Flow Field of Supersonic Oxygen Jet Generated by Various Wear Lengths at the Laval Nozzle Exit
Abstract
:1. Introduction
2. Laval Nozzle Structure and Experimental Measurement
3. Numerical Simulation Model
3.1. Governing Equation
3.2. Simulation Model Detail
3.3. Mesh Sensitivity
4. Results and Discussions
4.1. Velocity Vector Distribution
4.2. Velocity Distribution
4.3. Impaction Cavity Parameters and Droplet Generation Distributions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Symbols
Ae | Exit area of the Laval nozzle (m2) | At | Throat area of the Laval nozzle (m2) |
Ao-x | Angle between velocity vector of oxygen jet and the positive X-axis (°) | Ag-x | Angle between velocity vector of ambient gas and the positive X-axis (°) |
αw | Wear angle (°) | CD | Oxygen utilization coefficient |
DEx-E | Distance between the expansion point and the Y coordinate (mm) | DEn-E | Distance between the entrainment point and the Y coordinate (mm) |
E | Total energy (J) | FG | Volumetric gas flow rate (Nm3·s−1) |
g | Gravitational acceleration ( m2·s−1) | H | Impaction depth (m) |
Hslag | Liquid slag thickness (m) | Hsteel | Penetrate depth of steel molten (m) |
k | Turbulence kinetic energy (m−2·s−2) | Lw | Wear length (mm) |
LD | Potential core length of the main oxygen jet using an oxygen flow rate of 2000 Nm3/h (mm) | LH | Potential core length of the main oxygen jet using an oxygen flow rate of 2400 Nm3/h (mm) |
LL | Potential core length of the main oxygen jet using an oxygen flow rate of 1600 Nm3/h (mm) | NB | Blowing number |
Pa | Atmospheric pressure (MPa) | Pd | Dynamic pressure (MPa) |
Pin | Inlet pressure of the Laval nozzle (MPa) | Pout | Ambient pressure (MPa) |
Ps | Static pressure (MPa) | Pt | Total pressure of oxygen jet (Pa) |
Q | Flow rate of the Laval nozzle (Nm3·min−1) | R | Gas constant |
RB | Droplet generation rate (kg·s−1) | Sh | Volumetric heat source(W·m−3) |
Tin | Inlet temperature of the Laval nozzle (K) | VD | Axial velocity at the end of the potential core using an oxygen flow rate of 2000 Nm3/h |
VH | Axial velocity at the end of the potential core using an oxygen flow rate of 2400 Nm3/h | VL | Axial velocity at the end of the potential core using an oxygen flow rate of 1600 Nm3/h |
Vmax | Maximum axial velocity at the first shockwave for the main oxygen jet (m·s−1) | Vmin | Minimum axial velocity at the first shockwave for the main oxygen jet (m·s−1) |
∆V | Axial velocity fluctuation is calculated as the difference between Vmax and Vmin (m·s−1) | VO2 | Velocity of the main oxygen jet (m·s−1) |
X-Vmax | X-coordinates corresponding to the maximum velocity of the main oxygen jet (mm) | X-Vmin | X-coordinates corresponding to the minimum velocity of the main oxygen jet (mm) |
YT-310 | Y coordinate with gas phase reaches at the 310 K (mm) | ρO2 | Density of the main oxygen jet (kg·m−3) |
ρslag | Liquid slag density (kg·m−3) | ρsteel | Molten steel density (kg·m−3) |
Γ | Specific heat ratio of oxygen | vi | Mean velocity component in the ith direction (m·s−1) |
vj | Mean velocity component in the jth direction (m·s−1) | Fluctuating velocity (m·s−1) component in the ith direction |
References
- Liu, C.; Zheng, S.; Zhu, M. Variation in Multiphase Flow Characteristics by Single-Flow Post-combustion Oxygen Lance Blowing in BOF Steelmaking. Metall. Trans. B. 2023, 54, 1245–1261. [Google Scholar] [CrossRef]
