The Study of the Etching Resistance of YOF Coating Deposited by Atmospheric Plasma Spraying in HBr/O2 Plasma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Methods
2.2. Experimental Materials
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashizawa, H.; Yoshida, K. Effect of the microstructures of yttria ceramics on their plasma corrosion behavior. Ceram. Int. 2019, 45, 21162–21167. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, C.; Chen, Y.; Wang, Y. Phase composition, structural, and plasma erosion properties of ceramic coating prepared by suspension plasma spraying. Int. J. Appl. Ceram. Technol. 2018, 15, 1388–1396. [Google Scholar] [CrossRef]
- Abe, H.; Yoneda, M.; Fujiwara, N. Developments of plasma etching technology for fabricating semiconductor devices. Jpn. J. Appl. Phys. 2008, 47, 1435. [Google Scholar] [CrossRef]
- Ito, N.; Moriya, T.; Uesugi, F.; Matsumoto, M.; Liu, S.; Kitayama, Y. Reduction of particle contamination in plasma-etching equipment by dehydration of chamber wall. J. Rare Earths 2008, 47, 3630. [Google Scholar] [CrossRef]
- Kim, D.M.; Jang, M.R.; Oh, Y.S.; Kim, S.; Lee, S.M.; Lee, S.H. Relative sputtering rates of oxides and fluorides of aluminum and yttrium. Surf. Coat. Technol. 2017, 309, 694–697. [Google Scholar] [CrossRef]
- Song, J.B.; Kim, J.T.; Oh, S.G.; Yun, J.Y. Contamination particles and plasma etching behavior of atmospheric plasma sprayed Y2O3 and YF3 coatings under NF3 plasma. Coatings 2019, 9, 102. [Google Scholar] [CrossRef]
- Machima, P.; Hershkowitz, N. SiO2 and Si3N4 etch mechanisms in NF3/hydrocarbon plasma. J. Phys. Appl. Phys. 2006, 39, 673. [Google Scholar] [CrossRef]
- Lee, H.K.; Baek, K.H.; Shin, K. Optimization and analysis of NF3 in situ chamber cleaning plasmas. J. Appl. Phys. 2004, 95, 4452–4462. [Google Scholar] [CrossRef]
- Kasashima, Y.; Nabeoka, N.; Motomura, T.; Uesugi, F. Many flaked particles caused by impulsive force of electric field stress and effect of electrostriction stress in mass-production plasma etching equipment. Jpn. J. Appl. Phys. 2014, 53, 040301. [Google Scholar] [CrossRef]
- Choi, K.Y.; Oh, Y.S.; Kim, S.; Lee, S.M. High erosion resistant Y2O3–carbon electroconductive composite under the fluorocarbon plasma. Ceram. Int. 2013, 39, 1209–1214. [Google Scholar] [CrossRef]
- Choi, H.; Kim, K.; Choi, H.; Kang, S.; Yun, J.; Shin, Y.; Kim, T. Plasma resistant aluminum oxide coatings for semiconductor processing apparatus by atmospheric aerosol spray method. Surf. Coat. Technol. 2010, 205, S125–S128. [Google Scholar] [CrossRef]
- Bradley, J.D.B.; Ay, F.; Wörhoff, K.; Pollnau, M. Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching. Appl. Phys. B 2007, 89, 311–318. [Google Scholar] [CrossRef]
- Lim, K.Y.; Kim, Y.W.; Kim, K.J. Mechanical properties of electrically conductive silicon carbide ceramics. Ceram. Int. 2014, 40, 10577–10582. [Google Scholar] [CrossRef]
- Zou, B.; Khan, Z.S.; Gu, L.; Fan, X.; Huang, W.; Wang, Y.; Cao, X. Microstructure, oxidation protection and failure mechanism of Yb2SiO5/LaMgAl11O19 coating deposited on C/SiC composites by atmospheric plasma spraying. Corros. Sci. 2012, 62, 192–200. [Google Scholar] [CrossRef]
- Kreethi, R.; Hwang, Y.J.; Lee, H.Y.; Park, J.H.; Lee, K.A. Surface analysis of yttrium oxyfluoride deposited via air plasma spraying for Erosion resistance against NF3 plasma. J. Korean Ceram. Soc. 2024, 61, 63–70. [Google Scholar] [CrossRef]
- Kreethi, R.; Hwang, Y.J.; Lee, H.Y.; Park, J.H.; Lee, K.A. Stability and plasma etching behavior of yttrium-based coatings by air plasma spray process. Surf. Coat. Technol. 2023, 454, 129182. [Google Scholar] [CrossRef]
- Zhang, X.F.; Zhou, K.S.; Wei, X.; Chen, B.Y.; Song, J.B.; Liu, M. In situ synthesis of α-alumina layer at top yttrium-stabilized zirconia thermal barrier coatings for oxygen barrier. Ceram. Int. 2014, 40, 12703–12708. [Google Scholar] [CrossRef]
- Tsunoura, T.; Yoshida, K.; Yano, T.; Kishi, Y. Fabrication, characterization, and fluorine-plasma exposure behavior of dense yttrium oxyfluoride ceramics. Jpn. J. Appl. Phys. 2017, 56, 06HC02. [Google Scholar] [CrossRef]
- Shiba, Y.; Teramoto, A.; Goto, T.; Kishi, Y.; Shirai, Y.; Sugawa, S. Stable yttrium oxyfluoride used in plasma process chamber. J. Vac. Sci. Technol. A 2017, 35, 021405. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.; Han, H.N.; Kim, W.; Hwang, N. Yttrium Oxyfluoride Coatings Deposited by Suspension Plasma Spraying Using Coaxial Feeding. Coatings 2020, 10, 481. [Google Scholar] [CrossRef]
