Polycrystalline Diamond Film Growth on Gallium Nitride with Low Boundary Thermal Resistance
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Optimizing GaN/Diamond Interface and Material Quality on Both Sides
3.2. Optimizing Surface Roughness for NP-GaN-on-SiC Base Materials
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ebaid, M.; Kang, J.-H.; Ryu, S.-W. Controlled Synthesis of GaN-Based Nanowires for Photoelectrochemical Water Splitting Applications. Semicond. Sci. Technol. 2017, 32, 013001. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Jayarathna, R.A.; Hwang, S.Y.; Thi Minh Thu, P.; Vidyasagar, D.; Shim, Y.-H.; Kim, E.-T.; Sohn, Y.; Kim, Y.H.; Kim, M.-D. NiO@GaN Nanorods-based Core-shell Heterostructure for Enhanced Photoelectrochemical Water Splitting via Efficient Charge Separation. J. Alloys Compd. 2024, 1009, 176882. [Google Scholar] [CrossRef]
- Mishra, U.K.; Yi-Feng, W.; Keller, B.P.; Keller, S.; Denbaars, S.P. GaN Microwave Electronics. IEEE Trans. Microw. Theory Tech. 1998, 46, 756–761. [Google Scholar] [CrossRef]
- Jones, E.; Costinett, D. Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 707–719. [Google Scholar] [CrossRef]
- Tadjer, M.J.; Anderson, T.J.; Hobart, K.D.; Feygelson, T.I.; Caldwell, J.D.; Eddy, C.R.; Kub, F.J.; Butler, J.E.; Pate, B.; Melngailis, J. Reduced Self-Heating in AlGaN/GaN HEMTs Using Nanocrystalline Diamond Heat-Spreading Films. IEEE Electron Device Lett. 2012, 33, 23–25. [Google Scholar] [CrossRef]
- Zuo, Z.; Tang, N.; Chen, H. Analysis and Improvement of Self-heating Effect Based on GaN HEMT Devices. Mater. Res. Express 2022, 9, 075903. [Google Scholar] [CrossRef]
- Fujishiro, H.; Mikami, N.; Hatakenaka, M. Monte Carlo Study of Self-Heating Effect in GaN/AlGaN HEMTs on Sapphire, SiC and Si Substrates. Phys. Status Solidi C 2005, 2, 2696–2699. [Google Scholar] [CrossRef]
- Dumka, D.C.; Chou, T.-M.; Jimenez, J.; Fanning, D.; Francis, D.; Faili, F.; Ejeckam, F.; Bernardoni, M.; Pomeroy, J.; Kuball, M. Electrical and Thermal Performance of AlGaN/GaN HEMTs on Diamond Substrate for RF Applications. In Proceedings of the 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Monterey, CA, USA, 13–16 October 2013; pp. 1–4. [Google Scholar]
- Mendes, J.C.; Liehr, M.; Li, C. Diamond/GaN HEMTs: Where from and Where to? Materials 2022, 15, 415. [Google Scholar] [CrossRef]
- Hageman, P.R.; Schermer, J.J.; Larsen, P.K. GaN Growth on Single-Crystal Diamond Substrates by Metalorganic Chemical Vapour Deposition and Hydride Vapour Deposition. Thin Solid Film. 2003, 443, 9–13. [Google Scholar] [CrossRef]
- Dussaigne, A.; Malinverni, M.; Martin, D.; Castiglia, A.; Grandjean, N. GaN Grown on (111) Single Crystal Diamond Substrate by Molecular Beam Epitaxy. J. Cryst. Growth 2009, 311, 4539–4542. [Google Scholar] [CrossRef]
- Dussaigne, A.; Gonschorek, M.; Malinverni, M.; Py, M.A.; Martin, D.; Mouti, A.; Stadelmann, P.; Grandjean, N. High-mobility AlGaN/GaN Two-Dimensional Electron Gas Heterostructure Grown on (111) Single Crystal Diamond Substrate. JPN. J. Appl. Phys. 2010, 49, 061001. [Google Scholar] [CrossRef]
