Perspective Coatings Based on Structured Conducting ITO Thin Films for General Optoelectronic Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Results and Discussion
3.1. General Properties of the ITO Modifications
3.2. Special Applications in the Liquid Crystals Orientation
4. Conclusions
- (1)
- During laser-oriented deposition of the CNTs on the ITO surface, the properties of the relief and the free surface energy are rearranged. The roughness increases with a rise in the electric field strength during the deposition of the CNTs (Table 2). When analyzing the free surface energy, it can be seen that CNTs contribute to the rise in the dispersion component from 22.2 mJ/m2 to the level of 25.0–31.4 mJ/m2 (an increase of 12.6–41.4%)—at the same time, the decline in the polar component is observed (Table 3).
- (2)
- Analyzing the data from the XRD experiment (Table 4), one can postulate that in the case of acceleration in the control electric field (depends on E), the kinetic energy of CNTs rises during the LOD, so more particles have enough energy for the implantation into the ITO lattice.
- (3)
- Via the dynamic wetting angle measurements of the “5CB- ITO” interfaces (Figure 3, Figure 4, Figure 5, Figure 6 and Figure 7), the principal difference mechanisms of the “viscous liquid—thin film” interactions were demonstrated. Due to this aspect, the ITO/CNT structures are potentially interesting technical decisions for microfluidics applications (as an alternative for ITO-based structures).
- (4)
- In terms of the liquid crystal (LC) technologies, the ITO/CNT structures allow the pre-tilt orientation to be switched (Table 4), which is useful for LC-based electro-optical modulators. Of course, given the fact that LC structures (LC display elements, LC convertor, LC modulator, etc.) function, as a rule, when they are placed between two polarizers, it is necessary to take into account the loss in transmission of the radiation passing through the LC layer.
- (5)
- All experiments and results obtained are well visualized. Consequently, many of these experiments can be recommended for the educational process in universities and schools.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, K.; Zhu, F.; Huan, C.H.A.; Wee, A.T.S. Effect of hydrogen partial pressure on optoelectronic properties of indium tin oxide thin films deposited by radio frequency magnetron sputtering method. J. Appl. Phys. 1999, 86, 974–980. [Google Scholar] [CrossRef]
- Adurodija, F.O.; Izumi, H.; Ishihara, T.; Yoshioka, H.; Motoyama, M.; Murai, K. Influence of substrate temperature on the properties of indium oxide thin films. J. Vac. Sci. Technol. A 2000, 18, 814–818. [Google Scholar] [CrossRef]
- Kim, H.; Gilmore, C.M.; Pique, A.; Horwitz, J.S.; Mattoussi, H.; Murata, H.; Kafafi, Z.H.; Chrisey, D.B. Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J. Appl. Phys. 1999, 86, 6451–6461. [Google Scholar] [CrossRef]
- Kerkache, L.; Layadi, A.; Mosser, A. Effect of oxygen partial pressure on the structural and optical properties of dc sputtered ITO thin films. J. Alloys Compd. 2009, 18, 46–50. [Google Scholar] [CrossRef]
- Socol, M.; Preda, N.; Rasoga, O.; Costas, A.; Stanculescu, A.; Breazu, C.; Gherendi, F.; Socol, G. Pulsed Laser Deposition of Indium Tin Oxide Thin Films on Nanopatterned Glass Substrates. Coatings 2019, 9, 19. [Google Scholar] [CrossRef]
- Ferhati, H.; Djeffal, F.; Benhaya, A. Optimized high-performance ITO/Ag/ITO multilayer transparent electrode deposited by RF magnetron sputtering. Superlattices Microstruct. 2019, 129, 176–184. [Google Scholar] [CrossRef]