- Ramirez-Argaez, M.A.; Conejo, A.N. CFD Study on the Effect of the Oxygen Lance Inclination Angle on the Decarburization Kinetics of Liquid Steel in the EAF. Metall. Res. Technol. 2021, 118, 516. [Google Scholar] [CrossRef]
- Dong, K.; Zhu, R.; Liu, F. Behaviours of supersonic oxygen jet with various Laval nozzle structures in steelmaking process. Can. Metall. Q. 2019, 58, 285–298. [Google Scholar] [CrossRef]
- Liu, F.; Sun, D.; Zhu, R.; Li, Y. Characteristics of Flow Field for Supersonic Oxygen Multijets with Various Laval Nozzle Structures. Metall. Metall. Trans. B 2019, 50, 2362–2376. [Google Scholar] [CrossRef]
- Zhou, X.; Ersson, M.; Zhong, L.; Yu, J.; Jönsson, P. Mathematical and Physical Simulation of a Top Blown Converter. Steel Res. Int. 2014, 85, 273–281. [Google Scholar] [CrossRef]
- Feng, C.; Liu, F.; Zhu, R.; Dong, K.; Wei, G.; Tao, X. Flow Field Characteristic of Postcombustion Oxygen Lance Formed by Various Secondary Nozzle Arrangements. Metall. Trans. B 2024, 55, 600–611. [Google Scholar] [CrossRef]
- Li, M.; Shao, L.; Li, Q.; Zou, Z. A Numerical Study on Particle-Induced Erosion to Laval Nozzle in Powder-Oxygen Injection Using BOF Lance. JOM 2021, 73, 2946–2952. [Google Scholar] [CrossRef]
- Lv, M.; Zhu, R. Research on Coherent Jet Oxygen Lance in BOF Steelmaking Process. Metall. Res. Technol. 2019, 116, 502. [Google Scholar] [CrossRef]
- Wei, G.; Zhu, R.; Cheng, T.; Dong, K.; Yang, L.; Wu, X. Effect of Main Gas Composition on Flow Field Characteristics of Supersonic Coherent Jets with CO2 and O2 Mixed Injection (COMI) at Steelmaking Temperature. Metall. Trans. B 2018, 49, 361–374. [Google Scholar] [CrossRef]
- Silveira, G.F.; Lima, G.M.S.; Totti, M.B.; Roberto, C.P. Effects of Post Combustion Temperature on the Wear of the Supersonic Nozzles in BOF Lance Tip. Eng. Fail. Anal. 2019, 96, 175–185. [Google Scholar]
- Jia, H.; Han, P.; Liu, K.; Li, Y.; Ba, K.; Feng, L. Characteristics of a Double-structure Oxygen Lance and Its Interaction with the Molten Pool in BOF Steelmaking. AIP Adv. 2021, 11, 085330. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, F.; Sun, D.; Zhu, R.; Dong, K. Behaviors of Supersonic Oxygen Multi-jets with Various Preheating Temperatures. Metall. Trans. B 2021, 52, 2626–2641. [Google Scholar] [CrossRef]
- Odenthal, H.J.; Buess, S.; Starke, P.; Nörthemann, R.; Lohmeier, M. The new generation of SIS injector for improved EAF processes. In Proceedings of the METEC and 2nd European Steel Technology and Application Days (ESTAD), Düsseldorf, Germany, 15–19 June 2015. [Google Scholar]
- Tang, G.; Chen, Y.; Silaen, A.K.; Krotov, Y.; Riley, M.F.; Zhou, C.Q. Effects of Fuel Input on Coherent Jet Length at Various Ambient Temperatures. Appl. Therm. Eng. 2019, 153, 513–523. [Google Scholar] [CrossRef]
- Fen, C.; Zhu, R.; Han, B.; Yao, L.; Wu, W.; Wei, G.; Dong, J.; Jiang, J.; Hu, S. Effect of Nozzle Exit Wear on the Fluid Flow Characteristics of Supersonic Oxygen Lance. Metall. Trans. B 2020, 51, 187–199. [Google Scholar]
- Lv, M.; Chen, S.; Li, H.; Guo, H.; Li, J.; Li, T. Effect of the Wear of Supersonic Oxygen Lance on the Stirring Characteristics and Metallurgical Effects in the Converter Steelmaking Process. Ironmak. Steelmak. 2023, 50, 235–243. [Google Scholar] [CrossRef]