- Hirama, K.; Taniyasu, Y.; Kasu, M. AlGaN/GaN High-Electron Mobility Transistors with Low Thermal Resistance Grown on Single-Crystal Diamond (111) Substrates by Metalorganic Vapor-Phase Epitaxy. Appl. Phys. Lett. 2011, 98, 162112. [Google Scholar] [CrossRef]
- Webster, R.F.; Cherns, D.; Kuball, M.; Jiang, Q.; Allsopp, D. Electron Microscopy of Gallium Nitride Growth on Polycrystalline Diamond. Semicond. Sci. Technol. 2015, 30, 114007. [Google Scholar] [CrossRef]
- Ahmed, R.; Siddique, A.; Anderson, J.; Gautam, C.; Holtz, M.; Piner, E. Integration of GaN and Diamond Using Epitaxial Lateral Overgrowth. ACS Appl. Mater. Interfaces 2020, 12, 39397–39404. [Google Scholar] [CrossRef]
- Ejeckam, F.; Francis, D.; Faili, F.; Twitchen, D.; Bolliger, B.; Felbinger, J.; Babic, D. S2-T1: GaN-on-Diamond: A Brief History. In Proceedings of the 2014 Lester Eastman Conference on High Performance Devices (LEC), Ithaca, NY, USA, 5–7 August 2014. [Google Scholar]
- Sun, H.; Simon, R.B.; Pomeroy, J.W.; Francis, D.; Faili, F.; Twitchen, D.J.; Kuball, M. Reducing GaN-on-Diamond Interfacial Thermal Resistance for High Power Transistor Applications. Appl. Phys. Lett. 2015, 106, 111906. [Google Scholar] [CrossRef]
- Zhou, Y.; Anaya, J.; Pomeroy, J.; Sun, H.; Gu, X.; Xie, A.; Beam, E.; Becker, M.; Grotjohn, T.A.; Lee, C.; et al. Barrier-Layer Optimization for Enhanced GaN-on-Diamond Device Cooling. ACS Appl. Mater. Interfaces 2017, 9, 34416–34422. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Lee, K.; Lee, S.; Cho, K.; Cho, S. A GaN/Diamond HEMTs with 23 W/mm for Next Generation High Power RF Application. In Proceedings of the 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2–7 June 2019; pp. 1395–1398. [Google Scholar]
- Field, D.E.; Cuenca, J.A.; Smith, M.; Fairclough, S.M.; Massabuau, F.C.P.; Pomeroy, J.W.; Williams, O.; Oliver, R.A.; Thayne, I.; Kuball, M. Crystalline Interlayers for Reducing the Effective Thermal Boundary Resistance in GaN-on-Diamond. ACS Appl. Mater. Interfaces 2020, 12, 54138–54145. [Google Scholar] [CrossRef]
- Smith, M.D.; Cuenca, J.A.; Field, D.E.; Fu, Y.-c.; Yuan, C.; Massabuau, F.; Mandal, S.; Pomeroy, J.W.; Oliver, R.A.; Uren, M.J.; et al. GaN-on-Diamond Technology Platform: Bonding-Free Membrane Manufacturing Process. AIP Adv. 2020, 10, 035306. [Google Scholar] [CrossRef]
- Jia, X.; Wei, J.; Huang, Y.; Shao, S.; An, K.; Kong, Y.; Liu, J.; Li, C.-m.; Li, C. Fabrication of Low Stress GaN-on-Diamond Structure via Dual-Sided Diamond Film Deposition. J. Mater. Sci. 2021, 56, 6903–6911. [Google Scholar] [CrossRef]
- Fengwen, M.; He, R.; Suga, T. Room Temperature GaN-Diamond Bonding for High-Power GaN-on-Diamond Devices. Scr. Mater. 2018, 150, 148–151. [Google Scholar] [CrossRef]
- Gerrer, T.; Cimalla, V.; Waltereit, P.; Müller, S.; Benkhelifa, F.; Maier, T.; Czap, H.; Ambacher, O.; Quay, R. Transfer of AlGaN/GaN RF-devices onto Diamond Substrates via Van Der Waals Bonding. Int. J. Microw. Wirel. Technol. 2018, 10, 666–673. [Google Scholar] [CrossRef]
