Cracking Resistance of Selected PVD Hard Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Preparation
2.2. Coating Characterization
3. Results
3.1. Influence of Carbide Inclusions in D2 Tool Steel on the Nanoindentation Test
3.2. Fracture Behavior of the nl-(Cr,Al)N Nanolayer Hard Coatings
3.3. Influence of the Substrate Rotation Mode on the Fracture Resistance of the TiAlN Hard Coating Prepared by Cathodic Arc Deposition
3.4. Influence of Growth Defects on the Nanoindentation Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mayrhofer, P.H.; Mitterer, C.; Hultman, L.; Clemens, H. Microstructural design of hard coatings. Prog. Mater. Sci. 2006, 51, 1032–1114. [Google Scholar] [CrossRef]
- Musil, J. Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surf. Coat. Technol. 2012, 207, 50–65. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X. Toughness evaluation of hard coatings and thin films. Thin Solid Film. 2012, 520, 2375–2389. [Google Scholar] [CrossRef]
- Jirout, M.; Musil, J. Effect of addition of Cu into ZrOx film on its properties. Surf. Coat. Technol. 2006, 200, 6792–6800. [Google Scholar] [CrossRef]
- Cairney, J.M.; Hoffman, M.J.; Munroe, P.R.; Martin, P.J.; Bendavid, A. Deformation and fracture of Ti–Si–N nanocomposite films. Thin Solid Film. 2005, 479, 193–200. [Google Scholar] [CrossRef]
- Daniel, R.R.; Meindlhumer, M.; Zalesak, J.; Sartory, B.; Zeilinger, A.; Mitterer, C.; Keckes, J. Fracture toughness enhancement of brittle nanostructured materials by spatial heterogeneity: A micromechanical proof for CrN/Cr and TiN/SiOx multilayers. Mater. Des. 2016, 104, 227–234. [Google Scholar] [CrossRef]
- Bobzin, K.; Kalscheuer, C.; Tayyab, M. A case study on fatigue damage in PVD coated tool steel under cyclic bending load. Surf. Coat. Technol. 2024, 478, 130505. [Google Scholar] [CrossRef]
- Baragetti, S.; Lavecchia, G.; Terranova, A. Variables affecting the fatigue resistance of PVD-coated components. Int. J. Fatigue 2005, 27, 1541–1550. [Google Scholar] [CrossRef]
- Bai, Y.; Gao, J.; Guo, T.; Gao, K.; Volinsky, A.A.; Pang, X. Review of the fatigue behavior of hard coating-ductile substrate systems. Int. J. Miner. Metall. Mater. 2021, 28, 46–55. [Google Scholar] [CrossRef]
- Hu, C.; Zhao, L.; Zhang, Y.; Du, Z.; Deng, Y. The Influence of Hard Coatings on Fatigue Properties of Pure Titanium by a Novel Testing Method. Materials 2024, 17, 835. [Google Scholar] [CrossRef]
- Wiklund, U.; Bromark, M.; Larsson, M.; Hedenqvist, P.; Hogmark, S. Cracking resistance of thin hard coatings estimated by four-point bending. Surf. Coat. Technol. 1997, 91, 57–63. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, D.; Fu, Y.; Du, H. Effect of sputtering target power on microstructure and mechanical properties of nanocomposite nc-TiN/a-SiNx thin films. Thin Solid Film. 2004, 447–448, 462–467. [Google Scholar] [CrossRef]
- Azizpour, A.; Hahn, R.; Klimashin, F.F.; Wojcik, T.; Poursaedi, E.; Mayrhofer, P.H. Deformation and Cracking Mechanism in CrN/TiN Multilayer Coatings. Coatings 2019, 9, 63. [Google Scholar] [CrossRef]
- Bhowmick, S.; Bhide, R.; Hoffman, M.; Jayaram, V.; Biswas, S.K. Fracture mode transitions during indentation of columnar TiN coatings on metal. Philos. Mag. 2005, 85, 2927–2945. [Google Scholar] [CrossRef]
- Wieciński, P.; Smolik, J.; Garbacz, H.; Kurzydłowski, K.J. Failure and deformation mechanisms during indentation in nanostructured Cr/CrN multilayer coatings. Surf. Coat. Technol. 2014, 240, 23–31. [Google Scholar] [CrossRef]
- Math, S.; Suresha, S.J.; Jayaram, V.; Biswas, S.K. Indentation of a hard film on a compliant substrate: Film fracture mechanisms to accommodate substrate plasticity. J. Mater. Sci. 2006, 41, 7830–7837. [Google Scholar] [CrossRef]
