TiO2 Coated with Carbon via Chemical Vapor Deposition as Li-Ion Batteries Anode
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Characterization Methods
2.2. Synthesis of TiO2@C and TiO2@TC
2.3. Half Cells Fabrication
3. Results
3.1. TiO2@TC Design and Characterizations
3.2. Electrochemical Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, G.; Li, W.; Bi, R.; Atangana Etogo, C.; Yu, X.-Y.; Zhang, L. Cation-assisted formation of porous TiO2–x nanoboxes with high grain boundary density as efficient electrocatalysts for lithium–oxygen batteries. ACS Catal. 2018, 8, 1720–1727. [Google Scholar] [CrossRef]
- Ren, L.; Kong, F.; Wang, X.; Song, Y.; Li, X.; Zhang, F.; Sun, N.; An, H.; Jiang, Z.; Wang, J. Triggering ambient polymer-based Li-O2 battery via photo-electro-thermal synergy. Nano Energy 2022, 98, 107248. [Google Scholar] [CrossRef]
- Yang, J.; Huang, M.; Xu, L.; Xia, X.; Peng, C. Self-assembled titanium-deficient undoped anatase TiO2 nanoflowers for ultralong-life and high-rate Li+/Na+ storage. Chem. Eng. J. 2022, 445, 136638. [Google Scholar] [CrossRef]
- Li, R.; Ba, X.; Zhang, H.; Xu, P.; Li, Y.; Cheng, C.; Liu, J. Conformal Multifunctional Titania Shell on Iron Oxide Nanorod Conversion Electrode Enables High Stability Exceeding 30,000 Cycles in Aqueous Electrolyte. Adv. Funct. Mater. 2018, 28, 1800497. [Google Scholar] [CrossRef]
- Cui, J.; Yin, P.; Xu, A.; Jin, B.; Li, Z.; Shao, M. Fluorine enhanced nucleophilicity of TiO2 nanorod arrays: A general approach for dendrite-free anodes towards high-performance metal batteries. Nano Energy 2022, 93, 106837. [Google Scholar] [CrossRef]
- Xue, P.; Zhu, K.; Gong, W.; Pu, J.; Li, X.; Guo, C.; Wu, L.; Wang, R.; Li, H.; Sun, J.; et al. “One Stone Two Birds” Design for Dual-Functional TiO2-TiN Heterostructures Enabled Dendrite-Free and Kinetics-Enhanced Lithium–Sulfur Batteries. Adv. Energy Mater. 2022, 12, 2200308. [Google Scholar] [CrossRef]
- Djenizian, T.; Hanzu, I.; Knauth, P. Nanostructured negative electrodes based on titania for Li-ion microbatteries. J. Mater. Chem. 2011, 21, 9925–9937. [Google Scholar] [CrossRef]
- Sopha, H.; Ghigo, C.; Ng, S.; Alijani, M.; Hromadko, L.; Michalicka, J.; Djenizian, T.; Macak, J.M. TiO2 nanotube layers decorated by titania nanoparticles as anodes for Li-ion microbatteries. Mater. Chem. Phys. 2022, 276, 125337. [Google Scholar] [CrossRef]
- Lin, D.; Wang, M.; Weng, Q.; Qin, X.; An, L.; Chen, G.; Liu, Q. Three dimensional titanium dioxide nanotube arrays induced nanoporous structures and stable solid electrolyte interphase layer for excellent sodium storage in ether-based electrolyte. J. Power Sources 2023, 587, 233696. [Google Scholar] [CrossRef]
- Mo, R.; Lei, Z.; Sun, K.; Rooney, D. Facile Synthesis of Anatase TiO2 Quantum-Dot/Graphene-Nanosheet Composites with Enhanced Electrochemical Performance for Lithium-Ion Batteries. Adv. Mater. 2014, 26, 2084–2088. [Google Scholar] [CrossRef]
- Moon, G.D.; Joo, J.B.; Dahl, M.; Jung, H.; Yin, Y. Nitridation and Layered Assembly of Hollow TiO2 Shells for Electrochemical Energy Storage. Adv. Funct. Mater. 2014, 24, 848–856. [Google Scholar] [CrossRef]
- Yiping, T.; Xiaoxu, T.; Guangya, H.; Huazhen, C.; Guoqu, Z. Synthesis of dense nanocavities inside TiO2 nanowire array and its electrochemical properties as a three-dimensional anode material for Li-ion batteries. Electrochim. Acta 2012, 78, 154–159. [Google Scholar] [CrossRef]
