Novel Anodic TiO2 Synthesis Method with Embedded Graphene Quantum Dots for Improved Photocatalytic Activity
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Optical and Electrochemical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Energy Agency. Key World Energy Statistics; International Energy Agency: Paris, France, 2016.
- Mekonnen, M.M.; Gerbens-Leenes, P.W.; Hoekstra, A.Y. Future electricity: The challenge of reducing both carbon and water footprint. Sci. Total Environ. 2016, 569–570, 1282–1288. [Google Scholar] [CrossRef] [PubMed]
- Church, J.A.; White, N.J. Sea-Level Rise from the Late 19th to the Early 21st Century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef]
- Macintyre, I.G. Modern coral reefs of western Atlantic: New geological perspective. Am. Assoc. Pet. Geol. Bull. 2018, 72, 1360–1369. [Google Scholar] [CrossRef]
- Rzymski, P.; Gwenzi, W.; Poniedziałek, B.; Mangul, S.; Fal, A. Climate warming, environmental degradation and pollution as drivers of antibiotic resistance. Environ. Pollut. 2024, 346, 123649. [Google Scholar] [CrossRef]
- AbuQamar, S.F.; El-Saadony, M.T.; Alkafaas, S.S.; Elsalahaty, M.I.; Elkafas, S.S.; Mathew, B.T.; Aljasmi, A.N.; Alhammadi, H.S.; Salem, H.M.; Abd El-Mageed, T.A.; et al. Ecological impacts and management strategies of pesticide pollution on aquatic life and human beings. Mar. Pollut. Bull. 2024, 206, 116613. [Google Scholar] [CrossRef]
- Mousel, D.; Palmowski, L.; Pinnekamp, J. Energy demand for elimination of organic micropollutants in municipal wastewater treatment plants. Sci. Total Environ. 2017, 575, 1139–1149. [Google Scholar] [CrossRef]
- Gong, W.; Lewis, J.I. The politics of China’s just transition and the shift away from coal. Energy Res. Soc. Sci. 2024, 115, 103643. [Google Scholar] [CrossRef]
- Chen, D.; Ma, M.; Hu, L.; Du, Q.; Li, B.; Yang, Y.; Guo, L.; Cai, Z.; Ji, M.; Zhu, R.; et al. Characteristics of China’s coal mine methane emission sources at national and provincial levels. Environ. Res. 2024, 259, 119549. [Google Scholar] [CrossRef]
- Yang, L.; Yang, L.; Ding, L.; Deng, F.; Luo, X.B.; Luo, S.L. Principles for the Application of Nanomaterials in Environmental Pollution Control and Resource Reutilization. In Nanomaterials for the Removal of Pollutants and Resource Reutilization; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–23. [Google Scholar]
- Zou, J.P.; Chen, Y.; Zhu, M.; Wang, D.; Luo, X.B.; Luo, S.L. Semiconductor-Based Nanocomposites for Photodegradation of Organic Pollutants. In Nanomaterials for the Removal of Pollutants and Resource Reutilization; Elsevier: Amsterdam, The Netherlands, 2018; pp. 25–58. [Google Scholar]
- Roy, P.; Berger, S.; Schmuki, P.; Schmuki, P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem. Int. Ed. 2011, 50, 2904–2939. [Google Scholar] [CrossRef]
- Zhang, Z.; Tan, J.; Cheng, L.; Yang, W. Carbon nano-layer coated TiO2 nanoparticles for efficient photocatalytic CO2 reduction into CH4 and CO. Ceram. Int. 2021, 47, 34106–34114. [Google Scholar] [CrossRef]
- Chen, C.; Wen, Y.; Hu, X.; Ji, X.; Yan, M.; Mai, L.; Hu, P.; Shan, B.; Huang, Y. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Xu, L.; Li, Y.; Guo, D.; Wu, N.; Yuan, C.; Qin, A.; Cao, A.; Liu, X. Metal-organic frameworks derived anatase/rutile heterostructures with enhanced reaction kinetics for lithium and sodium storage. Chem. Eng. J. 2022, 430, 132689. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Rodríguez-Couto, S. Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): An overview. Biochem. Eng. J. 2020, 164, 107779. [Google Scholar] [CrossRef]
