Review of Progress in Marine Anti-Fouling Coatings: Manufacturing Techniques and Copper- and Silver-Doped Antifouling Coatings
Abstract
:1. Introduction
2. Preparation Technology of Antifouling Coating
2.1. Cold Spray
2.2. Plasma Spraying
2.3. Magnetron Sputtering
2.4. Laser Cladding
2.5. Micro-Arc Oxidation
2.6. Other Technology
3. Progress in Marine Anti-Fouling Coatings
3.1. Cu-Doped Antifouling Coating
3.1.1. Cu-Doped Polymer Coatings
3.1.2. Cu-Containing Metal-Based Coatings
- Cu-Fe alloy coating
- 2.
- Cu-Ti alloy coating
- 3.
- Cu-Cr alloy coatings
- 4.
- High entropy alloy coatings
3.1.3. Cu-Doped Composite Coatings
- Cu-Al2O3 composite coating
- 2.
- Cu/Cu2O composite coating
- 3.
- Cu/GLC composite coating
- 4.
- Ti/(Cu, MoS2) composite coatings
3.2. Ag-Doped Antifouling Coating
3.2.1. Ag-Doped Polymer Coatings
- Polymeric urushiol/AgNP coatings
- 2.
- Polydimethylsiloxane/AgNP coatings
3.2.2. Ag-Doped Inorganic Coatings
- Graphene oxide-AgNP coatings
- 2.
- Ag-doped CrN coatings
- 3.
- Ag-Al2O3 coatings
- 4.
- Cu-Ag co-doped antifouling coating
4. Conclusions and Prospectives
Author Contributions
Funding
Conflicts of Interest
References
- Dobson, T.; Yunnie, A.; Kaloudis, D.; Larossa, N.; Coules, H. Biofouling and corrosion rate of welded Nickel Aluminium Bronze in natural and simulated seawater. Biofouling 2024, 40, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Romeu, M.J.; Mergulhao, F. Development of Antifouling Strategies for Marine Applications. Microorganisms 2023, 11, 1568. [Google Scholar] [CrossRef] [PubMed]
- Weber, F.; Esmaeili, N. Marine biofouling and the role of biocidal coatings in balancing environmental impacts. Biofouling 2023, 39, 661–681. [Google Scholar] [CrossRef] [PubMed]
- Maduka, M.; Schoefs, F.; Thiagarajan, K.; Bates, A. Hydrodynamic effects of biofouling-induced surface roughness-Review and research gaps for shallow water offshore wind energy structures. Ocean Eng. 2023, 272, 113798. [Google Scholar] [CrossRef]
- Soleimani, S.; Jannesari, A.; Etezad, S.M. Prevention of marine biofouling in the aquaculture industry by a coating based on polydimethylsiloxane-chitosan and sodium polyacrylate. Int. J. Biol. Macromol. 2023, 245, 125508. [Google Scholar] [CrossRef]
- Yue, D.; Jiang, X.; Yu, H.; Sun, D. In-situ fabricated hierarchical nanostructure on titanium alloy as highly stable and durable super-lubricated surface for anti-biofouling in marine engineering. Chem. Eng. J. 2023, 463, 142389. [Google Scholar] [CrossRef]
- Zou, Y.; Zhou, X.; Chen, L.; Xi, X. Impacts of different characteristics of marine biofouling on ship resistance. Ocean Eng. 2023, 278, 114415. [Google Scholar] [CrossRef]
- Ghattavi, S.; Homaei, A. Synthesis and characterization of ZnO-SiO2 hybrid nanoparticles as an effective inhibitor for marine biofilm and biofouling. J. Mol. Liq. 2024, 396, 123974. [Google Scholar] [CrossRef]
- Kim, D.H.; Alayande, A.B.; Lee, J.M.; Jang, J.H.; Jo, S.M.; Jae, M.R.; Yang, E.; Chae, K.J. Emerging marine environmental pollution and ecosystem disturbance in ship hull cleaning for biofouling removal. Sci. Total Environ. 2024, 906, 167459. [Google Scholar] [CrossRef]
- Ali, A.; Culliton, D.; Fahad, S.; Ali, Z.; Kang, E.-T.; Xu, L. Nature-inspired anti-fouling strategies for combating marine biofouling. Prog. Org. Coat. 2024, 189, 108349. [Google Scholar] [CrossRef]
- Zheng, N.; Jia, B.; Liu, J.; Wang, X.; Zhang, D.; Zhang, H.; Wang, G. Multi-strategy combined bionic coating for long-term robust protection against marine biofouling. J. Mater. Sci. Technol. 2025, 210, 265–277. [Google Scholar] [CrossRef]
- Kumar, A.; Mishra, V.; Negi, S.; Kar, S. A systematic review on polymer-based superhydrophobic coating for preventing biofouling menace. J. Coat. Technol. Res. 2023, 20, 1499–1512. [Google Scholar] [CrossRef]
- Carrier, A.J.; Carve, M.; Shimeta, J.; Walker, T.R.; Zhang, X.; Oakes, K.D.; Jha, K.C.; Charlton, T.; Stenzel, M.H. Transitioning towards environmentally benign marine antifouling coatings. Front. Mar. Sci. 2023, 10, 1175270. [Google Scholar] [CrossRef]
- Guo, H.; Yang, J.; Zhao, W.; Xu, T.; Lin, C.; Zhang, J.; Zhang, L. Direct formation of amphiphilic crosslinked networks based on PVP as a marine anti-biofouling coating. Chem. Eng. J. 2019, 374, 1353–1363. [Google Scholar] [CrossRef]
- Saffarimiandoab, F.; Gul, B.Y.; Erkoc-Ilter, S.; Guclu, S.; Unal, S.; Tunaboylu, B.; Menceloglu, Y.Z.; Koyuncu, I. Evaluation of biofouling behavior of zwitterionic silane coated reverse osmosis membranes fouled by marine bacteria. Prog. Org. Coat. 2019, 134, 303–311. [Google Scholar] [CrossRef]
- Harilal, M.; Anandkumar, B.; Lahiri, B.B.; George, R.P.; Philip, J.; Albert, S.K. Enhanced biodeterioration and biofouling resistance of nanoparticles and inhibitor admixed fly ash based concrete in marine environments. Int. Biodeterior. Biodegrad. 2020, 155, 105088. [Google Scholar] [CrossRef]
- Xie, C.; Li, C.; Xie, Y.; Cao, Z.; Li, S.; Zhao, J.; Wang, M. ZnO/Acrylic Polyurethane Nanocomposite Superhydrophobic Coating on Aluminum Substrate Obtained via Spraying and Co-Curing for the Control of Marine Biofouling. Surf. Interfaces 2021, 22, 100833. [Google Scholar] [CrossRef]
- Pedersen, M.L.; Weinell, C.E.; Ulusoy, B.; Dam-Johansen, K. Marine biofouling resistance rating using image analysis. J. Coat. Technol. Res. 2022, 19, 1127–1138. [Google Scholar] [CrossRef]
- Aldred, N.; Anthony, C.S. The adhesive strategies of cyprids and development of barnacle-resistant marine coatings. Biofouling 2008, 24, 351–363. [Google Scholar] [CrossRef]
- Pourhashem, S.; Seif, A.; Saba, F.; Nezhad, E.G.; Ji, X.; Zhou, Z.; Zhai, X.; Mirzaee, M.; Duan, J.; Rashidi, A.; et al. Antifouling nanocomposite polymer coatings for marine applications: A review on experiments, mechanisms, and theoretical studies. J. Mater. Sci. Technol. 2022, 118, 73–113. [Google Scholar] [CrossRef]
- Liu, M.Y.; Li, S.N.; Wang, H.; Jiang, R.J.; Zhou, X. Research progress of environmentally friendly marine antifouling coatings. Polym. Chem. 2021, 12, 3702–3720. [Google Scholar] [CrossRef]