- Fonollo-Rubio, R.; Placidi, M.; Hoelscher, T.; Thomere, A.; Li-Kao, Z.J.; Guc, M.; Izquierdo-Roca, V.; Scheer, R.; Perez-Rodriguez, A. Characterization of the Stability of Indium Tin Oxide and Functional Layers for Semitransparent Back-Contact Applications on Cu(in,Ga)Se2 Solar Cells. Solar RPL 2022, 6, 2101071. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Kang, S.-Y.; Yu, P.; Pan, C.-L. Enhanced Optically–Excited THz Wave Emission by GaAs Coated with a Rough ITO Thin Film. Coatings 2023, 13, 461. [Google Scholar] [CrossRef]
- Sohmer, M.; Yudco, S.; Etgar, L. Mesoporous indium tin oxide perovskite solar cells in bifacial configuration. J. Phys. Energy 2022, 4, 045008. [Google Scholar] [CrossRef]
- Wan, C.; Qu, A.; Deng, L.; Liu, X.; Wu, C. Preparation of an electrochemical biosensor based on indium tin oxide and its performance in detecting antibiotic resistance genes. Microchem. J. 2022, 182, 107953. [Google Scholar] [CrossRef]
- Uludag, I.; Sezginturk, M.K. Ultrasensitive and Cost-Effective Detection of Neuropeptide-Y by a Disposable Immunosensor: A New Functionalization Route for Indium-Tin Oxide Surface. Biosensors 2022, 12, 925. [Google Scholar] [CrossRef] [PubMed]
- Tramarin, L.; Casquel, R.; Gil-Rostra, J.; Gonzalez-Martinez, M.A.; Herrero-Labrador, R.; Murillo, A.M.M.; Laguna, M.F.; Banuls, M.-J.; Gonzalez-Elipe, A.R.; Holgado, M. Design and Characterization of ITO-Covered Resonant Nanopillars for Dual Optical and Electrochemical Sensing. Chemosensors 2022, 10, 393. [Google Scholar] [CrossRef]
- Silah, H.; Erkmen, C.; Demir, E.; Uslu, B. Modified indium tin oxide electrodes: Electrochemical applications in pharmaceutical, biological, environmental and food analysis. Trends Anal. Chem. 2021, 141, 116289. [Google Scholar] [CrossRef]
- Lebedev, D.; Ezhov, R.; Heras-Domingo, J.; Comas-Vives, A.; Kaeffer, N.; Willinger, M.; Solans-Monfort, X.; Huang, X.; Pushkar, Y.; Coperet, C. Atomically Dispersed Iridium on Indium Tin Oxide Efficiently Catalyzes Water Oxidation. ACS Cent. Sci. 2022, 6, 1189–1198. [Google Scholar] [CrossRef]
- Chen, M.; Cao, X.; Chang, K.; Wang, R. A novel electrochemical non-enzymatic glucose sensor based on Au nanoparticle-modified indium tin oxide electrode and boronate affinity. Electrochim. Acta 2021, 368, 137603. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Kukharchik, A.A.; Kuzhakov, P.V.; Zubtcova, Y.u.A.; Stepanov, R.O.; Baryshnikov, N.V. Modification of the conductive ITO layer by carbon nanotubes for orientation of liquid crystals in electro-optical optical information conversion devices. Liq. Cryst. Appl. 2015, 15, 109–118. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Kukharchik, A.A.; Kuzhakov, P.V.; Zubtsova, Y.u.A.; Andraud, C.; Kajzar, F. Structural, optical and mechanical properties of nanostructured inorganic materials: Possible applications in biomedicine. Nonlinear Opt. Quantum Opt. 2015, 47, 131–138. [Google Scholar]
- Kamanina, N.V.; Likhomanova, S.V.; Zubtsova, Y.u.A.; Kuzhakov, P.V.; Zimnukhov, M.A.; Vasil’ev, P.Y.; Studenov, V.I. Surface modification of materials using laser-oriented nanostructuring. J. Opt. Technol. 2018, 85, 722–728. [Google Scholar] [CrossRef]
- Sousa, M.G.; da Cuncha, A.F. Optimization of low temperature RF-magnetron sputtering of indium tin oxide films for solar cell applications. Appl. Surf. Sci. 2019, 484, 257–264. [Google Scholar] [CrossRef]
