Effect of Electrofriction Treatment on Microstructure, Corrosion Resistance and Wear Resistance of Cladding Coatings
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
- -
- Induction cladding using Sormite-1 forms a dendritic structure with an average hardness of 485 HV;
- -
- The combination of induction cladding followed by electrofriction treatment refines the dendritic structure and increases the material hardness to 646 HV, significantly improving the corrosion resistance of the coating compared to both the original L53 steel and the coatings obtained only by induction cladding or electrofriction treatment;
- -
- The maximum hardness (965 HV) was achieved after electrofriction treatment of L53 steel, which is associated with the formation of needle-like martensite;
- -
- The influence of microstructure and hardness on erosion and abrasive wear resistance confirmed that these parameters are crucial for increasing the durability of working tools.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Korshunov, V.Y.; Belous, N.M.; Torikov, V.E.; Boiko, A.A. Evaluation of energy efficiency of technologies used in abrasive machining of agricultural machinery parts. Mater. Today Proc. 2021, 38, 1769–1771. [Google Scholar] [CrossRef]
- Listauskas, J.; Jankauskas, V.; Žunda, A.; Katinas, E.; Gargasas, J. Estimation and Modelling the Wear Resistance of Plough Points and Knife Coulters by Discrete Element Method. Wear 2024, 556–557, 205508. [Google Scholar] [CrossRef]
- Drobot, A.; Balaev, E.; Eliseev, V. Technological Aspects of Increasing the Wear Resistance of the Working Surface of the Dump with a Modified Surface. Transp. Res. Procedia 2022, 63, 2921–2926. [Google Scholar] [CrossRef]
- Jatti, V.S.; Krishnan, R.M.; Saiyathibrahim, A.; Preethi, V.; Priyadharshini, G.S.; Kumar, A.; Sharma, S.; Islam, S.; Kozak, D.; Lozanovic, J. Predicting Specific Wear Rate of Laser Powder Bed Fusion AlSi10Mg Parts at Elevated Temperatures Using Machine Learning Regression Algorithm: Unveiling of Microstructural Morphology Analysis. J. Mater. Res. Technol. 2024, 33, 3684–3695. [Google Scholar] [CrossRef]
- Nie, M.; Jiang, P.; Li, X.; Zhu, D.; Yue, T.; Zhang, Z. Directed Energy Deposition Combined with Interlayer Remelting for Improving NiTi Wear Resistance by Grain Refinement. Tribol. Int. 2024, 202, 110300. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, C.; Chen, J.; Cheng, S.; Yuan, C.; Xu, J.; Li, Q.; Zhao, J.; Rao, G. Simultaneously Realizing High Piezoelectricity and Thermal Stability in BNT-Based Ceramics via Integrating Layered Diffusion and Thermal Treatment. Sens. Actuators A Phys. 2024, 365, 114874. [Google Scholar] [CrossRef]
- Kengesbekov, A.; Sagdoldina, Z.; Torebek, K.; Baizhan, D.; Kambarov, Y.; Yermolenko, M.; Abdulina, S.; Maulet, M. Synthesis and Formation Mechanism of Metal Oxide Compounds. Coatings 2022, 12, 1511. [Google Scholar] [CrossRef]
- Dilay, Y.; Güney, B.; Özkan, A.; Öz, A. Microstructure and Wear Properties of WC--10Co--4Cr Coating to Cultivator Blades by DJ-HVOF. Emerg. Mater. Res. 2021, 10, 278–288. [Google Scholar] [CrossRef]
- Lozynskyi, V.; Trembach, B.; Hossain, M.M.; Kabir, M.H.; Silchenko, Y.; Krbata, M.; Sadovyi, K.; Kolomiitse, O.; Ropyak, L. Prediction of Phase Composition and Mechanical Properties Fe–Cr–C–B–Ti–Cu Hardfacing Alloys: Modeling and Experimental Validations. Heliyon 2024, 10, e25199. [Google Scholar] [CrossRef]
- Adomako, N.K.; Haghdadi, N.; Primig, S. Electron and Laser-Based Additive Manufacturing of Ni-Based Superalloys: A Review of Heterogeneities in Microstructure and Mechanical Properties. Mater. Des. 2022, 223, 111245. [Google Scholar] [CrossRef]
- Jilleh, A.; Babu, N.K.; Thota, V.; Anis, A.L.; Harun, M.K.; Talari, M.K. Microstructural and Wear Investigation of High Chromium White Cast Iron Hardfacing Alloys Deposited on Carbon Steel. J. Alloys Compd. 2021, 857, 157472. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, S. Induction Cladding of Alloys and Metal-Matrix Composite Coatings: A Review. Heliyon 2024, 10, e38866. [Google Scholar] [CrossRef]
- Sankina, O.V.; Sankin, A.S.; Logov, A.A. Usage of Gray Cast Iron for Hardening of Agricultural Machines’ Soil-Tilling Implement. IOP Conf. Ser. Mater. Sci. Eng. 2019, 582, 012017. [Google Scholar] [CrossRef]
- Sagdoldina, Z.; Tyurin, Y.; Berdimuratov, N.; Stepanova, O.; Magazov, N.; Baizhan, D. Electrofrictional Hardening of the 40Kh and 65G Steels. Coatings 2023, 13, 1820. [Google Scholar] [CrossRef]