- Liu, Z.H.; Zheng, X.Y.; Zhang, H.W.; Li, W.Y.; Jiang, R.J.; Zhou, X. Review on formation of biofouling in the marine environment and functionalization of new marine antifouling coatings. J. Mater. Sci. 2022, 57, 18221–18242. [Google Scholar] [CrossRef]
- Chen, S.K.; Zhu, J.F.; Wang, B.C.; Liu, H.A.; He, B. Experimental Study on Hypochlorous Acid Blocking the Marine Diatom Adhesion. Int. J. Electrochem. Sci. 2012, 7, 5331–5338. [Google Scholar] [CrossRef]
- Yi, J.; Ahn, Y.; Hong, M.; Kim, G.H.; Shabnam, N.; Jeon, B.; Sang, B.I.; Kim, H. Comparison between OCl−-Injection and In Situ Electrochlorination in the Formation of Chlorate and Perchlorate in Seawater. Appl. Sci. 2019, 9, 229. [Google Scholar] [CrossRef]
- Shi, Z.Q.; Wang, T.; Zhao, J.; Qiu, R.; Duan, D.X.; Lin, C.G.; Wang, P. Pt nanostructure from electrodeposition: Electrocatalyst to generate chlorine for marine biofouling inhibition. Colloids Surf. A-Physicochem. Eng. Asp. 2017, 520, 522–531. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Zhang, Y.C.; Wang, T.Y.; Du, W.B.; Jin, H.C. ZnS:Cu/PDMS Composite Coating for Combating Marine Biofouling. Coatings 2023, 13, 2083. [Google Scholar] [CrossRef]
- Lin, X.B.; Xie, Q.Y.; Ma, C.F.; Zhang, G.Z. Self-healing, highly elastic and amphiphilic silicone-based polyurethane for antifouling coatings. J. Mater. Chem. B 2021, 9, 1384–1394. [Google Scholar] [CrossRef]
- Sun, J.W.; Liu, C.; Duan, J.Z.; Liu, J.; Dong, X.C.; Zhang, Y.M.; Wang, N.; Wang, J.; Hou, B.R. Facile fabrication of self-healing silicone-based poly(urea-thiourea)/tannic acid composite for anti-biofouling. J. Mater. Sci. Technol. 2022, 124, 1–13. [Google Scholar] [CrossRef]
- Wei, C.Y.; Zhang, Y.; Tang, Z.; Zhang, C.A.; Wu, J.H.; Wu, B. Surface Reconstruction of Silicone-Based Amphiphilic Polymers for Mitigating Marine Biofouling. Polymers 2024, 16, 1570. [Google Scholar] [CrossRef]
- Hu, P.; Xie, Q.Y.; Ma, C.F.; Zhang, G.Z. Silicone-Based Fouling-Release Coatings for Marine Antifouling. Langmuir 2020, 36, 2170–2183. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, Z.R.; Lin, X.H.; Wang, S.B.; Wang, J.R.; Li, Y.C.; Li, Y.Q.; Zhang, Y.B.; Zhao, H.W. Molybdenum-14Rhenium alloy-The most promising candidate for high-temperature semiconductor substrate materials. J. Alloys Compd. 2024, 991, 174391. [Google Scholar] [CrossRef]
- Yang, S.H.; Ringsberg, J.W.; Johnson, E.; Hu, Z.Q. Biofouling on mooring lines and power cables used in wave energy converter systems-Analysis of fatigue life and energy performance. Appl. Ocean Res. 2017, 65, 166–177. [Google Scholar] [CrossRef]
- Gormley, K.; McLellan, F.; McCabe, C.; Hinton, C.; Ferris, J.; Kline, D.I.; Scott, B.E. Automated Image Analysis of Offshore Infrastructure Marine Biofouling. J. Mar. Sci. Eng. 2018, 6, 2. [Google Scholar] [CrossRef]
- Piola, R.; Ang, A.S.; Leigh, M.; Wade, S.A. A comparison of the antifouling performance of air plasma spray (APS) ceramic and high velocity oxygen fuel (HVOF) coatings for use in marine hydraulic applications. Biofouling 2018, 34, 479–491. [Google Scholar] [CrossRef]
- Yi, P.; Jia, H.Y.; Yang, X.S.; Fan, Y.; Xu, S.S.; Li, J.; Lv, M.L.; Chang, Y.J. Anti-biofouling properties of TiO2 coating with coupled effect of photocatalysis and microstructure. Colloids Surf. A-Physicochem. Eng. Asp. 2023, 656, 130357. [Google Scholar] [CrossRef]
- Sanz, D.S.; García, S.; Trueba, L.; Trueba, A. Bioactive Ceramic Coating Solution for Offshore Floating Wind Farms. Transnav-Int. J. Mar. Navig. Saf. Sea Transp. 2021, 15, 407–412. [Google Scholar] [CrossRef]
- Wu, Y.D.; Li, Y.L.; Liu, X.L.; Wang, Q.J.; Chen, X.M.; Hui, X.D. High strength NiMnFeCrAlCu multi-principal-element alloys with marine application perspective. Scr. Mater. 2021, 202, 113992. [Google Scholar] [CrossRef]
- Li, Y.X.; Yang, L.L.; Liao, Y.J.; Zhao, R.Z.; Ji, L.Z.; Su, R.; Xu, D.K.; Wang, F.H. Photothermal Heating-Assisted Superior Antibacterial and Antibiofilm Activity of High-Entropy-Alloy Nanoparticles. Adv. Funct. Mater. 2023, 33, 2302712. [Google Scholar] [CrossRef]
- Zhao, J.; Lian, T.; Sun, Z.; Zhao, H.; Yang, C.; Fan, X.; Li, S.; Mao, J.; Deng, C.; Yang, K. Controllable release of Cu ions contributes to the enhanced environmentally-friendly performance of antifouling Cu-bearing stainless steel coating prepared using high-velocity air fuel. Surf. Coat. Technol. 2024, 481, 130629. [Google Scholar] [CrossRef]
- Lian, T.Y.; Zhao, J.L.; Yang, C.G.; Yang, K. Environment-friendly antifouling coating of Cu-bearing stainless steel prepared by pre-alloyed powder. Mater. Lett. 2023, 344, 134439. [Google Scholar] [CrossRef]
- Erinosho, M.F.; Akinlabi, E.T.; Pityana, S.; Owolabi, G. Laser Surface Modification of Ti6Al4V-Cu for Improved Microhardness and Wear Resistance Properties. Mater. Res.-Ibero-Am. J. Mater. 2017, 20, 1143–1152. [Google Scholar] [CrossRef]
- Ma, H.R.; Liu, Z.D.; Li, J.X.; Liu, Q.B.; Zhang, J.; Wei, T.J. Optimization design of environmental-friendly Cu-Fe laser cladding coating for self-grown microchannel in a marine corrosive environment. J. Alloys Compd. 2023, 940, 168820. [Google Scholar] [CrossRef]
- Vishwakarma, V.; Josephine, J.; George, R.P.; Krishnan, R.; Dash, S.; Kamruddin, M.; Kalavathi, S.; Manoharan, N.; Tyagi, A.K.; Dayal, R.K. Antibacterial copper-nickel bilayers and multilayer coatings by pulsed laser deposition on titanium. Biofouling 2009, 25, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.B.; Dong, M.P.; Zhao, X.R.; Li, J.L.; Chang, K.K.; Wang, L.P. Self-healing of TiSiN/Ag coatings induced by Ag. J. Am. Ceram. Soc. 2019, 102, 7521–7532. [Google Scholar] [CrossRef]
- Pounraj, S.; Somu, P.; Paul, S. Chitosan and graphene oxide hybrid nanocomposite film doped with silver nanoparticles efficiently prevents biofouling. Appl. Surf. Sci. 2018, 452, 487–497. [Google Scholar] [CrossRef]
- Ashraf, P.M.; Shibli, S.M.A. Development of CeO2- and TiO2-incorporated aluminium metal-composite matrix with high resistance to corrosion and biofouling. J. Solid State Electrochem. 2008, 12, 315–322. [Google Scholar] [CrossRef]