- Lin, D.; Lyu, L.; Li, K.; Chen, G.; Yao, H.; Kang, F.; Li, B.; Zhou, L. Ultrahigh capacity and cyclability of dual-phase TiO2 nanowires with low working potential at room and subzero temperatures. J. Mater. Chem. A 2021, 9, 9256–9265. [Google Scholar] [CrossRef]
- Brumbarov, J.; Vivek, J.P.; Leonardi, S.; Valero-Vidal, C.; Portenkirchner, E.; Kunze-Liebhäuser, J. Oxygen deficient, carbon coated self-organized TiO2 nanotubes as anode material for Li-ion intercalation. J. Mater. Chem. A 2015, 3, 16469–16477. [Google Scholar] [CrossRef]
- Jiang, Y.; Hall, C.; Burr, P.A.; Song, N.; Lau, D.; Yuwono, J.; Wang, D.-W.; Ouyang, Z.; Lennon, A. Fabrication strategies for high-rate TiO2 nanotube anodes for Li ion energy storage. J. Power Sources 2020, 463, 228205. [Google Scholar] [CrossRef]
- Wang, H.C.; Fan, C.Y.; Zheng, Y.P.; Zhang, X.H.; Li, W.H.; Liu, S.Y.; Sun, H.Z.; Zhang, J.P.; Sun, L.N.; Wu, X.L. Oxygen-Deficient Titanium Dioxide Nanosheets as More Effective Polysulfide Reservoirs for Lithium-Sulfur Batteries. Chem. A Eur. J. 2017, 23, 9666–9673. [Google Scholar] [CrossRef]
- Qiu, S.-Y.; Wang, C.; Jiang, Z.-X.; Zhang, L.-S.; Gu, L.-L.; Wang, K.-X.; Gao, J.; Zhu, X.-D.; Wu, G. Rational design of MXene@TiO2 nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium–sulfur batteries. Nanoscale 2020, 12, 16678–16684. [Google Scholar] [CrossRef]
- Yu, Y.; Sun, D.; Wang, H.; Wang, H. Electrochemical Properties of Rutile TiO2 Nanorod Array in Lithium Hydroxide Solution. Nanoscale Res. Lett. 2016, 11, 448. [Google Scholar] [CrossRef]
- Wen, W.; Wu, J.-M.; Jiang, Y.-Z.; Lai, L.-L.; Song, J. Pseudocapacitance-Enhanced Li-Ion Microbatteries Derived by a TiN@TiO2 Nanowire Anode. Chem 2017, 2, 404–416. [Google Scholar] [CrossRef]
- Bresser, D.; Paillard, E.; Binetti, E.; Krueger, S.; Striccoli, M.; Winter, M.; Passerini, S. Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes. J. Power Sources 2012, 206, 301–309. [Google Scholar] [CrossRef]
- Park, C.-M.; Chang, W.-S.; Jung, H.; Kim, J.-H.; Sohn, H.-J. Nanostructured Sn/TiO2/C composite as a high-performance anode for Li-ion batteries. Electrochem. Commun. 2009, 11, 2165–2168. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, C.; Xu, R.; Zhou, Y.; Jia, R.; Xu, X.; Shi, S. Carbon modified hierarchical hollow tubes composed of TiO2 nanoparticles for high performance lithium-ion batteries. J. Alloys Compd. 2021, 857, 158048. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.; Liu, B.; Li, H.; Luo, W.; Zhang, G.; Zhang, X.; Wang, C. Surface regulation of Si composite anode via synergistic coupling and Ti C bond for stable cycling lithium-ion battery. J. Energy Storage 2023, 74, 109433. [Google Scholar] [CrossRef]
- Wu, W.; Sun, Z.; He, Q.; Shi, X.; Ge, X.; Cheng, J.; Wang, J.; Zhang, Z. Boosting lithium-ion transport kinetics by increasing the local lithium-ion concentration gradient in composite anodes of lithium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 14752–14758. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Tang, Y.; Liu, L.; Sheng, R.; Li, X.; Gao, Y.; NuLi, Y. A high-performance rechargeable Mg2+/Li+ hybrid battery using CNT@TiO2 nanocables as the cathode. J. Colloid Interface Sci. 2021, 581, 307–313. [Google Scholar] [CrossRef]