- Lill, T.; Vahedi, V.; Gottscho, R. Etching of semiconductor devices. Mater. Sci. Technol. 2019, 1–25. [Google Scholar] [CrossRef]
- Kim, D.K.; Kim, Y.K.; Lee, H. A study of the role of HBr and oxygen on the etch selectivity and the post-etch profile in a polysilicon/oxide etch using HBr/O2 based high density plasma for advanced DRAMs. Mater. Sci. Semicond. Process. 2007, 10, 41–48. [Google Scholar] [CrossRef]
- Lin, T.K.; Wuu, D.S.; Huang, S.Y.; Wang, W.K. Preparation and Characterization of Sprayed-Yttrium Oxyfluoride Corrosion Protective Coating for Plasma Process Chambers. Coatings 2018, 8, 373. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.; Hwang, N. Effect of the dispersion state in Y5O4F7 suspension on YOF coating deposited by suspension plasma spray. Coatings 2021, 11, 831. [Google Scholar] [CrossRef]
- Huff, M. Recent advances in reactive ion etching and applications of high-aspect-ratio microfabrication. Micromachines 2021, 12, 991. [Google Scholar] [CrossRef]
- Donnelly, V.M.; Kornblit, A. Plasma etching: Yesterday, today, and tomorrow. J. Vac. Sci. Technol. A 2013, 31, 050825. [Google Scholar] [CrossRef]
- Banna, S.; Agarwal, A.; Cunge, G.; Darnon, M.; Pargon, E.; Joubert, O. Pulsed high-density plasmas for advanced dry etching processes. J. Vac. Sci. Technol. A 2012, 30, 040801. [Google Scholar] [CrossRef]
- Aruna, S.T.; Balaji, N.; Shedthi, J.; Grips, V.W. Effect of critical plasma spray parameters on the microstructure, microhardness and wear and corrosion resistance of plasma sprayed alumina coatings. Surf. Coatings Technol. 2012, 208, 92–100. [Google Scholar] [CrossRef]
- Zavareh, M.A.; Sarhan, A.A.D.M.; Abd Razak, B.B.; Basirun, W.J. Plasma thermal spray of ceramic oxide coating on carbon steel with enhanced wear and corrosion resistance for oil and gas applications. Ceram. Int. 2014, 40, 14267–14277. [Google Scholar] [CrossRef]
- Segall, M.D.; Lindan, P.J.; Probert, M.A.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717. [Google Scholar] [CrossRef]
Distance (mm) | Pitch (mm) | Robot Speed (mm/s) | Ar Gas | H2 Gas | Carrier Gas | Voltage (V) | Current (A) | Power (Kw) | Feeding |
---|---|---|---|---|---|---|---|---|---|
130 | 4 | 750 | 45 | 11.2 | 3.2 | 74 | 650 | 48.1 | 20% |
Pressure (mTorr) | TCP RF Power (W) | Bias RF Voltage (V) | O2 Flow Rate (sccm) | HBr Flow Rate (sccm) | He Flow Rate (sccm) |
---|---|---|---|---|---|
6 | 400 | 250 | 5 | 300 | 15 |
Parameter | YOF 3% | YOF 6% | YOF 9% |
---|---|---|---|
Average particle size (μm) | 20.5 | 22.4 | 22.2 |
Angle of Repose (°) | 34.7 | 31.5 | 30.7 |
Atomic Percentage (%) | YOF 3% | YOF 6% | YOF 9% | |||
---|---|---|---|---|---|---|
Pre- Etching | Post- Etching | Pre- Etching | Post- Etching | Pre- Etching | Post- Etching | |
Y3d | 17.2% | 29.4% | 25.6% | 28.9% | 32.6% | 33.1% |
O1s | 56.4% | 55.0% | 55.3% | 52.9% | 59.4% | 43.3% |
F1s | 27.8% | 13.3% | 19.1% | 17.1% | 24.1% | 7.3% |
Br3d | / | 0.9% | / | 1.0% | / | 0.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Wang, B.; Ang, K.; Jiang, X.; Wang, Y.; Xu, J.; Meng, H.; Chen, H.; Shi, Y.; Wang, L. The Study of the Etching Resistance of YOF Coating Deposited by Atmospheric Plasma Spraying in HBr/O2 Plasma. Coatings 2024, 14, 1442. https://doi.org/10.3390/coatings14111442
Tang Z, Wang B, Ang K, Jiang X, Wang Y, Xu J, Meng H, Chen H, Shi Y, Wang L. The Study of the Etching Resistance of YOF Coating Deposited by Atmospheric Plasma Spraying in HBr/O2 Plasma. Coatings. 2024; 14(11):1442. https://doi.org/10.3390/coatings14111442
Chicago/Turabian StyleTang, Zaifeng, Bing Wang, Kaiqu Ang, Xiaojun Jiang, Yuwei Wang, Jin Xu, Hua Meng, Hongli Chen, Ying Shi, and Linjun Wang. 2024. "The Study of the Etching Resistance of YOF Coating Deposited by Atmospheric Plasma Spraying in HBr/O2 Plasma" Coatings 14, no. 11: 1442. https://doi.org/10.3390/coatings14111442
APA StyleTang, Z., Wang, B., Ang, K., Jiang, X., Wang, Y., Xu, J., Meng, H., Chen, H., Shi, Y., & Wang, L. (2024). The Study of the Etching Resistance of YOF Coating Deposited by Atmospheric Plasma Spraying in HBr/O2 Plasma. Coatings, 14(11), 1442. https://doi.org/10.3390/coatings14111442