- Soethe, V.L.; Delatorre, R.G.; Ramos, E.M.; Parucker, M.L. TiO2 thin Films for Biofouling Applications. Mater. Res.-Ibero-Am. J. Mater. 2017, 20, 426–431. [Google Scholar] [CrossRef]
- Dayı, S.C.; Kılıçay, K. Repairing Al7075 surface using cold spray technology with different metal/ceramic powders. Surf. Coat. Technol. 2024, 489, 131124. [Google Scholar] [CrossRef]
- Maharjan, N.; Ramesh, T.; Pham Duy, Q.; Zhai, W.; Ang, A.; Zhou, W. Post-processing of cold sprayed Ti6Al4V coating by laser shock peening. J. Mater. Process. Technol. 2024, 330, 118461. [Google Scholar] [CrossRef]
- Judas, J.; Zapletal, J.; Adam, O.; Řehořek, L.; Jan, V. Microstructural stability and precipitate evolution of thermally treated 7075 aluminum alloy fabricated by cold spray. Mater. Charact. 2024, 216, 114259. [Google Scholar] [CrossRef]
- Eyvazi, Z.; Abdollah-Zadeh, A.; Seraj, R.-A.; Azarniya, A. Effect of SiC content on the microstructure and wear behavior of cold-sprayed Al-SiC coatings deposited on AZ31 alloy substrate. Surf. Coat. Technol. 2024, 489, 131170. [Google Scholar] [CrossRef]
- Li, W.; Xue, N.; Shao, L.; Wu, Y.; Qiu, T.; Zhu, L. Effects of spraying parameters and heat treatment temperature on microstructure and properties of single-pass and single-layer cold-sprayed Cu coatings on Al alloy substrate. Surf. Coat. Technol. 2024, 490, 131184. [Google Scholar] [CrossRef]
- Behera, A.K.; Mantry, S.; Roy, S.; Pati, S. Improving bond strength and deposition efficiency of ceramic coatings via low pressure cold spraying: A study on hydroxyapatite coatings with Cu-Zn blends. Surf. Coat. Technol. 2024, 494, 131430. [Google Scholar] [CrossRef]
- Tirukandyur, S.; Kandadai, V.A.; Ellingsen, M.; Petersen, J.B.; Jasthi, B.K. Effect of post-deposition heat treatment on microstructure and mechanical properties of NASA HR-1 cold spray coatings. Surf. Coat. Technol. 2024, 482, 130704. [Google Scholar] [CrossRef]
- Li, N.; Wang, Q.; Niu, W.; Ge, S.; Han, P.; Guo, N. Recover the tensile strength of hard aluminum alloy through laser assisted cold spray. Surf. Coat. Technol. 2024, 486, 130966. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, Z.; Zhang, Y.; Cha, L.; Ramachandran, C.S.; Wangm, Q. Microstructural and interfacial characteristics of supersonic reclaimed 2024Al-T3 substrate using cold sprayed 2024Al deposit. Mater. Charact. 2024, 215, 114158. [Google Scholar] [CrossRef]
- Han, P.; Wang, Q.; Niu, W.; Ge, S.; Wan, M.; Li, N.; Qian, R. Bonding mechanism and fracture behavior of cold-sprayed Fe-based amorphous alloy on 6061 Al alloy. Surf. Coat. Technol. 2024, 491, 131194. [Google Scholar] [CrossRef]
- Kılıçay, K. A practical approach to fabrication of nano-Al2O3 reinforced MMC coatings by cold spray: Characterization of nanomechanical and tribological performance. Mater. Today Commun. 2024, 39, 109257. [Google Scholar] [CrossRef]
- Lett, S.; Cormier, J.; Quet, A.; Villechaise, P.; Meillot, E.; Hémery, S. Microstructure optimization of cold sprayed Ti-6Al-4V using post-process heat treatment for improved mechanical properties. Addit. Manuf. 2024, 86, 104168. [Google Scholar] [CrossRef]
- Lupoi, R.; Stenson, C.; McDonnell, K.A.; Dowling, D.P.; Ahearne, E. Antifouling coatings made with Cold Spray onto polymers: Process characterization. CIRP Ann. 2016, 65, 545–548. [Google Scholar] [CrossRef]
- Huang, G.; Xing, L.; Li, X.; Wang, H. Antifouling Behavior of a Low-Pressure Cold-Sprayed Cu/Al2O3 Composite Coating. Int. J. Electrochem. Sci. 2016, 11, 8738–8748. [Google Scholar] [CrossRef]
- Ding, R.; Li, X.; Wang, J.; Li, W.; Wang, X.; Gui, T. Antifouling Properties and Release of Dissolved Copper of Cold Spray Cu/Cu2O Coatings for Ships and Steel Structures in Marine Environment. J. Mater. Eng. Perform. 2018, 27, 5947–5963. [Google Scholar] [CrossRef]
- Rui, D.; Haibin, Y.; Xiangbo, L. Electrochemical Corrosion and Mathematical Model of Cold Spray Copper Composite Coating—Part II: Limiting Current Region. Int. J. Electrochem. Sci. 2017, 12, 1232–1246. [Google Scholar] [CrossRef]
- Rui, D.; Xiangbo, L.; Jia, W.; Likun, X. Electrochemical Corrosion and Mathematical Model of Cold Spray Cu-Cu2O Coating in NaCl Solution—Part I: Tafel Polarization Region Model. Int. J. Electrochem. Sci. 2013, 8, 5902–5924. [Google Scholar] [CrossRef]
- Stenson, C.; Mcdonnell, K.A.; Yin, S.; Aldwell, B.; Meyer, M.; Dowling, D.P.; Lupoi, R.J.; Taylor, F. Cold spray deposition to prevent fouling of polymer surfaces. Surf. Eng. 2018, 34, 193–204. [Google Scholar] [CrossRef]
- Wang, Q.; Chai, H.; Zhang, X.; Song, Y.; Xi, Y.; Bai, S. Effect of powders recycling on microstructure evolution and wear mechanism of plasma sprayed Ni625-WC composite coating. Surf. Coat. Technol. 2024, 494, 131459. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Zhong, Y.; Chen, H. Anti/de-icing superhydrophobic coating with durability and self-healing by infiltrating photothermal self-stratifying organic layers into plasma-sprayed porous Al2O3–13%TiO2 underlayer. Surf. Interfaces 2024, 54, 105305. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, K.; Yu, R.; Wang, G.; Zhou, Z.; Zhang, X. Discrepancy evaluation in mechanics and corrosion resistance of reactive plasma sprayed TiN coatings fabricated under different heat treatment. Constr. Build. Mater. 2024, 446, 138087. [Google Scholar] [CrossRef]
- Nair, A.M.; Kumar, R.; Maurya, S.S.; Gaur, A.; Keshri, A.K.; Sharma, S. Plasma sprayed Titanium- Nanodiamond composite coatings with enhanced mechanical properties. Mater. Today Commun. 2024, 41, 110238. [Google Scholar] [CrossRef]
- Zhao, K.; Huang, W.; Deng, P.; Zhong, R.; Hu, Y.; Li, J.; Mao, W. Mechanical properties, thermal shock resistance and stress evolution of plasma-sprayed 56wt% Y2O3-stabilized ZrO2 thick thermal barrier coatings. Surf. Coat. Technol. 2024, 494, 131352. [Google Scholar] [CrossRef]