- Qiao, Y.; Bao, S.J.; Li, C.M.; Cui, X.Q.; Lu, Z.S.; Guo, J. Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS Nano 2008, 2, 113–119. [Google Scholar] [CrossRef]
- Pichat, P. Photocatalysis and Water Purification: From Fundamentals to Recent Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013. [Google Scholar]
- Ebraheem, S.; El-Saied, A. Band Gap Determination from Diffuse Reflectance Measurements of Irradiated Lead Borate Glass System Doped with TiO2 by Using Diffuse Reflectance Technique. Mater. Sci. Appl. 2013, 4, 324–329. [Google Scholar] [CrossRef]
- Kmentova, H.; Kment, S.; Wang, L.; Pausova, S.; Vaclavu, T.; Kuzel, R.; Han, H.; Hubicka, Z.; Zlamal, M.; Olejnicek, J.; et al. Photoelectrochemical and structural properties of TiO2 nanotubes and nanorods grown on FTO substrate: Comparative study between electrochemical anodization and hydrothermal method used for the nanostructures fabrication. Catal. Today 2016, 287, 130–136. [Google Scholar] [CrossRef]
- Grimes, C.A.; Mor, G.K. TiO2 Nanotube Arrays; Springer: Boston, MA, USA, 2009. [Google Scholar]
- Zhang, J.; Zhou, P.; Liu, J.; Yu, J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16, 20382–20386. [Google Scholar] [CrossRef]
- Wu, P.G.; Ma, C.H.; Shang, J.K. Effects of nitrogen doping on optical properties of TiO2 thin films. Appl. Phys. A Mater. Sci. Process. 2005, 81, 1411–1417. [Google Scholar] [CrossRef]
- Shin, S.; Kim, K.; Choi, J. Fabrication of ruthenium-doped TiO2 electrodes by one-step anodization for electrolysis applications. Electrochem. Commun. 2013, 36, 88–91. [Google Scholar] [CrossRef]
- Yuzer, B.; Aydın, M.I.; Con, A.H.; Inan, H.; Can, S.; Selcuk, H.; Kadmi, Y. Photocatalytic, self-cleaning and antibacterial properties of Cu(II) doped TiO2. J. Environ. Manag. 2022, 302, 114023. [Google Scholar] [CrossRef]
- Pan, D.; Zhang, J.; Li, Z.; Wu, M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 2010, 22, 734–738. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; An, X.; Park, K.H.; Khraisheh, M.; Tang, J. A critical review of CO2 photoconversion: Catalysts and reactors. Catal. Today 2014, 224, 3–12. [Google Scholar] [CrossRef]
- Park, H.; Park, Y.; Kim, W.; Choi, W. Surface modification of TiO2 photocatalyst for environmental applications. J. Photochem. Photobiol. C Photochem. Rev. 2013, 15, 1–20. [Google Scholar] [CrossRef]
- Zeng, Z.; Chen, S.; Tan, T.T.Y.; Xiao, F.X. Graphene quantum dots (GQDs) and its derivatives for multifarious photocatalysis and photoelectrocatalysis. Catal. Today 2018, 315, 171–183. [Google Scholar] [CrossRef]
- Jin, Z.; Owour, P.; Lei, S.; Ge, L. Graphene, graphene quantum dots and their applications in optoelectronics. Curr. Opin. Colloid Interface Sci. 2015, 20, 439–453. [Google Scholar] [CrossRef]
- Lin, L.Y.; Nie, Y.; Kavadiya, S.; Soundappan, T.; Biswas, P. N-doped reduced graphene oxide promoted nano TiO2 as a bifunctional adsorbent/photocatalyst for CO2 photoreduction: Effect of N species. Chem. Eng. J. 2017, 316, 449–460. [Google Scholar] [CrossRef]
- Gupta, S.; Smith, T.; Banaszak, A.; Boeckl, J. Graphene Quantum Dots Electrochemistry and Sensitive Electrocatalytic Glucose Sensor Development. Nanomaterials 2017, 7, 301. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, B.; Rao, Z.; Zhang, B.; Gong, J.R. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 2013, 13, 2436–2441. [Google Scholar] [CrossRef]
- Silvestrov, P.G.; Efetov, K.B. Quantum dots in graphene. Phys. Rev. Lett. 2007, 98, 016802. [Google Scholar] [CrossRef]
