Investigation of the Inhibition Mechanism of Process Porosity in Laser-MIG Hybrid-Welded Joints for an Aluminum Alloy
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Hybrid Welding System
2.2. High-Speed Camera System
2.3. Detection and Analysis Equipment
3. Results and Discussion
3.1. Influence of Defocusing Amount on Porosity of Weld
3.2. Influence of Defocusing Amount on Keyhole Morphology
3.2.1. No Keyhole Formed
3.2.2. Collapse of Keyhole Root
3.2.3. Complete Instability of the Keyhole
3.2.4. Instability of the Keyhole Root
3.2.5. Stability of the Keyhole
3.3. Mechanism Whereby the Defocusing Quantity Affects Keyhole Shape
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steen, W.M. Arc augmented laser processing of materials. J. Appl. Phys. 1980, 51, 5636–5641. [Google Scholar] [CrossRef]
- Duan, C.F.; Yang, S.L.; Gu, J.X.; Xiong, Q.; Wang, Y. Microstructure and ratcheting behavior of 6061 aluminum alloy laser-MIG hybrid welding joint. Mater. Res. Express 2019, 6, 086534. [Google Scholar] [CrossRef]
- Cai, C.; He, Y.; Xie, J.; Yu, J.; Xu, L.D.; Chen, Z.; Li, Z.X.; Wang, E.H.; Chen, H. Porosity suppression mechanism analysis in narrow-gap oscillating laser-MIG hybrid welding of aluminum alloys based on keyhole stability and molten pool flow behavior. J. Mater. Res. Technol. 2024, 32, 502–518. [Google Scholar] [CrossRef]
- Shibata, K.; Sakamoto, H.; Iwase, T. Laser-MIG hybrid welding of aluminum alloys. Weld World 2006, 50, 28–34. [Google Scholar] [CrossRef]
- Leo, P.; Renna, G.; Casalino, G.; Olabi, A.G. Effect of power distribution on the weld quality during hybrid laser welding of an Al–Mg alloy. Opt. Laser Technol. 2015, 73, 118–126. [Google Scholar] [CrossRef]
- Leo, P.; D’Ostuni, S.; Casalino, G. Hybrid welding of AA5754 annealed alloy: Role of post weld heat treatment on microstructure and mechanical properties. Mater Design 2016, 90, 777–786. [Google Scholar] [CrossRef]
- Sun, Z.; Salminen, A.S.; Moisio, T.J. Quality improvement of laser beam welds by plasma control. J. Mater. Sci. Lett. 1993, 12, 1131–1133. [Google Scholar] [CrossRef]
- Çam, G.; İpekoğlu, G. Recent developments in joining of aluminum alloys. Int. J. Adv. Manuf. Tech. 2017, 91, 1851–1866. [Google Scholar] [CrossRef]
- Jin, X.Z.; Zeng, L.C.; Cheng, Y.Y. Direct observation of keyhole plasma characteristics in deep penetration laser welding of aluminum alloy 6016. J. Phys. D Appl. Phys. 2012, 45, 245205. [Google Scholar] [CrossRef]
- Yan, J.; Gao, M.; Li, G.; Zhang, C.; Zeng, X.Y.; Jiang, M. Microstructure and mechanical properties of laser-MIG hybrid welding of 1420 Al-Li alloy. Int. J. Adv. Manuf. Tech. 2013, 66, 1467–1473. [Google Scholar] [CrossRef]
- Bai, P.C.; Dong, T.S.; Hou, X.H.; Zhao, C.W.; Xing, Y.M. Microstructure and mechanical properties of spray-deposited Mg–12.55 Al–3.33 Zn–0.58 Ca–1Nd alloy. Mater. Charact. 2010, 61, 756–760. [Google Scholar]
- Yan, S.H.; Xing, B.B.; Zhou, H.Y.; Xiao, Y.; Qin, Q.H.; Chen, H. Effect of filling materials on the microstructure and properties of hybrid laser welded Al-Mg-Si alloys joints. Mater. Charact. 2018, 144, 205–218. [Google Scholar] [CrossRef]
- Lin, R.Q.; Wang, H.P.; Lu, F.G.; Solomon, J.; Carlson, B.E. Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys. Int. J. Heat Mass. Tran. 2017, 108, 244–256. [Google Scholar] [CrossRef]