- Zhang, M.; Song, C.; Liu, M.; Yang, Y.; Du, K.; Liu, T.; Zhao, A.; Wen, K.; Deng, C.; Liao, H.; et al. Study on the performance of GDC electrolytes fabricated by atmospheric plasma spraying and vacuum plasma spraying. Ceram. Int. 2024, 50, 44391–44400. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, C.; Liu, M.; Huang, Y.; Wang, H.; Ma, G.; Zhou, X.; Jin, G. The effect of laser textured resin surface on the adhesion of supersonic plasma sprayed Al2O3/PF composite coating. Surf. Coat. Technol. 2024, 487, 130990. [Google Scholar] [CrossRef]
- Hu, X.; Chen, Y.; Guo, H.; Xu, H. Corrosion behaviors and failure mechanism of plasma sprayed Yb2Si2O7/Si environmental barrier coatings exposed to CMAS+ NaVO3. J. Eur. Ceram. Soc. 2025, 45, 117005. [Google Scholar] [CrossRef]
- Su, H.; Hu, H.; Chen, S.; Zhang, G.; Zhang, C. Tribological properties of atmospheric plasma sprayed Cr3C2–NiCr/20% nickel-coated graphite self-lubricating coatings. Ceram. Int. 2024, 50, 38040–38050. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Zhang, X.; Liang, Y.N.; Babar, Z.U.D.; Gao, J.; Li, W.M.; Zhang, S.L.; Li, C.J.; Li, C.X. Breakthrough in atmospheric plasma spraying of high-density composite electrolytes: Deposition behavior and performance of plasma-sprayed GDC-LSGM on porous metal-supported solid oxide fuel cells. Int. J. Hydrog. Energy 2024, 72, 614–625. [Google Scholar] [CrossRef]
- Wang, X.Y.; Hu, Y.; Yang, Y.; Wang, Y.W.; Li, W.; Shao, Y.X.; Sun, W.W.; Zhao, H.J.; Ma, Y. Microstructure evolution and hardening mechanism of plasma-sprayed TiB2 nanocomposite coating. J. Alloys Compd. 2024, 1007, 176389. [Google Scholar] [CrossRef]
- Wang, K.; Xu, K.W.; Tian, J.J.; Li, Z.Z.; Shao, G.S. Tailoring the Micro-galvanic Dissolution Behavior and Antifouling Performance Through Laminated-Structured Cu-X Composite Coating. J. Therm. Spray Technol. 2021, 30, 1566–1581. [Google Scholar] [CrossRef]
- Tian, J.; Xu, K.; Hu, J.; Zhang, S.; Cao, G.; Shao, G. Durable self-polishing antifouling Cu-Ti coating by a micron-scale Cu/Ti laminated microstructure design. J. Mater. Sci. Technol. 2021, 79, 62–74. [Google Scholar] [CrossRef]
- Tian, J.; Wang, K.; Xu, K.W.; Luo, X.T.; Shao, G.S.; Li, C.J. Effect of coating composition on the micro-galvanic dissolution behavior and antifouling performance of plasma-sprayed laminated-structured Cu-Ti composite coating. Surf. Coat. Technol. 2021, 410, 126963. [Google Scholar] [CrossRef]
- Bi, S.Q.; Xu, K.W.; Shao, G.S.; Yang, K.; Tian, J.J. Mechanically robust antifouling coating with dual-functional antifouling strategy by infiltrating PDMS into plasma-sprayed porous Al2O3-Cu coating. J. Mater. Sci. Technol. 2023, 159, 125–137. [Google Scholar] [CrossRef]
- Xu, K.W.; Tian, J.J.; Xie, S.F.; Wu, P. Facile Fabrication of Micron-Laminated Cu-Al2O3 Coating with Long-Lasting Antifouling Performance and Excellent Wear Resistance. J. Therm. Spray Technol. 2023, 32, 2170–2186. [Google Scholar] [CrossRef]
- Atta, S.; Narendra Kumar, U.; Kumar, K.; Yadav, D.P.; Dash, S. Recent Developments and Applications of TiN-Based Films Synthesized by Magnetron Sputtering. J. Mater. Eng. Perform. 2023, 32, 9979–10015. [Google Scholar] [CrossRef]
- Vetter, J.; Shimizu, T.; Kurapov, D.; Sasaki, T.; Mueller, J.; Stangier, D.; Esselbach, M. Industrial application potential of high power impulse magnetron sputtering for wear and corrosion protection coatings. J. Appl. Phys. 2023, 134, 160701. [Google Scholar] [CrossRef]
- Chun, S.Y. Microstructures and Mechanical Properties of HfN Coatings Deposited by DC, Mid-Frequency, and ICP Magnetron Sputtering. Corros. Sci. Technol. 2023, 22, 393–398. [Google Scholar]
- Mehr, A.K.; Mehr, A.K. Magnetron sputtering issues concerning growth of magnetic films: A technical approach to background, solutions, and outlook. Appl. Phys. A-Mater. Sci. Process. 2023, 129, 662. [Google Scholar] [CrossRef]
- Tang, K.; Li, X.; Wang, C.; Shen, Y.; Xu, Y.; Wen, M. The application of NiCrPt alloy targets for magnetron sputter deposition: Characterization of targets and deposited thin films. Thin Solid Film. 2024, 805, 140501. [Google Scholar] [CrossRef]
- Klein, P.; Hnilica, J.; Sochora, V.; Souček, P.; Fekete, M.; Vašina, P. Enhancement of ionized metal flux fraction without compromising deposition rate in industrial magnetron sputtering. Surf. Coat. Technol. 2024, 489, 131142. [Google Scholar] [CrossRef]
- Deambrosis, S.M.; Zin, V.; Montagner, F.; Mortalò, C.; Fabrizio, M.; Miorin, E. Effect of temperature and deposition technology on the microstructure, chemistry and tribo-mechanical characteristics of Ti-B based thin films by magnetron sputtering. Surf. Coat. Technol. 2021, 405, 126556. [Google Scholar] [CrossRef]
- Huo, Y.; Tan, Y.; Zhao, K.; Lu, Z.; Zhong, L.; Tang, Y. Enhanced electromagnetic wave absorption properties of Ni magnetic coating-functionalized SiC/C nanofibers synthesized by electrospinning and magnetron sputtering technology. Chem. Phys. Lett. 2021, 763, 138230. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Sytchenko, A.D.; Gorshkov, V.A.; Loginov, P.A.; Sheveyko, A.N.; Nozhkina, A.V.; Levashov, E.A. Complex study of protective Cr3C2–NiAl coatings deposited by vacuum electro-spark alloying, pulsed cathodic arc evaporation, magnetron sputtering, and hybrid technology. Ceram. Int. 2022, 48, 10921–10931. [Google Scholar] [CrossRef]
- Cai, Q.; Li, S.; Pu, J.; Bai, X.; Wang, H.; Cai, Z.; Wang, X. Corrosion resistance and antifouling activities of silver-doped CrN coatings deposited by magnetron sputtering. Surf. Coat. Technol. 2018, 354, 194–202. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, S.; Wang, Y.; Wang, Y.; Wang, C.; Lu, X.; Mao, C.; Chen, S.; Lu, X.; Wang, L. Enhancing anti-corrosion and antifouling properties of Cu/GLC composite film for marine application. Surface Coat. Technol. 2019, 375, 414–426. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Zhou, S.; Wang, Y.; Wang, C.; Guo, W.; Lu, X.; Wang, L. Tailoring self-lubricating, wear-resistance, anticorrosion and antifouling properties of Ti/(Cu, MoS2)-DLC coating in marine environment by controlling the content of Cu dopant. Tribol. Int. 2020, 143, 106029. [Google Scholar] [CrossRef]