- Bhorde, A.; Waykar, R.; Nair, S.; Borate, H.; Pandharkar, S.; Aher, R.; Waghmare, A.; Vairale, P.; Naik, D.; Jadkar, S. Room Temperature Synthesis of Transparent and Conducting Indium Tin Oxide Films with High Mobility and Figure of Merit by RF-Magnetron Sputtering. J. Electron. Mater. 2019, 48, 7192–7202. [Google Scholar] [CrossRef]
- Yang, S.; Sun, B.; Liu, Y.; Zhu, J.; Song, J.; Hao, Z.; Zeng, X.; Zhao, X.; Shu, Y.; Chen, J.; et al. Effect of ITO target crystallinity on the properties of sputtering deposited ITO films. Ceram. Int. 2020, 46, 6342–6350. [Google Scholar] [CrossRef]
- Singh, G.; Sheokand, H.; Ghosh, S.; Srivastava, K.V.; Ramkumar, J.; Ramakrishna, S.A. Excimer laser micromachining of indium tin oxide for fabrication of optically transparent metamaterial absorbers. Appl. Phys. A 2019, 125, 23. [Google Scholar] [CrossRef]
- Kamanina, N.; Toikka, A.; Gladysheva, I. ITO conducting coatings properties improvement via nanotechnology approach. Nano Express 2021, 2, 010006. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Vasilyev, P.Y.; Studeonov, V.I. Optical Coating Based on Oriented in the Electric Field CNTs for the Optical Devises, Micro- and Nano-Electronics under the Conditions When the Interface: Solid Substrate-Coating Can Be Eliminated. RU Patent 2,405,177 C2, 23 December 2008. [Google Scholar]
- Ozkartal, A. Characterization of the ITO/p-Si/Al contacts produced by thermal evaporation. Vacuum 2019, 168, 108799. [Google Scholar] [CrossRef]
- Jain, P.; Singh, S.; Pundir, S.K. Synthesis of Highly Transparent Indium Tin Oxide Thin Films Using Vacuum Evaporation Technique. J. Nanosci. Nanotechnol. 2020, 20, 3845–3853. [Google Scholar] [CrossRef]
- Hosen, M.M.; Atique Ullah, A.K.M.; Haque, M.M.; Abdur Rahim, S.M.; Abdus Sobahan, K.M.; Khan, M.N.I. Optical and electrical properties of crystalline indium tin oxide thin film deposited by vacuum evaporation technique. Optoelectron. Lett. 2019, 15, 356–359. [Google Scholar] [CrossRef]
- Kim, H.; Horwitz, J.S.; Kushto, G.; Pique, A.; Kafafi, Z.H.; Gilmore, C.M.; Chrisey, D.B. Effect of film thickness on the properties of indium tin oxide thin films. J. Appl. Phys. 2000, 88, 6021–6025. [Google Scholar] [CrossRef]
- Sun, K.; Yang, C.; Zhang, D.; Jin, D.; Wei, Y.; Yuan, H. Effects of ambient high-temperature annealing on microstructure, elemental composition, optical and electrical properties of indium tin oxide films. Mater. Sci. Eng. B 2022, 276, 115534. [Google Scholar] [CrossRef]
- Besbes, S.; Ben Ouada, H.; Davenas, J.; Ponsonnet, L.; Jaffrezic, N.; Alcouffe, P. Effect of surface treatment and functionalization on the ITO properties for OLEDs. Mater. Sci. Eng. C 2006, 26, 505–510. [Google Scholar] [CrossRef]
- Rong, X.; Han, J.; Tian, X.; Li, L.J.Z.; Xing, R.; Shen, L.; Duan, L.; Dong, G. Modification of Indium Tin Oxide Surface with HCl for Source/Drain Electrodes in Organic Thin Film Transistors. Adv. Mater. Technol. 2022, 7, 2101487. [Google Scholar] [CrossRef]
- El Nahrawy, A.M.; Abou Hammad, A.B.; Youssef, A.M.; Mansour, A.M.; Othman, A.M. Thermal, dielectric and antimicrobial properties of polystyrene-assisted/ITO: Cu nanocomposites. Appl. Phys. A 2019, 125, 46. [Google Scholar] [CrossRef]
- Mei, F.; Huang, J.; Yuan, T.; Li, R. Effect of cerium doping on the microstructure and photoelectric properties of Ce-doped ITO films. Appl. Surf. Sci. 2020, 509, 144810. [Google Scholar] [CrossRef]
- Gartner, M.; Anastasescu, M.; Calderon-Moreno, J.M.; Nicolescu, M.; Stroescu, H.; Hornoiu, C.; Preda, S.; Predoana, L.; Mitrea, D.; Covei, M.; et al. Multifunctional Zn-Doped ITO Sol–Gel Films Deposited on Different Substrates: Application as CO2-Sensing Material. Nanomaterials 2022, 12, 3244. [Google Scholar] [CrossRef]