- Tammas-Williams, S.; Withers, P.J.; Todd, I.; Prangnell, P.B. The influence of porosity on fatigue crack initiation in additively manufactured titanium components. Sci. Rep. 2017, 7, 7308. [Google Scholar]
- Huang, L.J.; Wu, D.S.; Hua, X.M.; Liu, S.C.; Jiang, Z.; Li, F.; Wang, H.; Shi, S.J. Effect of the welding direction on the microstructural characterization in fiber laser-GMAW hybrid welding of 5083 aluminum alloy. J. Manuf. Process. 2018, 31, 514–522. [Google Scholar] [CrossRef]
- Xu, G.X.; Zheng, Z.Q.; Cao, Q.N.; Hu, Q.X.; Li, L.; Guo, Q.H.; Du, B.S. Numerical and experimental investigation on weld formation during laser+ MIG hybrid fillet welding of aluminum alloy in horizontal position. Int. J. Adv. Manuf. Tech. 2019, 102, 2683–2694. [Google Scholar] [CrossRef]
- Xu, G.X.; Li, L.; Wang, H.X.; Li, P.F.; Guo, Q.H.; Hu, Q.X.; Du, B.S. Simulation and experimental studies of keyhole induced porosity in laser-MIG hybrid fillet welding of aluminum alloy in the horizontal position. Opt. Laser Technol. 2019, 119, 105667. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.Q.; Zhou, X.D.; Zhan, X.H. Effect of droplet transition on the dynamic behavior of the keyhole during 6061 aluminum alloy laser-MIG hybrid welding. Int. J. Adv. Manuf. Tech. 2022, 119, 897–909. [Google Scholar] [CrossRef]
- Huang, S.; Xu, L.D.; Lou, M.; Chen, H.; Zhang, K.; Li, Y.B. Keyhole-induced pore formation mechanism in laser-MIG hybrid welding of aluminum alloy based on experiment and multiphase numerical model. J. Mater. Process. Tech. 2023, 314, 117903. [Google Scholar] [CrossRef]
- Matsunawa, A.; Mizutani, M.; Katayama, S. Porosity formation mechanism and its prevention in laser welding. Weld. Int. 2003, 17, 431–437. [Google Scholar] [CrossRef]
- Matsunawa, A.; Kim, J.D.; Seto, N.; Mizutani, M.; Katayama, S. Dynamics of keyhole and molten pool in laser welding. J. Laser Appl. 1998, 10, 247–254. [Google Scholar] [CrossRef]
- Miyagi, M.; Kawahito, Y.; Kawakami, H.; Shoubu, T. Dynamics of solid-liquid interface and porosity formation determined through X-Ray phase-contrast in laser welding of pure Al. J. Mater. Process. Tech. 2017, 250, 9–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, G.Y.; Wei, H.Y.; Zhang, J. A novel “sandwich” method for observation of the keyhole in deep penetration laser welding. Opt. Lasers Eng. 2008, 46, 133–139. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.C.; Chen, G.Y.; Zhang, H.R.; Zhang, M.J. Characteristics of zinc behavior during laser welding of zinc “sandwich” sample. Opt. Laser Technol. 2012, 44, 2340–2346. [Google Scholar] [CrossRef]
- Chen, G.Y.; Zhang, M.J.; Zhao, Z.; Zhang, Y.; Li, S.C. Measurements of laser-induced plasma temperature field in deep penetration laser welding. Opt. Laser Technol. 2013, 45, 551–557. [Google Scholar] [CrossRef]
- Jin, X.Z.; Cheng, Y.Y.; Zeng, L.C.; Zou, Y.F.; Zhang, H.G. Multiple Reflections and Fresnel Absorption of Gaussian Laser Beam in an Actual 3D Keyhole during Deep-Penetration Laser Welding. Int. J. Opt. 2012, 1, 361818. [Google Scholar] [CrossRef]
- GB/T228-2002; Metallic Materials-Tensile Testing at Ambient temperature. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China: Beijing, China, 2002.