- Sun, Z.L.; Evdokimov, K.E.; Konishchev, M.E.; Kuzmin, O.S.; Pichugin, V.F. Effect of post annealing on properties of N-doped TiO2 films deposited by reactive magnetron sputtering. In Proceedings of the 14th International Conference on Films and Coatings, St. Petersburg, Russia, 14–16 May 2019. [Google Scholar]
- Wang, B.; Wei, S.C.; Guo, L.; Wang, Y.J.; Liang, Y.; Huang, W.; Lu, F.J.; Chen, X.H.; Pan, F.S.; Xu, B.S. Original Effect of sputtering power on microstructure and corrosion properties of TiO2 films deposited by reactive magnetron sputtering. J. Mater. Res. Technol. 2022, 19, 2171–2178. [Google Scholar] [CrossRef]
- Li, C.; Zhang, M.Y.; Sun, Y.C.; Han, X. Research on the Thermal Fatigue Mechanism of Laser Cladding IN625 Process on Ductile Iron. Int. J. Met. 2024, 18, 3129–3151. [Google Scholar] [CrossRef]
- Wang, K.Y.; Yin, X.Q.; Li, C.X.; Du, K.P.; Halifu, M. Study on the thermal behavior and microstructure of Fe-based deposited layers prepared by laser cladding on Al substrate. Opt. Laser Technol. 2024, 179, 111365. [Google Scholar] [CrossRef]
- Han, T.F.; Ding, Z.M.; Feng, W.X.; Yao, X.Y.; Chen, F.F.; Gao, Y.S. Effects of Process Parameters on Microstructure and Wear Resistance of Laser Cladding A-100 Ultra-High-Strength Steel Coatings. Coatings 2024, 14, 669. [Google Scholar] [CrossRef]
- Gu, B.; Zhang, H.; Wang, Y.; Xu, G.; Wang, C.; Gao, L.; Chu, J.; Yang, Y. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating by temperature field-assisted laser cladding. Surf. Coat. Technol. 2024, 494, 131473. [Google Scholar] [CrossRef]
- Ge, H.; Ding, S.; Zhang, P.; Fang, H.; Hu, Y.; Yao, J. Influence of overlapping process on the distribution of Cr element in laser cladding 316L powder on 45# steel substrate. Surf. Coat. Technol. 2024, 493, 131249. [Google Scholar]
- Li, Y.; Yuan, X.; Chen, Y.; Yang, G.; Ou, W.; Li, T. Improved microstructure and wear resistance of (CoCrNi)82Al9Ti9 cladding layers via extreme high-speed laser cladding. Surf. Coat. Technol. 2024, 494, 131298. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Ma, W.Q.; Ji, Y.H.; Chai, H.; Zhang, X.S.; Xi, Y.C.; Dong, L.J.; Bai, S.L. Study on corrosion mechanism of laser-clad Ni-WxC coating by in-situ electrochemical method under high temperature and pressure environment. Mater. Today Commun. 2024, 41, 110699. [Google Scholar] [CrossRef]
- Nie, B.; Xue, Y.; Luan, B. Investigation on the interface microstructure and phase composition of laser cladding pure copper coating. Surf. Coat. Technol. 2024, 494, 131408. [Google Scholar] [CrossRef]
- Liu, X.; Meng, L.; Zeng, X.; Zhu, B.; Cao, J.; Wei, K.; Hu, Q. Study on the microstructure, mechanical properties and cavitation erosion resistance of 17-4PH alloy coatings fabricated by high power laser cladding. Surf. Coat. Technol. 2024, 494, 131451. [Google Scholar] [CrossRef]
- Verma, A.; Chauhan, L.; Kumar, T.S.; Singh, P.K.; Dommeti, S.G.; Thangaraju, S. Laser Cladding of CoCrCuFeNi and CoCrFeNi High-Entropy Alloys on DMR 249A Steel: Corrosion, Wear and Antibacterial Behaviour. JOM 2023, 75, 2701–2713. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, Z.D.; Kong, Y.; Wang, X.Y.; Li, J.X.; Ning, H.Q.; Pan, C.Y. Effect of Cr content on micro-galvanic dissolution behavior and corrosion characteristics of Cu-Cr alloy laser cladding layer in a simulated seawater environment. Appl. Surf. Sci. 2024, 647, 158972. [Google Scholar] [CrossRef]
- Wang, R.Y.; Zhou, T.; Liu, J.; Zhang, X.W.; Yang, J.F.; Hu, W.B.; Liu, L. Designing novel anti-biofouling coatings on titanium based on the ferroelectric-induced strategy. Mater. Des. 2021, 203, 109584. [Google Scholar] [CrossRef]
- Chen, X.W.; Tang, S.; Zhang, D.F.; Yan, J.Z.; Xie, W.L.; Ran, Q.Z. Influence of graphene on corrosion properties of micro arc oxidation coatings on 7075 aluminum alloy. Int. J. Appl. Ceram. Technol. 2024, 21, 3516–3525. [Google Scholar] [CrossRef]
- Chen, X.W.; Tang, S.; Xie, W.L.; Zhang, M.; Song, H.; Ran, Q.Z.; Zhang, D.F.; Zeng, D.Z. Friction and wear behavior of micro-arc oxidation-modified graphene/epoxy resin composite coating on TC4 titanium alloy. Mater. Werkst. 2024, 55, 1037–1044. [Google Scholar] [CrossRef]
- Liu, J.C.; Yin, H.; Xu, Z.Y.; Shao, Y.W.; Wang, Y.Q. Improving the Corrosion Resistance of Micro-Arc Oxidization Film on AZ91D Mg Alloy through Silanization. Metals 2024, 14, 569. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, M.; Tang, Z.; Chen, C.; Li, X.; Lu, X.; Zuo, W. Investigation of MoOx/Al2O3 micro-arc oxidation coatings on corrosion performance based on AlSi10Mg selective laser-melted. J. Alloys Compd. 2024, 1002, 175292. [Google Scholar] [CrossRef]
- Deng, M.; Zhang, P.; Kang, Z.; Mao, Y.; Xiong, Q.; Zhang, W.; Cai, Z.; Gu, L. Comparative study on the fretting and sliding wear properties of micro-arc oxidation-treated aluminum alloy at different temperatures. Tribol. Int. 2024, 198, 109847. [Google Scholar] [CrossRef]
- Zhu, H.; Wu, C.; Xue, L.; Yang, L.; Liu, Y.; Wang, D.; Liang, Y.; Peng, Z. Effect of laser cleaning on the growth and properties of micro-arc oxidation layers of AZ31 magnesium alloy. Surf. Coat. Technol. 2024, 488, 131051. [Google Scholar] [CrossRef]
- Li, Q.; Shang, J. Self-lubricating properties of Al2O3/MoS2/CePO4 composite layers in-situ prepared by micro arc oxidation on 6082-T6 alloy. Mater. Today Commun. 2024, 40, 110137. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, H.; Zhao, Z.; Zhu, Z.; Li, S. Influence of ultrasonic power modulation on the optimisation of aluminium alloy micro-arc oxidation coating properties. Appl. Surf. Sci. 2025, 679, 161067. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, Z.; Lu, X.; Lv, Y.; Cai, G.; Yang, L.; Dong, Z. Microstructural evolution and biological performance of Cu-incorporated TiO2 coating fabricated through one-step micro-arc oxidation. Appl. Surf. Sci. 2020, 508, 144766. [Google Scholar] [CrossRef]
- Hu, P.F.; Zhu, L.Y.; Liu, J.J.; Lv, Y.; Cai, G.Y.; Zhang, X.X. Effect of Ultrasonic Vibration on Microstructure and Antifouling Capability of Cu-Modified TiO2 Coating Produced by Micro-Arc Oxidation. Coatings 2024, 14, 376. [Google Scholar] [CrossRef]