- Hiza, S.; Fujikawa, M.; Takiguchi, Y.; Nishimura, K.; Yagyu, E.; Matsumae, T.; Kurashima, Y.; Takagi, H.; Yamamuka, M. High-Power GaN-on-Diamond HEMTs Fabricated by Surface-Activated Room-Temperature Bonding. In Proceedings of the 2019 International Conference on Solid State Devices and Materials, Aichi, Japan, 2–5 September 2019. [Google Scholar]
- Minoura, Y.; Ohki, T.; Okamoto, N.; Yamada, A.; Makiyama, K.; Kotani, J.; Ozaki, S.; Sato, M.; Nakamura, N. Surface Activated Bonding of SiC/Diamond for Thermal Management of High-Output Power GaN HEMTs. Jpn. J. Appl. Phys. 2020, 59, SGGD03. [Google Scholar] [CrossRef]
- Matsumae, T.; Kurashima, Y.; Takagi, H.; Shirayanagi, Y.; Hiza, S.; Nishimura, K.; Higurashi, E. Room Temperature Bonding of GaN and Diamond Substrates via Atomic Layer. Scr. Mater. 2022, 215, 114725. [Google Scholar] [CrossRef]
- Seelmann-Eggebert, M.; Meisen, P.; Schaudel, F.; Koidl, P.; Vescan, A.; Leier, H. Heat-Spreading Diamond Films for GaN-Based High-Power Transistor Devices. Diam. Relat. Mater. 2001, 10, 744–749. [Google Scholar] [CrossRef]
- Tadjer, M.J.; Anderson, T.J.; Feygelson, T.I.; Hobart, K.D.; Hite, J.K.; Koehler, A.D.; Wheeler, V.D.; Pate, B.B.; Eddy Jr, C.R.; Kub, F.J. Nanocrystalline Diamond Capped AlGaN/GaN High Electron Mobility Transistors via a Sacrificial Gate Process. Phys. Status Solidi A 2016, 213, 893–897. [Google Scholar] [CrossRef]
- Zhou, Y.; Ramaneti, R.; Anaya, J.; Korneychuk, S.; Derluyn, J.; Sun, H.; Pomeroy, J.; Verbeeck, J.; Haenen, K.; Kuball, M. Thermal Characterization of Polycrystalline Diamond Thin Film Heat Spreaders Grown on GaN HEMTs. Appl. Phys. Lett. 2017, 111, 041901. [Google Scholar] [CrossRef]
- Yaita, J.; Yamada, A.; Kotani, J. Growth of Microcrystalline Diamond Films after Fabrication of GaN High-Electron-Mobility Transistors for Effective Heat Dissipation. JPN. J. Appl. Phys. 2021, 60, 076502. [Google Scholar] [CrossRef]
- Wu, M.; Wang, P.; Li, S.; Cheng, K.; Yang, L.; Zhang, M.; Hou, B.; Ma, X.-H.; Hao, Y. Integration of Polycrystalline Diamond Heat Spreader with AlGaN/GaN HEMTs Using A Dry/Wet Combined Etching Process. Diam. Relat. Mater. 2023, 132, 109676. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, Y.; Hua, B.; Ni, X.; Fan, Q.; Gu, X. Interface Engineering Enabling Next Generation GaN-on-Diamond Power Devices. J. Electron. Mater. 2021, 50, 4239–4249. [Google Scholar] [CrossRef]
- Li, C.; Zhang, K.; Qiaoyu, Z.; Yin, X.; Ge, X.; Wang, J.; Wang, Q.; He, C.; Zhao, W.; Chen, Z. High Quality N-polar GaN Films Grown with Varied V/III Ratios by Metal–Organic Vapor Phase Epitaxy. RSC Adv. 2020, 10, 43187–43192. [Google Scholar] [CrossRef]
- Sun, Q.; Cho, Y.S.; Lee, I.H.; Han, J.; Kong, B.H.; Cho, H.K. Nitrogen-Polar GaN Growth Evolution on C-Plane Sapphire. Appl. Phys. Lett. 2008, 93, 131912. [Google Scholar] [CrossRef]