- Yuan, Z.; Pan, Y. Oxygen Lance Technology for Steelmaking, 1st ed.; Metallurgical Industry Press: Beijing, China, 2007. [Google Scholar]
- Anderson, J.D. Fundamentals of Aerodynamics, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2010. [Google Scholar]
- Rezaei, H.; Rahimi, M.; Ovaysi, S.; Alsairafi, A.A. Computational Fluid Dynamics Modeling of Heat Transfer and Condensation in a Modified Laval Nozzle. J. Thermophys. Heat Transf. 2022, 36, 667–675. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. Lectures in Mathematical Models of Turbulence; Academic Press: Cambridge, UK, 1972. [Google Scholar]
- Magnussen, B.F.; Hjertager, B.H. On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion. Combust. Inst. 1976, 15, 719–729. [Google Scholar] [CrossRef]
- Yaws, C.L. Matheson Gas Data Handbook, 7th ed.; Chemical Industry Press: Beijing, China, 2003. [Google Scholar]
- Robert, B. Experimental investigation of the penetration of a high-velocity gas jet through a liquid surface. J. Fluid Mech. 1963, 15, 13–34. [Google Scholar]
- Bode, M.; Gauding, M.; Goeb, D.; Falkenstein, T.; Pitsch, H. Applying Physics-informed Enhanced Super-resolution Generative Adversarial Networks to Turbulent Premixed Combustion and Engine-like Flame Kernel Direct Numerical Simulation Data. Proc. Combust. Inst. 2023, 39, 5289–5298. [Google Scholar] [CrossRef]
- William, M.; Adrian, D.; Pravin, M.; Sumant, W. The Critical Role of Hydrogen in Linde’s CoJet® Coherent Jet Technology. In Proceedings of the AISTech 2023—Proceedings of the Iron and Steel Technology Conference, Detroit, MI, USA, 8–11 May 2023. [Google Scholar]
- Willian, D.R.; Totti, M.B. BOF Lance and Functions. In Proceedings of the AISTech 2022—Proceedings of the Iron and Steel Technology Conference, Pittsburgh, PA, USA, 16–18 May 2022. [Google Scholar]
- Amano, S.; Sato, S.; Takahashi, Y.; Kikuchi, N. Effect of Top and Bottom Blowing Conditions on Spitting in Converter. Eng. Rep. 2021, 3, 12406. [Google Scholar] [CrossRef]
- Qian, F.; Mutharasan, R.; Farouk, B. Studies of Interface Deformations in Single- and Multi-layered Liquid Baths Due to an Impinging Gas Jet. Metall. Mater. Trans. B 1996, 27, 911–920. [Google Scholar] [CrossRef]
- Li, M.; Li, Q.; Kuang, S.; Zou, Z. Determination of Cavity Dimensions Induced by Impingement of Gas Jets onto a Liquid Bath. Metall. Mater. Trans. B 2016, 47, 116–126. [Google Scholar] [CrossRef]
- Rout, B.K.; Brooks, G.; Subagyo, E.; Rhamdhani, M.A.; Li, Z. Modeling of Droplet Generation in a Top Blowing Steelmaking Process. Metall. Mater. Trans. B 2016, 47, 3350–3361. [Google Scholar] [CrossRef]
Name of Boundary | Type of Boundary Conditions | Values |
---|---|---|
Oxygen inlet | Mass flow rate (Nm3/h) | 1600/2000/2400 |
Mach number | 2.00 | |
Mass fractions (%) | O2 = 100 | |
Oxygen temperature | 300 K (27 °C) | |
Outlet | Static pressure (Pa) | 101,325 |
Mass fractions (%) | Air = 100 | |
Ambient temperature | 1700 K (1427 °C) | |
Wall | Temperature | 300 K (27 °C) |
Air | Oxygen Gas | |
---|---|---|
Density/(kg·m−3) | Ideal gas | Ideal gas |
Viscosity/(kg·m−1·s−1) | −0.13 + 7.94·10−2·T − 7.17·10−5·T2 + 5.41·10−8·T3 − 2.21·10−11·T4 + 3.65·10−15·T5 | −0.39 + 8.83·10−2·T − 7.55·10−5·T2 + 5.51·10−8·T3 − 2.20·10−11·T4 + 3.59·10−15·T5 |