- Kruzel, R.; Dembiczak, T.; Wachowicz, J. Optimization of Spark Plasma Sintering Technology by Taguchi Method in the Production of a Wide Range of Materials: Review. Materials 2023, 16, 5539. [Google Scholar] [CrossRef]
- Xu, L.; Huang, K.H.; Guo, W.M.; Liu, Y.; You, Y.; Huang, Z.J.; Lin, H.T. B4C-(Hf,Zr,Ta,Nb,Ti)B2 composites prepared by reactive and non-reactive spark plasma sintering. Ceram. Int. 2023, 49, 19556–19560. [Google Scholar] [CrossRef]
- Li, Z.; Tang, X.Z.; Zhu, W.Y.; Thompson, B.C.; Huang, M.Y.; Yang, J.L.; Hu, X.; Khor, K.A. Single-Step Process toward Achieving Superhydrophobic Reduced Graphene Oxide. ACS Appl. Mater. Interfaces 2016, 8, 10985–10994. [Google Scholar] [CrossRef]
- Zhou, E.Z.; Qiao, D.X.; Yang, Y.; Xu, D.K.; Lu, Y.P.; Wang, J.J.; Smith, J.A.; Li, H.B.; Zhao, H.L.; Liaw, P.K.; et al. A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms. J. Mater. Sci. Technol. 2020, 46, 201–210. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, N.; Zhu, S.; Qiao, Z.; Zhang, J.; Yang, J.; Liu, W. A novel Cu-doped high entropy alloy with excellent comprehensive performances for marine application. J. Mater. Sci. Technol. 2021, 69, 48–59. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, Z.; Kong, D.; Zhou, W.; Lei, Y.; Zhang, L.; Dong, C. Applying bipolar electrochemistry to assess the corrosion mechanism of HVOF WC-based coatings with varies binders in different environments. Surf. Coat. Technol. 2024, 477, 130252. [Google Scholar] [CrossRef]
- Singh, S.P.; Verma, P.K.; Singh, S.; Kapoor, M.; Balu, R. Microstructural characterization and electrochemical behaviour of HVOF sprayed WC-Co-Cr coatings on 316L boiler steel stainless steel. Results Surf. Interfaces 2024, 16, 100248. [Google Scholar] [CrossRef]
- Zhang, Q.; Shao, L.; Li, W.; Cui, S.; Shang, L.; Wang, C.; Song, Q.; Zhang, C. Comparative study of anti-corrosion properties in different CrN/WC-Co duplex coatings processed by PVD/HVOF. Surf. Coat. Technol. 2024, 483, 130799. [Google Scholar] [CrossRef]
- Halder, S.; Vinay, G.; Anupam, A.; Ang, A.S.; Mahajan, D.K.; Singh, H. Effect of prolonged immersion on corrosion and cavitation resistance of HVOF-sprayed WC-NiCr and WC-Hastelloy cermet coatings. Surf. Coat. Technol. 2024, 494, 131384. [Google Scholar] [CrossRef]
- Liu, L.; Shao, L.; Li, W.; Shang, L.; Zhu, B.; Wang, C.; Song, Q.; Zhang, C. Effect of different HVOF coatings on the tribological behavior of PVD/HVOF duplex coatings. Tribol. Int. 2024, 198, 109873. [Google Scholar] [CrossRef]
- Daniel, J.; Duliškovič, J.; Skála, O.; Liška, K.; Buršíková, V.; Fořt, T.; Houdková, Š. Influence of thickness and surface roughness on impact wear and impact lifetime of HVOF-sprayed coatings. Surf. Coat. Technol. 2024, 488, 131058. [Google Scholar] [CrossRef]
- Yang, M.; Jin, Q.; Huang, T.; Kong, D.; Song, P. Effect of Cr3C2 distribution on the wear and corrosion properties of HVOF-sprayed WC–12Co/Cr3C2–25NiCr composite coatings. Ceram. Int. 2024, 50, 19720–19732. [Google Scholar] [CrossRef]
- Litovchenko, N.V.; Potanin, A.Y.; Zamulaeva, E.I.; Sukhorukova, I.V.; Pogozhev Yu, S.; Gloushankova, N.A.; Ignatov, S.G.; Levashov, E.A.; Shtansky, D.V. Combustion synthesis of Ti-C-Co-Ca3(PO4)2-Ag-Mg electrodes and their utilization for pulsed electrospark deposition of bioactive coatings having an antibacterial effect. Surf. Coat. Technol. 2017, 309, 75–85. [Google Scholar] [CrossRef]
- Sheveyko, A.N.; Manakova, O.S.; Zamulaeva, E.I.; Kudryashov, A.E.; Potanin, A.Y.; Sukhorukova, I.V.; Zhitnyak, I.Y.; Gloushankova, N.A.; Levashov, E.A.; Shtansky, D.V. Structural transformations in TiC-CaO-Ti3PO(x)-(Ag2Ca) electrodes and biocompatible TiCaPCO(N)-(Ag) coatings during pulsed electrospark deposition. Surf. Coat. Technol. 2016, 302, 327–335. [Google Scholar] [CrossRef]
- Kudryashov, A.E.; Potanin, A.Y.; Lebedev, D.N.; Sukhorukova, I.V.; Shtansky, D.V.; Levashov, E.A. Structure and properties of Cr–Al–Si–B coatings produced by pulsed electrospark deposition on a nickel alloy. Surf. Coat. Technol. 2016, 285, 278–288. [Google Scholar] [CrossRef]
- Zamulaeva, E.I.; Levashov, E.A.; Sviridova, T.A.; Shvyndina, N.V.; Petrzhik, M.I. Pulsed electrospark deposition of MAX phase Cr2AlC based coatings on titanium alloy. Surf. Coat. Technol. 2013, 235, 454–460. [Google Scholar] [CrossRef]
- Zamulaeva, E.I.; Zinovieva, M.V.; Kiryukhantsev-Korneev Ph, V.; Petrzhik, M.I.; Kaplanskii, Y.Y.; Klechkovskaya, V.V.; Sviridova, T.A.; Shvyndina, N.V.; Levashov, E.A. Protective coatings deposited onto LPBF-manufactured nickel superalloy by pulsed electrospark deposition using MoSi2-MoB-HfB2 and MoSi2-MoB-ZrB2 electrodes. Surf. Coat. Technol. 2021, 427, 127806. [Google Scholar] [CrossRef]
- Zamulaeva, E.I.; Sheveyko, A.N.; Potanin, A.Y.; Zhitnyak, I.Y.; Gloushankova, N.A.; Sukhorukova, I.V.; Shvindina, N.V.; Ignatov, S.G.; Levashov, E.A.; Shtansky, D.V. Comparative investigation of antibacterial yet biocompatible Ag-doped multicomponent coatings obtained by pulsed electrospark deposition and its combination with ion implantation. Ceram. Int. 2018, 44, 3765–3774. [Google Scholar] [CrossRef]
- Piola Richard, F.; Dafforn Katherine, A.; Johnston Emma, L. The influence of antifouling practices on marine invasions. Biofouling 2009, 25, 633–644. [Google Scholar] [CrossRef]
- Hawkins, S.J.; Evans, A.J.; Mieszkowska, N.; Adams, L.C.; Bray, S.; Burrows, M.T.; Firth, L.B.; Genner, M.J.; Leung, K.M.Y.; Moore, P.J.; et al. Distinguishing globally-driven changes from regional- and local-scale impacts: The case for long-term and broad-scale studies of recovery from pollution. Mar. Pollut. Bull. 2017, 124, 573–586. [Google Scholar] [CrossRef]
- Grimón, R.O.R.; Osorio, M.F.A.; de Freitas, D.M.; Castro, I.B. Tributyltin impacts in Galapagos Islands and Ecuadorian shore: Marine protected areas under threat. Mar. Policy 2016, 69, 24–31. [Google Scholar] [CrossRef]
- Ookubo, N.; Nakamura, S.; Miyakusu, K. Antimicrobial activity and basic properties of antimicrobial stainless steel ‘NSSAM Series’. Nisshin Steel Tech. Rep. 1998, 77, 69–81. [Google Scholar]