- Kosynkin, D.V.; Higginbotham, A.L.; Sinitskii, A.; Lomeda, J.R.; Dimiev, A.; Price, B.K.; Tour, J.M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–876. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M. Meilian Direct Synthesis of Graphene Quantum Dots with Different Fluorescence Properties by Oxidation of Graphene Oxide Using Nitric Acid. Appl. Sci. 2018, 8, 1303. [Google Scholar] [CrossRef]
- Yang, F.; Zhao, M.; Zheng, B.; Xiao, D.; Wu, L.; Guo, Y. Influence of pH on the fluorescence properties of graphene quantum dots using ozonation pre-oxide hydrothermal synthesis. J. Mater. Chem. 2012, 22, 25471–25479. [Google Scholar] [CrossRef]
- Pan, D.; Guo, L.; Zhang, J.; Xi, C.; Xue, Q.; Huang, H.; Li, J.; Zhang, Z.; Yu, W.; Chen, Z.; et al. Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J. Mater. Chem. 2012, 22, 3314–3318. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Y.; Wang, C.; Wu, X.; Yang, Y.; Zheng, B.; Wu, H.; Guo, S.; Zhang, J. Photo-Fenton reaction of graphene oxide: A new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano 2012, 6, 6592–6599. [Google Scholar] [CrossRef]
- Zhuo, S.; Shao, M.; Lee, S.T. Upconversion and downconversion fluorescent graphene quantum dots: Ultrasonic preparation and photocatalysis. ACS Nano 2012, 6, 1059–1064. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Asadi, A.; Sillanpää, M.; Farhadian, N. Application of carbon quantum dots to increase the activity of conventional photocatalysts: A systematic review. J. Mol. Liq. 2018, 271, 857–871. [Google Scholar] [CrossRef]
- Pan, D.; Jiao, J.; Li, Z.; Guo, Y.; Feng, C.; Liu, Y.; Wang, L.; Wu, M. Efficient separation of electron-hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation. ACS Sustain. Chem. Eng. 2015, 3, 2405–2413. [Google Scholar] [CrossRef]
- Rajender, G.; Kumar, J.; Giri, P.K. Interfacial charge transfer in oxygen deficient TiO2-graphene quantum dot hybrid and its influence on the enhanced visible light photocatalysis. Appl. Catal. B Environ. 2018, 224, 960–972. [Google Scholar] [CrossRef]
- Wang, N.; Lin, J.; Li, Y.; Li, T.; Chen, Y.; Li, J.; Shuai, S.; Chen, L.; Chu, Z. One-pot synthesis of high performance CQDs/TiO2 nanocomposites without carbon source addition. J. Water Process Eng. 2024, 65, 105833. [Google Scholar] [CrossRef]
- Olins, R.; Lesnicenoks, P.; Kleperis, J.; Knoks, A.; Lukosevics, I. Electrochemical exfoliation-streamline method for synthesis of nitrogen doped graphene. Chemija 2021, 32, 9–16. [Google Scholar] [CrossRef]
- Knoks, A.; Sika, R.; Olins, R.; Lesnicenoks, P. Investigation of carbon nanomaterial inlfuence on photocatalytic properties of TIO2. In Engineering for Rural Development. Proceedings of the International Scientific Conference, Jelgava, Latvia, 26–28 May 2021; Latvia University of Life Sciences and Technologies: Jelgava, Latvia, 2021; Volume 20, pp. 1804–1813. [Google Scholar] [CrossRef]
- Mott, N.F. The theory of crystal rectifiers. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1939, 171, 27–38. [Google Scholar] [CrossRef]
- Schottky, W. Zur Halbleitertheorie der Sperrschicht- und Spitzengleichrichter. Z. Phys. 1939, 113, 367–414. [Google Scholar] [CrossRef]
- O’Hayre, R.; Nanu, M.; Schoonman, J.; Goossens, A. Mott—Schottky and charge-transport analysis of nanoporous titanium dioxide films in air. J. Phys. Chem. C 2007, 111, 4809–4814. [Google Scholar] [CrossRef]
- Radecka, M.; Rekas, M.; Trenczek-Zajac, A.; Zakrzewska, K. Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. J. Power Sources 2008, 181, 46–55. [Google Scholar] [CrossRef]