- Suresha, S.J.; Math, S.; Jayaram, V.; Biswas, S.K. Toughening through multilayering in TiN–AlTiN films. Philos. Mag. 2007, 87, 2521–2539. [Google Scholar] [CrossRef]
- Kossman, S.; Bigerelle, M. Pop-In Identification in Nanoindentation Curves with Deep Learning Algorithms. Materials 2021, 14, 7027. [Google Scholar] [CrossRef]
- Hainsworth, S.; McGurk, M.; Page, T. The effect of coating cracking on the indentation response of thin hard-coated systems. Surf. Coat. Technol. 1998, 102, 97–107. [Google Scholar] [CrossRef]
- Zhao, X.; Xie, Z.; Munroe, P. Nanoindentation of hard multilayer coatings: Finite element modelling. Mater. Sci. Eng. A 2011, 528, 1111–1116. [Google Scholar] [CrossRef]
- Ast, J.; Ghidelli, M.; Durst, K.; Goeken, M.; Sebastiani, M.; Korsunsky, A.M. A review of experimental approaches to fracture toughness evaluation at the micro-scale. Mater. Des. 2019, 173, 107762. [Google Scholar] [CrossRef]
- Drnovšek, A.; Vo, H.T.; de Figueiredo, M.R.; Kolozsvári, S.; Hosemann, P.; Franz, R. High temperature fracture toughness of single-layer CrAlN and CrAlSiN hard coatings. Surf. Coat. Technol. 2021, 409, 126909. [Google Scholar] [CrossRef]
- Sebastiani, M.; Johanns, K.E.; Herbert, E.G.; Carassiti, F.; Pharr, G.M. A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings. Philos. Mag. 2014, 95, 1928–1944. [Google Scholar] [CrossRef]
- Sebastiani, M.; Johanns, K.E.; Herbert, E.G.; Pharr, G.M. Measurement of fracture toughness by nanoindentation methods: Recent advances and future challenges. Curr. Opin. Solid State Mater. Sci. 2015, 19, 324–333. [Google Scholar] [CrossRef]
- Reichardt, A.; Ionescu, M.; Davis, J.; Edwards, L.; Harrison, R.P.; Hosemann, P.; Bhattacharyya, D. In situ micro tensile testing of He+2 ion irradiated and implanted single crystal nickel film. Acta Mater. 2015, 100, 147–154. [Google Scholar] [CrossRef]
- Amer, M.; Hayat, Q.; Janik, V.; Jennett, N.; Nottingham, J.; Bai, M. A Review on In Situ Mechanical Testing of Coatings. Coatings 2022, 12, 299. [Google Scholar] [CrossRef]
- Wang, A.-N.; Yu, G.-P.; Huang, J.-H. Fracture toughness measurement on TiN hard coatings using internal energy induced cracking. Surf. Coat. Technol. 2014, 239, 20–27. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Dražić, G. Influence of Growth Defects on the Oxidation Resistance of Sputter-Deposited TiAlN Hard Coatings. Coatings 2021, 11, 123. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Terek, P.; Miletić, A.; Čekada, M.; Panjan, M. Comparative Study of Tribological Behavior of TiN Hard Coatings Deposited by Various PVD Deposition Techniques. Coatings 2022, 12, 294. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Mahne, N.; Čekada, M.; Panjan, M. Surface Topography of PVD Hard Coatings. Coatings 2021, 11, 1387. [Google Scholar] [CrossRef]
- Bhowmick, S.; Jayaraam, V.; Biswas, S. Deconvolution of fracture properties of TiN films on steels from nanoindentation load displacement curves. Acta Mater. 2005, 53, 2459–2467. [Google Scholar] [CrossRef]
- Miletić, A.; Panjan, P.; Čekada, M.; Kovačević, L.; Terek, P.; Kovač, J.; Dražoć, G.; Škorić, B. Nanolayer CrAlN/TiSiN coating designed for tribological applications. Ceram. Int. 2021, 47, 2022–2033. [Google Scholar] [CrossRef]
- Panjan, M.; Čekada, M.; Panjan, P.; Zupanič, F.; Kölker, W. Dependence of microstructure and hardness of TiAlN/VN hard coatings on the type of substrate rotation. Vacuum 2012, 86, 699–702. [Google Scholar] [CrossRef]
- Whitehead, A.J.; Page, T.F. Nanoindentation studies of thin film coated systems. Thin Solid Films 1992, 220, 277–283. [Google Scholar] [CrossRef]