- Huo, L.; Lingaparthi, R.; Dharmarasu, N.; Radhakrishnan, K.; Chan, C. Surface Morphology Evolution of N-polar GaN on SiC for HEMT Heterostructures Grown by Plasma-assisted Molecular Beam Epitaxy. J. Phys. D Appl. Phys. 2023, 56, 345302. [Google Scholar] [CrossRef]
- Zauner, A.R.A.; Aret, E.; van Enckevort, W.J.P.; Weyher, J.L.; Porowski, S.; Schermer, J.J. Homo-Epitaxial Growth on the N-Face of GaN Single Crystals: The Influence of the Misorientation on the Surface Morphology. J. Cryst. Growth 2002, 240, 14–21. [Google Scholar] [CrossRef]
- Yates, L.; Anderson, J.; Gu, X.; Lee, C.; Bai, T.; Mecklenburg, M.; Aoki, T.; Goorsky, M.S.; Kuball, M.; Piner, E.L.; et al. Low Thermal Boundary Resistance Interfaces for GaN-on-Diamond Devices. ACS Appl. Mater. Interfaces 2018, 10, 24302–24309. [Google Scholar] [CrossRef]
- Jia, X.; Wei, J.-j.; Kong, Y.; Li, C.-m.; Liu, J.; Chen, L.; Sun, F.; Wang, X. The Influence of Dielectric Layer on the Thermal Boundary Resistance of GaN-on-Diamond Substrate. Surf. Interface Anal. 2019, 51, 783–790. [Google Scholar] [CrossRef]
- Keller, S.; Fichtenbaum, N.A.; Wu, F.; Brown, D.; Rosales, A.; DenBaars, S.P.; Speck, J.S.; Mishra, U.K. Influence of the Substrate Misorientation on the Properties of N-Polar GaN Films Grown by Metal Organic Chemical Vapor Deposition. J. Appl. Phys. 2007, 102, 083546. [Google Scholar] [CrossRef]
- Malakoutian, M.; Field, D.E.; Hines, N.J.; Pasayat, S.; Graham, S.; Kuball, M.; Chowdhury, S. Record-Low Thermal Boundary Resistance between Diamond and GaN-on-SiC for Enabling Radiofrequency Device Cooling. ACS Appl. Mater. Interfaces 2021, 13, 60553–60560. [Google Scholar] [CrossRef] [PubMed]
- Stoffel, A.; Kovács, A.; Kronast, W.; Müller, B. LPCVD against PECVD for Micromechanical Applications. J. Micromech. Microeng. 1996, 6, 1. [Google Scholar] [CrossRef]
- Malakoutian, M.; Soman, R.; Woo, K.; Chowdhury, S. Development of 300–400 °C Grown Diamond for Semiconductor Devices Thermal Management. MRS Adv. 2024, 9, 7–11. [Google Scholar] [CrossRef]
- Meng, B.; Ma, Y.; Wang, X.; Yuan, C. Quantitative Study on Thermoreflectance Linear Relation. J. Appl. Phys. 2023, 134, 115102. [Google Scholar] [CrossRef]
- Goodwin, D.G. Scaling Laws for Diamond Chemical-Vapor Deposition. I. Diamond Surface Chemistry. J. Appl. Phys. 1993, 74, 6888–6894. [Google Scholar] [CrossRef]
- Mandal, S. Nucleation of Diamond Films on Heterogeneous Substrates: A Review. RSC Adv. 2021, 11, 10159–10182. [Google Scholar] [CrossRef] [PubMed]
- Bolshakov, A.P.; Ralchenko, V.G.; Yurov, V.Y.; Shu, G.; Bushuev, E.V.; Andrew, K.; Ashkinazi, E.E.; Sovyk, D.; Antonova, I.A.; Savin, S.; et al. Enhanced Deposition Rate of Polycrystalline CVD Diamond at High Microwave Power Densities. Diam. Relat. Mater. 2019, 97, 107466. [Google Scholar] [CrossRef]
- Silva, F.; Hassouni, K.; Bonnin, X.; Gicquel, A. Microwave Engineering of Plasma-Assisted CVD Reactors for Diamond Deposition. J. Phys. Condens. Matter 2009, 21, 364202. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.; Achard, J.; Brinza, O.; Bonnin, X.; Hassouni, K.; Anthonis, A.; De Corte, K.; Barjon, J. High Quality, Large Surface Area, Homoepitaxial MPACVD Diamond Growth. Diam. Relat. Mater. 2009, 18, 683–697. [Google Scholar] [CrossRef]