Thermal conductivity/ (W·m−1·K−1) | −0.77 + 1.10·10−1·T − 8.29·10−5·T2 + 6.16·10−8·T3 − 2.47·10−11·T4 + 4.03·10−15·T5 | −1.10 + 1.08·10−1·T − 6.67·10−5·T2 + 4.60·10−8·T3 − 1.77·10−11·T4 + 2.81·10−15·T5 |
Cp/(J·kg−1·K−1) | 1.094 − 7.36·10−4·T + 1.92·10−6·T2 − 1.76·10−9·T3 + 7.34·10−12·T4 − 1.18·10−16·T5 | 0.991 − 8.11·10−4·T + 2.68·10−6·T2 − 2.91·10−9·T3 + 1.39·10−12·T4 − 2.48·10−16·T5 |
Temperature/K | 1700 | 300 |
Label | Oxygen Flow Rate = 1600 Nm3/h | Oxygen Flow Rate = 2000 Nm3/h | Oxygen Flow Rate = 2400 Nm3/h | ||||||
---|---|---|---|---|---|---|---|---|---|
Lw = 0 (mm) | Lw = 2 (mm) | Lw = 4 (mm) | Lw = 0 (mm) | Lw = 2 (mm) | Lw = 4 (mm) | Lw = 0 (mm) | Lw = 2 (mm) | Lw = 4 (mm) | |
Expansion point (mm) | 15.0 | 12.0 | 10.3 | 15.0 | 12.1 | 10.7 | 15.0 | 12.2 | 10.9 |
DEx-E (mm) | 0.0 | 5.0 | 8.7 | 0.0 | 4.9 | 8.3 | 0.0 | 4.8 | 8.1 |
Entrainment point (mm) | —— | 14.8 | 14.9 | —— | 15.4 | 15.7 | —— | 15.6 | 16.0 |
DEn-E (mm) | 0.0 | 2.2 | 4.1 | 0.0 | 1.6 | 3.3 | 0.0 | 1.4 | 3.0 |
Label | Oxygen Flow Rate = 1600 Nm3/h | Oxygen Flow Rate = 2000 Nm3/h | Oxygen Flow Rate = 2400 Nm3/h | ||||||
---|---|---|---|---|---|---|---|---|---|
Lw = 0 (mm) | Lw = 2 (mm) | Lw = 4 (mm) | Lw = 0 (mm) | Lw = 2 (mm) | Lw = 4 (mm) | Lw = 0 (mm) | Lw = 2 (mm) | Lw = 4 (mm) | |
Max total temperature (K) | 300 | 1034 | 1700 | 300 | 935 | 1700 | 300 | 908 | 1700 |
YT-310 (mm) | —— | 15.2 | 14.9 | —— | 15.5 | 15.0 | —— | 15.9 | 15.1 |
Oxygen Flow Rate (Nm3/h) | 1600 | 2000 | 2400 | ||||||
---|---|---|---|---|---|---|---|---|---|
Vmax | Vmin | ∆V | Vmax | Vmin | ∆V | Vmax | Vmin | ∆V | |
Lw = 0 mm | 518 | 363 | 155 | 522 | 472 | 50 | 575 | 479 | 96 |
Lw = 2 mm | 530 | 358 | 172 | 576 | 426 | 150 | 610 | 451 | 159 |
Lw = 4 mm | 538 | 351 | 187 | 582 | 418 | 164 | 615 | 443 | 172 |
Oxygen Flow Rate (Nm3/h) | 1600 | 2000 | 2400 | |||
---|---|---|---|---|---|---|
X-Vmax | X-Vmin | X-Vmax | X-Vmin | X-Vmax | X-Vmin | |
Lw = 0 mm | 20.9 | 23.6 | 29.8 | 36.3 | 29.2 | 35.3 |
Lw = 2 mm | 20.2 | 23.2 | 27.3 | 33.2 | 26.8 | 32.6 |
Lw = 4 mm | 18.9 | 22.8 | 25.4 | 31.0 | 24.9 | 30.2 |
Lable | LL | LD | LH | VL | VD | VH |
---|---|---|---|---|---|---|
Lw = 0 mm | 485 mm | 532 mm | 564 mm | 459 m/s | 488 m/s | 504 m/s |
Lw = 2 mm | 473 mm | 520 mm | 555 mm | 457 m/s | 486 m/s | 497 m/s |
Lw = 4 mm | 462 mm | 510 mm | 548 mm | 456 m/s | 484 m/s | 496 m/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Lu, S.; Zeng, S.; Zhu, R.; Wei, G.; Dong, K. Flow Field of Supersonic Oxygen Jet Generated by Various Wear Lengths at the Laval Nozzle Exit. Coatings 2024, 14, 1444. https://doi.org/10.3390/coatings14111444
Liu F, Lu S, Zeng S, Zhu R, Wei G, Dong K. Flow Field of Supersonic Oxygen Jet Generated by Various Wear Lengths at the Laval Nozzle Exit. Coatings. 2024; 14(11):1444. https://doi.org/10.3390/coatings14111444
Chicago/Turabian StyleLiu, Fuhai, Songchao Lu, Sibao Zeng, Rong Zhu, Guangsheng Wei, and Kai Dong. 2024. "Flow Field of Supersonic Oxygen Jet Generated by Various Wear Lengths at the Laval Nozzle Exit" Coatings 14, no. 11: 1444. https://doi.org/10.3390/coatings14111444
APA StyleLiu, F., Lu, S., Zeng, S., Zhu, R., Wei, G., & Dong, K. (2024). Flow Field of Supersonic Oxygen Jet Generated by Various Wear Lengths at the Laval Nozzle Exit. Coatings, 14(11), 1444. https://doi.org/10.3390/coatings14111444