- Carvalho, N.J.M.; De Hosson, J.T.M. Deformation mechanisms in TiN/(Ti,Al)N multilayers under depth-sensing indentation. Acta Mater. 2006, 54, 1857–1862. [Google Scholar] [CrossRef]
- Molina-Aldareguia, J.M.; Lloyd, S.J.; Odén, M.; Joelsson, T.; Hultman, L.; Clegg, W.J. Deformation structures under indentations in TiN/NbN single-crystal multilayers deposited by magnetron sputtering at different bombarding ion energies. Philos. Mag. A 2002, 82, 1983–1992. [Google Scholar] [CrossRef]
- Rzepiejewska-Malyska, K.A.; Mook, W.M.; Parlinska-Wojtan, M.; Hejduk, J.; Michler, J. In situ scanning electron microscopy indentation studies on multilayer nitride films: Methodology and deformation mechanisms. J. Mater. Res. 2009, 24, 1208–1221. [Google Scholar] [CrossRef]
- Drnovšek, A.; Kukuruzović, D.; Terek, P.; Miletić, A.; Čekada, M.; Panjan, M.; Panjan, P. Microstructural, Mechanical and Oxidation Resistance of Nanolayer Sputter-Deposited CrAlN Hard Coatings. Coatings 2023, 13, 2096. [Google Scholar] [CrossRef]
- Tsui, T.Y.; Pharr, G.M.; Oliver, W.C.; Bhatia, C.S.; White, R.L.; Anders, S.; Anders, A.; Brown, I.G. Nanoindentation and Nanoscratching of Hard Carbon Coatings for Magnetic Disks. MRS Proc. 1995, 383, 447–452. [Google Scholar] [CrossRef]
- Musil, J.; Jirout, M. Toughness of hard nanostructured ceramic thin films. Surf. Coat. Technol. 2007, 201, 5148–5152. [Google Scholar] [CrossRef]
- Panjan, M. Influence of substrate rotation and target arrangement on the periodicity and uniformity of layered coatings. Surf. Coat. Technol. 2013, 235, 32–44. [Google Scholar] [CrossRef]
- Bull, S. Modelling the hardness response of bulk materials, single and multilayer coatings. Thin Solid Film. 2001, 398-399, 291–298. [Google Scholar] [CrossRef]
- Costa, M.Y.P.; Venditti, M.L.R.; Cioffi, M.O.H.; Voorwald, H.J.C.; Guimarães, V.A.; Ruas, R. Fatigue behavior of PVD coated Ti–6Al–4V alloy. Int. J. Fatigue 2011, 33, 759–765. [Google Scholar] [CrossRef]
C | Si | Mn | Cr | Mo | V | W | Co | Fe | |
---|---|---|---|---|---|---|---|---|---|
D2 | 1.53 | 0.35 | 0.4 | 12 | 1 | 0.85 | / | / | 83.87 |
H11 | 0.37 | 1 | 0.38 | 5.15 | 1.3 | 0.4 | / | / | 91.4 |
ASP30 | 1.28 | / | / | 4.2 | 5 | 3.1 | 6.4 | 8.5 | 71.52 |
h | AlEDX | CrEDX | Al/Cr | t | λ | H | E | H3/E2 | Sa | Fc |
---|---|---|---|---|---|---|---|---|---|---|
(cm) | (at.%) | (at.%) | (µm) | (nm) | (GPa) | (GPa) | (GPa) | (nm) | (mN) | |
13 | 28.9 | 22.2 | 1.3 | 3.75 | 6 | 25.8 ± 1 | 276 | 0.225 | 20.8 ± 1 | 296 |
20 | 25.5 | 25.4 | 1 | 5.21 | 8 | 17.6 ± 1 | 271 | 0.074 | 24.4 ± 1 | 190 |
29 | 18.5 | 32.3 | 0.57 | 6.1 | 9.4 | 20 ± 1 | 275 | 0.105 | 24.7 ± 1 | 338 |
36 | 14.2 | 37 | 0.38 | 7.01 | 10.8 | 18.9 ± 1 | 241 | 0.117 | 23.5 ± 1 | 380 |
43 | 10.5 | 40.5 | 0.26 | 7.54 | 11.6 | 19.1 ± 0.8 | 259 | 0.104 | 20 ± 1 | 370 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panjan, P.; Miletić, A.; Drnovšek, A.; Terek, P.; Čekada, M.; Kovačević, L.; Panjan, M. Cracking Resistance of Selected PVD Hard Coatings. Coatings 2024, 14, 1452. https://doi.org/10.3390/coatings14111452
Panjan P, Miletić A, Drnovšek A, Terek P, Čekada M, Kovačević L, Panjan M. Cracking Resistance of Selected PVD Hard Coatings. Coatings. 2024; 14(11):1452. https://doi.org/10.3390/coatings14111452
Chicago/Turabian StylePanjan, Peter, Aleksandar Miletić, Aljaž Drnovšek, Pal Terek, Miha Čekada, Lazar Kovačević, and Matjaž Panjan. 2024. "Cracking Resistance of Selected PVD Hard Coatings" Coatings 14, no. 11: 1452. https://doi.org/10.3390/coatings14111452
APA StylePanjan, P., Miletić, A., Drnovšek, A., Terek, P., Čekada, M., Kovačević, L., & Panjan, M. (2024). Cracking Resistance of Selected PVD Hard Coatings. Coatings, 14(11), 1452. https://doi.org/10.3390/coatings14111452