- Wang, S.; Guo, X.; Yang, H.; Dai, J.; Zhu, R.; Gong, J.; Peng, L.; Ding, W. Electrodeposition mechanism and characterization of Ni–Cu alloy coatings from a eutectic-based ionic liquid. Appl Surf Sci. 2014, 288, 530–536. [Google Scholar] [CrossRef]
- Hong, I.T.; Koo, C.H. Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel. Mater. Sci. Eng. A 2005, 393, 213–222. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Huang, X.B.; Jiang, L.; Ma, Y.; Fan, A.L.; Tang, B. Antibacterial Property of Cu Modified Stainless Steel by Plasma Surface Alloying. J. Iron Steel Res. Int. 2012, 19, 75–79. [Google Scholar] [CrossRef]
- Nan, L.; Yang, K. Effect of Cu addition on antibacterial property of type 200 stainless steel. Mater. Technol. 2016, 31, 44–47. [Google Scholar] [CrossRef]
- Wang, S.; Yang, K.; Shen, M.; Yang, C. Effect of Cu content on antibacterial activity of 17-4 PH stainless steel. Mater. Technol. 2015, 30, B115–B119. [Google Scholar]
- Nan, L.; Yang, W.C.; Liu, Y.Q.; Xu, H.; Li, Y.; Lu, M.Q.; Yang, K. Antibacterial mechanism of copper-bearing antibacterial stainless steel against E. coli. J. Mater. Sci. Technol. 2008, 24, 197–201. [Google Scholar]
- Bagley, F.; Atlar, M.; Charles, A.; Anderson, C. The use of copper-based antifoulings on aluminium ship hulls. Ocean Eng. 2015, 109, 595–602. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, S.; Yang, L.; Qin, G.; Zhang, E. A nano-structured TiO2/CuO/Cu2O coating on Ti-Cu alloy with dual function of antibacterial ability and osteogenic activity. J. Mater. Sci. Technol. 2022, 97, 201–212. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Z.; Gu, B.; Sun, J.; Zhu, L. Biological Activity and Antibacterial Property of Nano-structured TiO2 Coating Incorporated with Cu Prepared by Micro-arc Oxidation. J. Mater. Sci. Technol. 2013, 29, 237–244. [Google Scholar] [CrossRef]
- Miller, R.J.; Adeleye, A.S.; Page, H.M.; Kui, L.; Lenihan, H.S.; Keller, A.A. Nano and traditional copper and zinc antifouling coatings: Metal release and impact on marine sessile invertebrate communities. J. Nanopart. Res. 2020, 22, 129. [Google Scholar] [CrossRef]
- Ding, T.; Xu, L.; Liu, X.; Ma, L.; Cui, Y.; Li, D.; Sun, X.; Gao, C. A Cu2O-based marine antifouling coating with controlled release of copper ion mediated by amphiphilic PLMA-b-PDMAEMA copolymers. Prog. Org. Coat. 2022, 170, 107003. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, Z.; Kong, Y.; Li, B. A comparative study on the inhibition of microalgae attachment performance between Cu-based alloy laser cladding layer containing submicron Cr-rich precipitated phases and copper in simulated seawater. J. Alloys Compd. 2024, 992, 174642. [Google Scholar] [CrossRef]
- Shi, X.C.; Wang, K.; Xue, M.; Mao, W.; Xu, K.; Tremblay, P.L.; Zhang, T. Ultrafast removal of toxic Cr(VI) by the marine bacterium Vibrio natriegens. Chemosphere 2024, 350, 141177. [Google Scholar] [CrossRef] [PubMed]
- Gorban, V.F.; Andreev, A.A.; Stolbovy, V.A.; Firstov, S.A.; Karpets, M.V.; Danylenko, M.I. Properties of Metal, Nitride, Oxide, and Carbide Coatings Produced from High-Entropy Alloys. Powder Metall. Met. Ceram. 2023, 62, 469–480. [Google Scholar] [CrossRef]
- Hsu, W.L.; Tsai, C.W.; Yeh, A.C.; Yeh, J.W. Clarifying the four core effects of high-entropy materials. Nat. Rev. Chem. 2024, 8, 471–485. [Google Scholar] [CrossRef]
- Huang, S.S.; Zhang, J.; Fu, H.J.; Xiong, Y.X.; Ma, S.H.; Xiang, X.P.; Xu, B.; Lu, W.Y.; Zhang, Y.W.; Weber, W.J.; et al. Irradiation performance of high entropy ceramics: A comprehensive comparison with conventional ceramics and high entropy alloys. Prog. Mater. Sci. 2024, 143, 101250. [Google Scholar] [CrossRef]
- Talapko, J.; Matijević, T.; Juzbašić, M.; Antolović-Požgain, A.; Škrlec, I. Antibacterial Activity of Silver and Its Application in Dentistry, Cardiology and Dermatology. Microorganisms 2020, 8, 1400. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, J.; Lin, F.; Zheng, X.; Jian, R.; Lin, Y.; Wei, F.; Lin, Q.; Bai, W.; Xu, Y. Polymerized tung oil toughened urushiol-based benzoxazine copper polymer coatings with excellent antifouling performances. Prog. Org. Coat. 2023, 177, 107411. [Google Scholar] [CrossRef]
- Chen, J.; Jian, R.; Yang, K.; Bai, W.; Huang, C.; Lin, Y.; Zheng, B.; Wei, F.; Lin, Q.; Xu, Y. Urushiol-based benzoxazine copper polymer with low surface energy, strong substrate adhesion and antibacterial for marine antifouling application. J. Clean. Prod. 2021, 318, 128527. [Google Scholar] [CrossRef]
- Zheng, L.; Lin, Y.C.; Wang, D.H.; Chen, J.P.; Yang, K.; Zheng, B.B.; Bai, W.B.; Jian, R.K.; Xu, Y.L. Facile one-pot synthesis of silver nanoparticles encapsulated in natural polymeric urushiol for marine antifouling. RSC Adv. 2020, 10, 13936–13943. [Google Scholar] [CrossRef]
- Selim, M.S.; El-Safty, S.A.; El-Sockary, M.A.; Hashem, A.I.; Elenien, O.M.A.; El-Saeed, A.M.; Fatthallah, N.A. Modeling of spherical silver nanoparticles in silicone-based nanocomposites for marine antifouling. RSC Adv. 2015, 5, 63175–63185. [Google Scholar] [CrossRef]
- Khan, M.; Tahir, M.N.; Adil, S.F.; Khan, H.U.; Siddiqui, M.R.H.; Al-warthan, A.A.; Tremel, W. Graphene based metal and metal oxide nanocomposites: Synthesis, properties and their applications. J. Mater. Chem. A 2015, 3, 18753–18808. [Google Scholar] [CrossRef]
- Georgakilas, V.; Tiwari, J.N.; Kemp, K.C.; Perman, J.A.; Bourlinos, A.B.; Kim, K.S.; Zboril, R. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chem. Rev. 2016, 116, 5464–5519. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Mikkelsen, O. Graphene Oxide/Silver Nanocomposites as Antifouling Coating on Sensor Housing Materials. J. Clust. Sci. 2022, 33, 627–635. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.; Ge, F.F. Construction of corrosion resistant stainless steel mesh and the design for protecting optical window free from biofouling. Ocean Eng. 2022, 264, 112564. [Google Scholar] [CrossRef]
- Guo, X.M.; Pan, G.T.; Fang, L.N.; Liu, Y.; Rui, Z.B. Z-Scheme CuOx/Ag/TiO2 Heterojunction as Promising Photoinduced Anticorrosion and Antifouling Integrated Coating in Seawater. Molecules 2023, 28, 456. [Google Scholar] [CrossRef]
