; Jia, H.; Zhang, S.F.; Jiang, B.; Luo, H.J. Comparison of corrosion resistance of MgAl-LDH and ZnAl-LDH films intercalated with organic anions ASP on AZ31 Mg alloys. Trans. Nonferrous Met. Soc. China 2020, 30, 2424–2434. [Google Scholar] [CrossRef]
- Paikaray, S.; Gomez, M.A.; Hendry, M.; Essilfie-Dughan, J. Formation mechanism of layered double hydroxides in Mg2+-, Al3+-, and Fe3+-rich aqueous media: Implications for neutralization in acid leach ore milling. Appl. Clay Sci. 2014, 101, 579–590. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Zhou, B.; Li, C.; Gao, F.; Wang, X.; Liang, D.; Wei, Y. In-situ observation of the growth behavior of ZnAl layered double hydroxide film using EQCM. Mater. Des. 2019, 180, 107952. [Google Scholar] [CrossRef]
- Liu, X.; Kong, D. Salt spray corrosion and electrochemical corrosion performances of Dacromet fabricated Zn-Al coating. Anti-Corros. Method Mater. 2019, 66, 565–572. [Google Scholar] [CrossRef]
- Moreto, J.A.; Marino, C.E.B.; Filho, W.W.; Rocha, L.A.; Fernandes, J.C.S. SVET, SKP and EIS study of the corrosion behavior of high strength Al and Al-Li alloys used in aircraft fabrication. Corros. Sci. 2014, 84, 30–41. [Google Scholar] [CrossRef]
Coating | Elemental Weight Percentages/% | |||||
---|---|---|---|---|---|---|
Zn | Al | O | Cl | Na | Si | |
CS-Zn30Al | 34.49 | 17.01 | 40.30 | 0.87 | 6.66 | 0.67 |
FS-Zn30Al | 39.80 | 9.64 | 36.58 | 2.24 | 5.21 | 6.54 |
Region | Elemental Weight Percentages/% | |||
---|---|---|---|---|
Zn | Al | O | Cl | |
A | 15.70 | 54.30 | 27.57 | 2.43 |
B | 62.69 | 37.31 | - | - |
C | 21.51 | 61.36 | 15.92 | 1.21 |
D | 62.84 | 33.91 | 3.25 | - |
Coating | Ecorr/V (vs. OCP) | Icorr/(10−5A/cm2) | ||||||
---|---|---|---|---|---|---|---|---|
24 h | 120 h | 240 h | 720 h | 24 h | 120 h | 240 h | 720 h | |
CS-Zn30Al | −1.365 | −1.414 | −1.326 | −1.258 | 3.875 | 4.416 | 3.991 | 2.812 |
FS-Zn30Al | −1.315 | −1.391 | −1.157 | −0.969 | 7.987 | 5.883 | 11.970 | 9.061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Wu, K.; Li, R.; Wang, Q.; Liang, X.; Yuan, C.; Yuan, Z.; Ramachandran, C.S. Corrosion Behavior of High-Pressure Cold-Sprayed Zn30Al Alloy Coating on Q235 Steel. Coatings 2024, 14, 1366. https://doi.org/10.3390/coatings14111366
Ding X, Wu K, Li R, Wang Q, Liang X, Yuan C, Yuan Z, Ramachandran CS. Corrosion Behavior of High-Pressure Cold-Sprayed Zn30Al Alloy Coating on Q235 Steel. Coatings. 2024; 14(11):1366. https://doi.org/10.3390/coatings14111366
Chicago/Turabian StyleDing, Xiang, Kunze Wu, Ruiqi Li, Qun Wang, Xingxin Liang, Chengqing Yuan, Zhennan Yuan, and Chidambaram Seshadri Ramachandran. 2024. "Corrosion Behavior of High-Pressure Cold-Sprayed Zn30Al Alloy Coating on Q235 Steel" Coatings 14, no. 11: 1366. https://doi.org/10.3390/coatings14111366
APA StyleDing, X., Wu, K., Li, R., Wang, Q., Liang, X., Yuan, C., Yuan, Z., & Ramachandran, C. S. (2024). Corrosion Behavior of High-Pressure Cold-Sprayed Zn30Al Alloy Coating on Q235 Steel. Coatings, 14(11), 1366. https://doi.org/10.3390/coatings14111366