- Andrea, C.L.; Miroslav, K. Theory and Simulation of Crystal Growth. J. Phys. Condens. Matter 1997, 9, 299. [Google Scholar] [CrossRef]
- Yoon, M.; Lee, H.; Hong, W.; Christen, H.; Zhang, Z.; Suo, Z. Dynamics of Step Bunching in Heteroepitaxial Growth on Vicinal Substrates. Phys. Rev. Lett. 2007, 99, 055503. [Google Scholar] [CrossRef]
- Liu, D.; Fabes, S.; Li, B.; Francis, D.; Ritchie, R.; Kuball, M. Characterization of the Interfacial Toughness in a Novel ‘GaN-on-Diamond’ Material for High-Power RF Devices. ACS Appl. Electron. Mater. 2019, 1, 354–369. [Google Scholar] [CrossRef]
- Middleton, C.; Chandrasekar, H.; Singh, M.; Pomeroy, J.W.; Uren, M.J.; Francis, D.; Kuball, M. Impact of Thinning the GaN Buffer and Interface Layer on Thermal and Electrical Performance in GaN-on-Diamond Electronic Devices. Appl. Phys. Express 2019, 12, 024003. [Google Scholar] [CrossRef]
- Tadjer, M.J.; Anderson, T.J.; Ancona, M.G.; Raad, P.E.; Komarov, P.; Bai, T.; Gallagher, J.C.; Koehler, A.D.; Goorsky, M.S.; Francis, D.A. GaN-on-Diamond HEMT Technology with TAVG = 176 °C at PDC,max = 56 W/mm Measured by Transient Thermoreflectance Imaging. IEEE Electron Device Lett. 2019, 40, 881–884. [Google Scholar] [CrossRef]
Year | Dielectric Layer | CVD Type/Thickness of Diamond (µm) | TBRGaN/diamond (m2·K/GW) | |
---|---|---|---|---|
Thickness (nm) | Material | |||
This study | 30 | SiNx | MPCVD/~2.5 | ~23.5 |
2018 [38] | 5 | SiNx | MPCVD/1.0 | ~9.5 |
AlN | ~18.2 | |||
No interlayer | ~41.4 | |||
2019 [39] | 100 | SiNx | MPCVD/2.0 | ~38.5 |
100 | AlN | ~56.4 | ||
2019 [19] | 35 | SiNx | MPCVD/120.0 | ~31.0 |
2019 [52] | 50 | SiNx | MPCVD/100.0 | 33.0 |
36 | 22.0 | |||
41 | 15.0 | |||
2019 [53] | 36 | SiNx | MPCVD/75.0 | 20.0 |
17 | 13.0 | |||
2019 [54] | 30 | SiNx | MPCVD/100.0 | 18.0 |
2020 [20] | 20 | Al0.32Ga0.68N | MPCVD/35.0 | ~30.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yao, J.; Yang, Y.; Fan, Q.; Ni, X.; Gu, X. Polycrystalline Diamond Film Growth on Gallium Nitride with Low Boundary Thermal Resistance. Coatings 2024, 14, 1457. https://doi.org/10.3390/coatings14111457
Wang Y, Yao J, Yang Y, Fan Q, Ni X, Gu X. Polycrystalline Diamond Film Growth on Gallium Nitride with Low Boundary Thermal Resistance. Coatings. 2024; 14(11):1457. https://doi.org/10.3390/coatings14111457
Chicago/Turabian StyleWang, Ying, Jiahao Yao, Yong Yang, Qian Fan, Xianfeng Ni, and Xing Gu. 2024. "Polycrystalline Diamond Film Growth on Gallium Nitride with Low Boundary Thermal Resistance" Coatings 14, no. 11: 1457. https://doi.org/10.3390/coatings14111457
APA StyleWang, Y., Yao, J., Yang, Y., Fan, Q., Ni, X., & Gu, X. (2024). Polycrystalline Diamond Film Growth on Gallium Nitride with Low Boundary Thermal Resistance. Coatings, 14(11), 1457. https://doi.org/10.3390/coatings14111457