Deposition Method | Materials | Dimensions | Uniformity | Adhesion | Stability |
---|---|---|---|---|---|
Cold spray | Substrate: Q235 carbon steel Coating: Al2O3 base layer with Cu top layer [61] | Sample size: 10 mm × 10 mm Layer thickness: Al2O3: 250 μm; Cu: 200 μm | Dense, homogeneous | 10 MPa (Cu to Al2O3); 20 MPa (Al2O3 to steel) | Stable during 30-day seawater test |
Substrate: Q235 carbon steel Coating: Cu/Cu2O composite (0%, 10%, 20%, 30% Cu2O) [62] | Sample size: 150 mm × 150 mm × 3 mm Layer thickness: Varies with Cu2O content | Low porosity; uniformity decreases with >30% Cu2O | - | - | |
Plasma spraying | Substrate: TC4 alloy Coating: Cu-Ti composite coatings [79] | Sample size: 20 mm diameter Layer thickness: 300 μm | Dense with minimal pores | Exceeds 40 MPa | - |
Magnetron sputtering | Substrate: 5083 alloy Coating: TiO2 thin films [95] | Sample size: 248–554 nm Layer thickness: 248–554 nm | - | - | Stable during 30-day seawater test |
Substrate: 316L stainless steel Coating: CrN-Ag composite coatings with varying Ag contents [91] | Sample size: 30 mm × 30 mm × 2 mm Layer thickness: 2.1–3.5 μm | Dense but with Ag particle agglomeration at high content | - | Stable during 30-day seawater test | |
Laser cladding | Substrate: steel substrate Coating: Cu-Fe composite (8%, 12%, 16% Cu content) [42] | Sample size: 300 mm × 300 mm × 30 mm Layer thickness: 350 μm | Dense structure with evenly distributed phases | Metallurgical bonding | Antifouling lifespan of 25 years |
Substrate: DMR 249A steel Coating: CoCrCuFeNi high-entropy alloy | Sample size: 300 mm × 300 mm × 30 mm Layer thickness: 630–830 μm | - | Metallurgical bonding | Durable coating for long-term use | |
Micro-arc oxidation | Substrate: titanium Coating: Cu-doped TiO2 composite coatings [105] | - | Porous outer layer with dense inner structure | High adhesion through oxide layer formation | - |
Coating Type | Research Findings | Antifouling Mechanism | Characteristics |
---|---|---|---|
Cu-Fe coating | Ma et al. [42] found that a 12 wt% Fe coating has a Cu ion release rate of 40 μg/cm2/day. The coating significantly inhibits microbial adhesion. Zhao et al. [39] reported that the adhesion strength of the 304L-Cu stainless steel coating is 69 MPa, with a low porosity of 0.34%. | Cu acts as the antibacterial component. Microchannels promote Cu ion release. |
|
Cu-Ti coating | Tian et al. [79] found that when Cu content exceeds 19.2%, antifouling efficiency approaches 100%. | Cu acts as the antibacterial component. Microbattery structure uniformly releases Cu ions. |
|
Cu-Cr coating | Research [151] shows that the Cu ion release rate of a 5% Cr coating stabilizes at 40 μg/cm2/day. | Cr promotes the peeling of corrosion products, enhancing Cu release. |
|
High-entropy alloy coating | Antibacterial efficiency is nearly 100%, and Cu ion release concentration is significantly higher than that of 304 stainless steel [121]. | Inhibits bacterial growth by releasing Cu ions. |
|
Coating Type | Research Findings | Antifouling Mechanism | Characteristics |
---|---|---|---|
Polymeric urushiol/AgNP | Zheng et al. [159] found that 0.05% AgNPs achieved antibacterial rates of 99.43% and 99.80%. | Inhibits microbial growth through the release of silver ions and silver nanoparticles. | Naturally derived, excellent corrosion and antifouling properties. |
Polydimethylsiloxane/AgNP | Research showed [160] that Ag concentrations from 0.01% to 0.1% significantly improved coating hydrophobicity. | Enhances surface hydrophobicity, minimizing adhesion sites for microorganisms. | Low surface energy, high flexibility, excellent chemical stability. |
Graphene oxide-AgNP | Zhang et al. [163] found that medium Ag content coatings exhibited the best antifouling performance. | Uniform distribution of silver nanoparticles enhances antibacterial effects and inhibits biofilm formation. | Unique nanostructure provides good particle dispersion and stability. |
CrN-Ag coatings | Cai et al. [91] found that 13.18 at.% Ag provided the optimal antifouling performance, reducing attachment rates. | Uniform distribution of silver particles improves antibacterial and anti-algal effects, reducing biofouling. | Excellent mechanical properties, high hardness, good antibacterial effects. |
Ag-Al2O3 coatings | Chen et al. [164] showed that Ag-coated meshes reduced biofouling attachment by over 90%. | Releases silver ions effectively inhibiting microbial growth and preventing biofouling. | Combination with Al2O3 enhances corrosion resistance and mechanical strength. |
Cu-Ag co-doped antifouling coating | Guo et al. [165] found that combining Cu and Ag optimized the material’s light absorption and photocatalytic efficiency. | Photocatalytic generation of reactive oxygen species inhibits microbial growth while achieving cathodic protection. | Combines photocatalytic protection with chemical antibacterial action for effective antifouling and corrosion resistance. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Liang, H.; Li, Y. Review of Progress in Marine Anti-Fouling Coatings: Manufacturing Techniques and Copper- and Silver-Doped Antifouling Coatings. Coatings 2024, 14, 1454. https://doi.org/10.3390/coatings14111454
Shi X, Liang H, Li Y. Review of Progress in Marine Anti-Fouling Coatings: Manufacturing Techniques and Copper- and Silver-Doped Antifouling Coatings. Coatings. 2024; 14(11):1454. https://doi.org/10.3390/coatings14111454
Chicago/Turabian StyleShi, Xiaolong, Hua Liang, and Yanzhou Li. 2024. "Review of Progress in Marine Anti-Fouling Coatings: Manufacturing Techniques and Copper- and Silver-Doped Antifouling Coatings" Coatings 14, no. 11: 1454. https://doi.org/10.3390/coatings14111454
APA StyleShi, X., Liang, H., & Li, Y. (2024). Review of Progress in Marine Anti-Fouling Coatings: Manufacturing Techniques and Copper- and Silver-Doped Antifouling Coatings. Coatings, 14(11), 1454. https://doi.org/10.3390/coatings14111454