- Tabiyeva, Y.Y.; Rakhadilov, B.K.; Uazyrkhanova, G.K.; Zhurerova, L.G.; Maulit, A.; Baizhan, D. Surface Modification of Steel Mark 2 Electrolytic Plasma Exposure. Eurasian J. Phys. Funct. Mater. 2019, 3, 355–362. [Google Scholar] [CrossRef]
- Zhang, D.; Qian, Y.; Zhang, L.; Huang, H.; Yan, J. Surface Hardening of Zr-Based Metallic Glass via Laser Surface Alloying with Silicon Powder. Scr. Mater. 2022, 220, 114940. [Google Scholar] [CrossRef]
- Rakhadilov, B.; Satbayeva, Z.; Baizhan, D. Effect of Electrolytic-Plasma Surface Strengthening on the Structure and Properties of Steel 40 kHN. In Proceedings of the METAL 2019—28th International Conference on Metallurgy and Materials, Conference Proceedings, Brno, Czech Republic, 22–24 May 2019; pp. 950–955. [Google Scholar] [CrossRef]
- He, L.; Wang, Y.; Pan, R.; Xu, T.; Gao, J.; Zhang, Z.; Chu, J.; Wu, Y.; Zhang, X. A Fast Method of High-Frequency Induction Cladding Copper Alloy on Inner-Wall of Cylinder Based on Simulation and Experimental Study. Coatings 2024, 14, 458. [Google Scholar] [CrossRef]
- Mamaeva, A.; Kenzhegulov, A.; Panichkin, A.; Alibekov, Z.; Wieleba, W. Effect of Magnetron Sputtering Deposition Conditions on the Mechanical and Tribological Properties of Wear-Resistant Titanium Carbonitride Coatings. Coatings 2022, 12, 193. [Google Scholar] [CrossRef]
- Li, J.; Cao, Z.; Liu, L.; Liu, X.; Peng, J. Effect of Microstructure on Hardness and Wear Properties of 45 Steel after Induction Hardening. Steel Res. Int. 2021, 92, 2000540. [Google Scholar] [CrossRef]
- Navarro-Mesa, C.H.; Gómez-Botero, M.; Montoya-Mejía, M.; Ríos-Diez, O.; Aristizábal-Sierra, R. Wear Resistance of Austempered Grey Iron under Dry and Wet Conditions. J. Mater. Res. Technol. 2022, 21, 4174–4183. [Google Scholar] [CrossRef]
- ASTM G65-16; Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Wheel. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM G76-04; Standard Test Method for Abrasive Wear Resistance of Materials by the Dry Sand/Rubber Wheel Method. ASTM International: West Conshohocken, PA, USA, 2004.
- Siddiqui, A.A.; Dubey, A.K. Recent Trends in Laser Cladding and Surface Alloying. Opt. Laser Technol. 2021, 134, 106619. [Google Scholar] [CrossRef]
- Tyurin, Y.N.; Kuskov, Y.M.; Markashova, L.I.; Chernyak, Y.P.; Berdnikova, E.N.; Popko, V.I.; Kashnaryova, O.S.; Alekseenko, T.A. Effect of Low-Frequency Resonance Oscillations on Structure and Crack Resistance of Deposited High-Chromium Cast Iron. Paton Weld. J. 2011, 2, 27–30. [Google Scholar]
- Smokvina Hanza, S.; Smoljan, B.; Štic, L.; Hajdek, K. Prediction of Microstructure Constituents’ Hardness after the Isothermal Decomposition of Austenite. Metals 2021, 11, 180. [Google Scholar] [CrossRef]
Fe | Cr | Mn | Ni | Si | C |
---|---|---|---|---|---|
rest | 25.0–31.0 | 1.5 | 3.0–5.0 | 2.8–4.2 | 2.5–3.0 |
L53 Steel | IC | EFT | IC+EFT | |
---|---|---|---|---|
A (cm2) | 0.785 | 0.785 | 0.785 | 0.785 |
I corr. (A) | 0.69239 | 0.65645 | 0.6832 | 0.63123 |
i corr. (A/cm2) | 0.88202548 | 0.83624204 | 0.87031847 | 0.80411465 |
Corrosion rate (mm/a) | 0.00331716 | 0.00314498 | 0.00327314 | 0.00302415 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sagdoldina, Z.; Baizhan, D.; Sulyubayeva, L.; Berdimuratov, N.; Buitkenov, D.; Bolatov, S. Effect of Electrofriction Treatment on Microstructure, Corrosion Resistance and Wear Resistance of Cladding Coatings. Coatings 2024, 14, 1433. https://doi.org/10.3390/coatings14111433
Sagdoldina Z, Baizhan D, Sulyubayeva L, Berdimuratov N, Buitkenov D, Bolatov S. Effect of Electrofriction Treatment on Microstructure, Corrosion Resistance and Wear Resistance of Cladding Coatings. Coatings. 2024; 14(11):1433. https://doi.org/10.3390/coatings14111433
Chicago/Turabian StyleSagdoldina, Zhuldyz, Daryn Baizhan, Laila Sulyubayeva, Nurbol Berdimuratov, Dastan Buitkenov, and Sanzhar Bolatov. 2024. "Effect of Electrofriction Treatment on Microstructure, Corrosion Resistance and Wear Resistance of Cladding Coatings" Coatings 14, no. 11: 1433. https://doi.org/10.3390/coatings14111433
APA StyleSagdoldina, Z., Baizhan, D., Sulyubayeva, L., Berdimuratov, N., Buitkenov, D., & Bolatov, S. (2024). Effect of Electrofriction Treatment on Microstructure, Corrosion Resistance and Wear Resistance of Cladding Coatings. Coatings, 14(11), 1433. https://doi.org/10.3390/coatings14111433