- Kubelka, P. New Contributions to the Optics of Intensely Light-Scattering Materials Part II: Nonhomogeneous Layers. J. Opt. Soc. Am. 1954, 44, 330. [Google Scholar] [CrossRef]
- Kubelka, P. New Contributions to the Optics of Intensely Light-Scattering Materials Part I. J. Opt. Soc. Am. 1948, 38, 448. [Google Scholar] [CrossRef]
- Ubaidullah, M.; Mehmood, M.; Tanvir, M.T.; Ghani, T.; Mahmood, A.; Shah, A.; Khan, Y. Preparation of composite-layered structure of TiO2 nanoparticles/TiO2 nanotubes and its role in dye sensitized solar cell. J. Porous Mater. 2021, 28, 555–566. [Google Scholar] [CrossRef]
- Sreekantan, S.; Saharudin, K.A.; Lockman, Z.; Tzu, T.W. Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis. Nanotechnology 2010, 21, 365603. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Sun, L. A Two-step anodization to grow high-aspect-ratio TiO2 nanotubes. Thin Solid Films 2011, 519, 4694–4698. [Google Scholar] [CrossRef]
- Ohsaka, T.; Izumi, F.; Fujiki, Y. Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 1978, 7, 321–324. [Google Scholar] [CrossRef]
- Ohsaka, T. Temperature Dependence of the Raman Spectrum in Anatase TiO2. J. Phys. Soc. Japan 1980, 48, 1661–1668. [Google Scholar] [CrossRef]
- Arsov, L.D.; Kormann, C.; Plieth, W. Electrochemical synthesis and in situ Raman spectroscopy of thin films of titanium dioxide. J. Raman Spectrosc. 1991, 22, 573–575. [Google Scholar] [CrossRef]
- Balachandran, U.; Eror, N.G. Raman spectra of titanium dioxide. J. Solid State Chem. 1982, 42, 276–282. [Google Scholar] [CrossRef]
- Akshay, V.R.; Arun, B.; Mukesh, M.; Chanda, A.; Vasundhara, M. Tailoring the NIR range optical absorption, band-gap narrowing and ferromagnetic response in defect modulated TiO2 nanocrystals by varying the annealing conditions. Vacuum 2021, 184, 109955. [Google Scholar] [CrossRef]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Kandiel, T.A.; Robben, L.; Alkaim, A.; Bahnemann, D. Brookite versus anatase TiO2 photocatalysts: Phase transformations and photocatalytic activities. Photochem. Photobiol. Sci. 2013, 12, 602–609. [Google Scholar] [CrossRef]
- López-Muñoz, M.J.; Revilla, A.; Alcalde, G. Brookite TiO2-based materials: Synthesis and photocatalytic performance in oxidation of methyl orange and As(III) in aqueous suspensions. Catal. Today 2015, 240, 138–145. [Google Scholar] [CrossRef]
- Albu, S.P.; Tsuchiya, H.; Fujimoto, S.; Schmuki, P. TiO2 nanotubes—Annealing effects on detailed morphology and structure. Eur. J. Inorg. Chem. 2010, 2010, 4351–4356. [Google Scholar] [CrossRef]
- Varnagiris, S.; Medvids, A.; Lelis, M.; Milcius, D.; Antuzevics, A. Black carbon-doped TiO2 films: Synthesis, characterization and photocatalysis. J. Photochem. Photobiol. A Chem. 2019, 382, 111941. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef]
- Martins, N.C.T.; Ângelo, J.; Girão, A.V.; Trindade, T.; Andrade, L.; Mendes, A. N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity. Appl. Catal. B Environ. 2016, 193, 67–74. [Google Scholar] [CrossRef]
- Neetu; Singh, S.; Srivastava, P.; Bahadur, L. Hydrothermal synthesized Nd-doped TiO2 with Anatase and Brookite phases as highly improved photoanode for dye-sensitized solar cell. Sol. Energy 2020, 208, 173–181. [Google Scholar] [CrossRef]
- Kang, X.; Chen, S. Photocatalytic reduction of methylene blue by TiO2 nanotube arrays: Effects of TiO2 crystalline phase. J. Mater. Sci. 2010, 45, 2696–2702. [Google Scholar] [CrossRef]