- Huang, L.J.; Hua, X.M.; Wu, D.S.; Li, F. Numerical study of keyhole instability and porosity formation mechanism in laser welding of aluminum alloy and steel. J. Mater. Process. Tech. 2018, 252, 421–431. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Zhou, X.D.; Liu, T.; Kang, Y.; Zhan, X.H. Investigate on the porosity morphology and formation mechanism in laser-MIG hybrid welded joint for 5A06 aluminum alloy with Y-shaped groove. J. Manuf. Process. 2020, 57, 847–856. [Google Scholar] [CrossRef]
- Zhu, B.Q.; Zhao, Y.; Chen, F.G.; Fu, J.; Wang, F.Y.; Chen, G.Q.; Qin, Y.H. Mechanism of pore suppression in aluminum alloy laser-MIG hybrid welding based on alternating magnetic field. J. Laser Appl. 2024, 36, 022016. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Dong, S.Y.; Wang, Y.J.; Xu, B.S.; Fang, J.X.; He, P. Study on microstructures and mechanical properties of super narrow gap joints of thick and high strength aluminum alloy plates welded by fiber laser. Int. J. Adv. Manuf. Tech. 2016, 82, 99–109. [Google Scholar] [CrossRef]
- Zhan, X.H.; Zhao, Y.Q.; Liu, Z.M.; Gao, Q.Y.; Bu, H.C. Microstructure and porosity characteristics of 5A06 aluminum alloy joints using laser-MIG hybrid welding. J. Manuf. Process. 2018, 35, 437–445. [Google Scholar]
- Feng, Y.; Gao, X.; Zhang, Y.; Peng, C.; Gui, X.; Sun, Y.; Xiao, X. Simulation and experiment for dynamics of laser welding keyhole and molten pool at different penetration status. Int. J. Adv. Manuf. Tech. 2021, 112, 2301–2312. [Google Scholar]
- Wang, L.; Liu, Y.; Yang, C.G.; Gao, M. Study of porosity suppression in oscillating laser-MIG hybrid welding of AA6082 aluminum alloy. J. Mater. Process. Tech. 2021, 292, 117053. [Google Scholar]
- Salminen, A.; Piili, H.; Purtonen, T. The characteristics of high power fibre laser welding. Proc. Inst. Mech. Eng. Part C J. Mech. 2010, 224, 1019–1029. [Google Scholar]
Element | Cu | Mn | Mg | Zn | Cr | Ti | Si | Fe | Al |
---|---|---|---|---|---|---|---|---|---|
7075 | 1.2~2.0 | 0.3 | 2.1~2.9 | 5.1~6.1 | 0.18~0.28 | 0.2 | 0.4 | 0.5 | Balance |
ER5356 | 0.10 | 0.4~1.0 | 4.0~4.9 | 0.25 | ≤0.25 | 0.15 | ≤0.4 | 0.40 | Balance |
Type No. | Transmittance | Softening Point (°C) | RI | CLTE (K−1) | Elastic Modulus (kN/mm2) |
---|---|---|---|---|---|
JGS1 | 92% | 1730 | 1.46 | 5.5 × 10−7 | 48 |
No. | Δf (mm) | P (kW) | v (mm/s) | I (A) | DLA (mm) |
---|---|---|---|---|---|
f-1 | +12 | 3.2 | 17 | 120 | 2 |
f-2 | +9 | ||||
f-3 | +6 | ||||
f-4 | +3 | ||||
f-5 | 0 | ||||
f-6 | −3 | ||||
f-7 | −6 | ||||
f-8 | −9 | ||||
f-9 | −12 |
No. | Δf (mm) | X-Ray Film Detection and Processing Results |
---|---|---|
f-1 | +12 | |
f-2 | +9 | |
f-3 | +6 | |
f-4 | +3 | |
f-5 | 0 | |
f-6 | −3 | |
f-7 | −6 | |
f-8 | −9 | |
f-9 | −12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, Y.; Wang, F.; Zhao, Y.; Fu, J.; Sun, Z.; Zhang, D. Investigation of the Inhibition Mechanism of Process Porosity in Laser-MIG Hybrid-Welded Joints for an Aluminum Alloy. Coatings 2024, 14, 1376. https://doi.org/10.3390/coatings14111376
Xing Y, Wang F, Zhao Y, Fu J, Sun Z, Zhang D. Investigation of the Inhibition Mechanism of Process Porosity in Laser-MIG Hybrid-Welded Joints for an Aluminum Alloy. Coatings. 2024; 14(11):1376. https://doi.org/10.3390/coatings14111376
Chicago/Turabian StyleXing, Yucheng, Feiyun Wang, Yong Zhao, Juan Fu, Zhenbang Sun, and Daxing Zhang. 2024. "Investigation of the Inhibition Mechanism of Process Porosity in Laser-MIG Hybrid-Welded Joints for an Aluminum Alloy" Coatings 14, no. 11: 1376. https://doi.org/10.3390/coatings14111376
APA StyleXing, Y., Wang, F., Zhao, Y., Fu, J., Sun, Z., & Zhang, D. (2024). Investigation of the Inhibition Mechanism of Process Porosity in Laser-MIG Hybrid-Welded Joints for an Aluminum Alloy. Coatings, 14(11), 1376. https://doi.org/10.3390/coatings14111376