- Yang, L.; Gao, X.; Li, J.; Gao, Y.; Zhang, M.; Bai, Y.; Liu, G.; Dong, H.; Sheng, L.; Wang, T.; et al. Anchoring Carbon Spheres on Titanium Dioxide Modified Commercial Polyethylene (PE) Separator to Suppress Lithium Dendrites for Lithium Metal Batteries. Small 2024, 20, 2310915. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, S.; Fang, B.; Song, G.; Wilkinson, D.P.; Zhang, S. N-doped hollow urchin-like anatase TiO2@C composite as a novel anode for Li-ion batteries. J. Power Sources 2018, 385, 10–17. [Google Scholar] [CrossRef]
- Yan, X.; Wang, Z.; He, M.; Hou, Z.; Xia, T.; Liu, G.; Chen, X. TiO2 Nanomaterials as Anode Materials for Lithium-Ion Rechargeable Batteries. Energy Technol. 2015, 3, 801–814. [Google Scholar] [CrossRef]
- Ito, A.; Sato, T.; Goto, T. Transparent anatase and rutile TiO2 films grown by laser chemical vapor deposition. Thin Solid Film. 2014, 551, 37–41. [Google Scholar] [CrossRef]
- Quesada-González, M.; Boscher, N.D.; Carmalt, C.J.; Parkin, I.P. Interstitial Boron-Doped TiO2 Thin Films: The Significant Effect of Boron on TiO2 Coatings Grown by Atmospheric Pressure Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2016, 8, 25024–25029. [Google Scholar] [CrossRef]
- Li, C.; Han, J.; Zhang, Z.; Gu, H. Preparation of TiO2-Coated Al2O3 Particles by Chemical Vapor Deposition in a Rotary Reactor. J. Am. Ceram. Soc. 1999, 82, 2044–2048. [Google Scholar] [CrossRef]
- Zhu, B.; Pu, Y.; Tang, W.; Tang, H. Li4Ti5O12@carbon nanotube arrays as high-performance anode for Li-ion batteries. RSC Adv. 2024, 14, 28779–28782. [Google Scholar] [CrossRef] [PubMed]
- Yue, B.; Wang, L.; Zhang, N.; Xie, Y.; Yu, W.; Ma, Q.; Wang, J.; Liu, G.; Dong, X. Dual-Confinement Effect of Nanocages@Nanotubes Suppresses Polysulfide Shuttle Effect for High-Performance Lithium–Sulfur Batteries. Small 2024, 20, 2308603. [Google Scholar] [CrossRef]
- Zhu, Z.; Cheng, F.; Chen, J. Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites. J. Mater. Chem. A 2013, 1, 9484–9490. [Google Scholar] [CrossRef]
- Rios, C.; Bazán-Díaz, L.; Celaya, C.A.; Salcedo, R.; Thangarasu, P. Synthesis and Characterization of a Photocatalytic Material Based on Raspberry-like SiO2@TiO2 Nanoparticles Supported on Graphene Oxide. Molecules 2023, 28, 7331. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, X.; He, X.; Zhu, B.; Tang, H.; Wang, C. In-situ grown flower-like C@SnO2/Cu2O nanosheet clusters on Cu foam as high performance anode for lithium-ion batteries. J. Alloys Compd. 2021, 856, 158202. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, G.; Cheng, J.; You, Y.; Li, Y.-K.; Ding, C.; Gu, J.-J.; Zheng, X.-S.; Zhang, C.-F.; Cao, F.-F. Facile Synthesis of Carbon-Coated Spinel Li4Ti5O12/Rutile-TiO2 Composites as an Improved Anode Material in Full Lithium-Ion Batteries with LiFePO4@N-Doped Carbon Cathode. ACS Appl. Mater. Interfaces 2017, 9, 6138–6143. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, B.; Li, W.; Tang, W.; Tang, H. TiO2 Coated with Carbon via Chemical Vapor Deposition as Li-Ion Batteries Anode. Coatings 2024, 14, 1473. https://doi.org/10.3390/coatings14111473
Zhu B, Li W, Tang W, Tang H. TiO2 Coated with Carbon via Chemical Vapor Deposition as Li-Ion Batteries Anode. Coatings. 2024; 14(11):1473. https://doi.org/10.3390/coatings14111473
Chicago/Turabian StyleZhu, Bin, Wenjun Li, Wu Tang, and Hui Tang. 2024. "TiO2 Coated with Carbon via Chemical Vapor Deposition as Li-Ion Batteries Anode" Coatings 14, no. 11: 1473. https://doi.org/10.3390/coatings14111473
APA StyleZhu, B., Li, W., Tang, W., & Tang, H. (2024). TiO2 Coated with Carbon via Chemical Vapor Deposition as Li-Ion Batteries Anode. Coatings, 14(11), 1473. https://doi.org/10.3390/coatings14111473