CNP | Zeta Potential, mV | Negative Electrophoretic Mobility, µm·cm·Vs−1 |
---|---|---|
Q | −35.7 ± 5.4 | 1.79 ± 0.01 |
G | −5.0 ± 0.6 | 0.25 ± 0.01 |
H | −46.8 ± 2.3 | 2.35 ± 0.01 |
Sample | Anatase | Rutile | References | ||||||
---|---|---|---|---|---|---|---|---|---|
Eg(1) | Eg(2) | B1g | A1g & B1g | Eg(3) | B1g | Eg | A1g | ||
147.0 | 198.0 | 398.0 | 518.0 | 640 | 143.0 | 447.0 | 612 | [56] | |
144.0 | 197.0 | 399.0 | 513, 519 | 639 | [57,58] | ||||
144.0 | 197.0 | 397.0 | 516.0 | 641 | 143.0 | 447.0 | 612 | [59] | |
147.0 | 198.0 | 398.0 | 515.0 | 640 | 144.0 | 448.0 | 612 | [60] | |
143.0 | 196.0 | 394.0 | 512.0 | 630 | [61] | ||||
H0 | 144.4 | 199.3 | 395.7 | 515.1 | 631.3 | - | - | - | This work |
H1 | 140.5 | 218.2 | 393.8 | 515.1 | 631.3 | 140.5 | 445.5 | 615 | This work |
H2 | 144.4 | 210.7 | - | - | - | 144.4 | 441.8 | 606 | This work |
H3 | 144.4 | - | - | - | - | 144.4 | - | - | This work |
H4 | 144.4 | 220.1 | - | - | - | 144.4 | 441.8 | 606 | This work |
G0 | 148.2 | 199.3 | 392.0 | 527.9 | 609.6 | This work | |||
G1 | 144.4 | 199.3 | 392.0 | 515.1 | 611.4 | This work | |||
G2 | 146.3 | 199.3 | 393.8 | 527.9 | 620.4 | This work | |||
G3 | 144.4 | 197.4 | 393.8 | 515.1 | 631.3 | This work | |||
G4 | 142.5 | 197.4 | 392.0 | 517.0 | 631.3 | This work | |||
Q0 | 145.2 | 199.2 | 398.9 | 514.7 | 636.3 | This work | |||
Q1 | 145.2 | 199.2 | 395.1 | 514.7 | 632.6 | This work | |||
Q2 | 147.1 | 199.2 | 395.1 | 516.5 | 632.6 | This work | |||
Q3 | 145.2 | 199.2 | 395.1 | 512.8 | 630.8 | This work | |||
Q4 | 145.2 | 199.2 | 395.1 | 512.8 | 630.7 | This work |
Additive | Sample | OCP, mV | PCR, µA/cm2 | Egap, eV | EFb, mV | ND, cm−3‣1017 | k, h−1 |
---|---|---|---|---|---|---|---|
Q | Q0 | −29.1 ± 0.5 | 2.1 ± 0.1 | 3.21 ± 0.02 | −908.0 ± 5.0 | 15.4 | −0.00323 |
Q1 | −58.7 | 1.4 | 3.06 | −1004.6 | 17.8 | −0.00505 | |
Q2 | −26.3 | 1.5 | 3.06 | −1034.0 | 18.2 | −0.00549 | |
Q3 | −126.1 | 1.8 | 2.61 | −1015.0 | 28.2 | −0.00434 | |
Q4 | −156.1 | 2.9 | 2.98 | −1036.0 | 27.8 | −0.00299 | |
G | G0 | −46.5 | 1.5 | 3.13 | −942.5 | 97.8 | −0.01541 |
G1 | −33.8 | 1.4 | 3.05 | −1011.1 | 21.5 | −0.01512 | |
G2 | −22.6 | 0.5 | 3.06 | −959.2 | 3.95 | −0.00746 | |
G3 | −53.2 | 0.7 | 3.11 | −947.9 | 4.99 | −0.00192 | |
G4 | −18.7 | 0.6 | 3.14 | −704.2 | 68.5 | −0.01021 | |
H | H0 | −109.9 | 1.7 | 3.08 | −725.0 | 9.17 | −0.0085 |
H1 | −238.2 | 11.2 | 2.95 | −988.5 | 1.97 | −0.01212 | |
H2 | −256.8 | 12.6 | 2.59 | −1059.8 | 30.1 | −0.00966 | |
H3 | −19.5 | 7.1 | 2.83 | −1080.9 | 126.0 | −0.00959 | |
H4 | −108.7 | 15.3 | 2.84 | −1060.0 | 133.0 | −0.01269 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knoks, A.; Grinberga, L.; Kleperis, J. Novel Anodic TiO2 Synthesis Method with Embedded Graphene Quantum Dots for Improved Photocatalytic Activity. Coatings 2024, 14, 1407. https://doi.org/10.3390/coatings14111407
Knoks A, Grinberga L, Kleperis J. Novel Anodic TiO2 Synthesis Method with Embedded Graphene Quantum Dots for Improved Photocatalytic Activity. Coatings. 2024; 14(11):1407. https://doi.org/10.3390/coatings14111407
Chicago/Turabian StyleKnoks, Ainars, Liga Grinberga, and Janis Kleperis. 2024. "Novel Anodic TiO2 Synthesis Method with Embedded Graphene Quantum Dots for Improved Photocatalytic Activity" Coatings 14, no. 11: 1407. https://doi.org/10.3390/coatings14111407
APA StyleKnoks, A., Grinberga, L., & Kleperis, J. (2024). Novel Anodic TiO2 Synthesis Method with Embedded Graphene Quantum Dots for Improved Photocatalytic Activity. Coatings, 14(11), 1407. https://doi.org/10.3390/coatings14111407