- Umeyama, T.; Imahori, H. Isomer Effects of Fullerene Derivatives on Organic Photovoltaics and Perovskite Solar Cells. Acc. Chem. Res. 2019, 52, 2046–2055. [Google Scholar] [CrossRef]
- Lin, H.-S.; Jeon, I.; Chen, Y.; Yang, X.-Y.; Nakagawa, T.; Maruyama, S.; Manzhos, S.; Matsuo, Y. Highly Selective and Scalable Fullerene-Cation-Mediated Synthesis Accessing Cyclo[60]fullerenes with Five-Membered Carbon Ring and Their Application to Perovskite Solar Cells. Chem. Mater. 2019, 31, 8432–8439. [Google Scholar] [CrossRef]
- Brabec, C.J.; Padinger, F.; Sariciftci, N.S.; Hummelen, J.C. Photovoltaic properties of conjugated polymer/methanofullerene composites embedded in a polystyrene matrix. J. Appl. Phys. 1999, 85, 6866–6972. [Google Scholar] [CrossRef]
- Golobostanfard, M.R.; Mohammadi, S.; Abdizadeh, H.; Baghchesara, M.A. Incorporating Carbon Nanotubes in Sol–Gel Synthesized Indium Tin Oxide Transparent Conductive Films. Langmuir 2014, 30, 11785–11791. [Google Scholar] [CrossRef]
- Koo, J.; Lee, S.; Cho, S. Effect of Additives on the Properties of Printed ITO Sensors. J. Korean Phys. Soc. 2017, 71, 335–339. [Google Scholar] [CrossRef]
- Kamanina, N.; Toikka, A.; Kvashnin, D. Nanostructuration Impact on the Basic Properties of the Materials: Novel Composite Carbon Nanotubes on a Copper Surface. J. Compos. Sci. 2022, 6, 181. [Google Scholar] [CrossRef]
- Kamanina, N.; Toikka, A.; Barnash, Y.; Kuzhakov, P.; Kvashnin, D. Advanced and Functional Structured Ceramics: MgF2 and ZnS. Materials. 2022, 15, 4780. [Google Scholar] [CrossRef]
- Kamanina, N.; Toikka, A.; Valeev, B.; Kvashnin, D. Carbon Nanotubes Use for the Semiconductors ZnSe and ZnS Material Surface Modification via the Laser-Oriented Deposition Technique. C 2021, 7, 84. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Vasil’ev, P.Y.; Studeonov, V.I.; Usanov Yu, E. Strengthening transparent conductive coatings and “soft” materials of the IR range when nanotechnologies are used. J. Opt. Technol. 2008, 75, 67–68. [Google Scholar] [CrossRef]
- Kamanina, N. Carbon Nanotube Coatings Role in Transparency, Mechanical Hardness, and Wetting Angle Increase. Coatings 2022, 12, 1279. [Google Scholar] [CrossRef]
- Tsai, H.-Y.; Hsu, C.-N.; Li, C.-R.; Lin, Y.-H.; Hsiao, W.-T.; Huang, K.-C.; Yen, J.A. Surface Wettability and Electrical Resistance Analysis of Droplets on Indium-Tin-Oxide Glass Fabricated Using an Ultraviolet Laser System. Micromachines 2021, 12, 44. [Google Scholar] [CrossRef]
- Song, Z.-R.; Zeng, J.; Zhou, J.-L.; Yan, B.-Y.; Gu, Z.; Wang, H.-F. Optimization of Electrode Patterns for an ITO-Based Digital Microfluidic through the Finite Element Simulation. Micromachines 2022, 13, 1563. [Google Scholar] [CrossRef]
- Nsabimana, J.; Wang, Y.; Ruan, Q.; Li, T.; Shen, H.; Yang, C.; Zhu, Z. An electrochemical method for a rapid and sensitive immunoassay on digital microfluidics with integrated indium tin oxide electrodes coated on a PET film. Analyst 2021, 146, 4473–4479. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Apply. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Toosi, S.F.; Moradi, S.; Hatzikiriakos, S.G. Fabrication of Micro/Nano Patterns on Polymeric Substrates Using Laser Ablation Methods to Control Wettability Behaviour: A Critical Review (Chapter 2). Prog. Adhes. Adhes. 2018, 3, 53–75. [Google Scholar] [CrossRef]
- Good, R.J. Contact angle, wetting, and adhesion: A critical review. J. Adhes. Sci. Technol. 1992, 6, 1269–1302. [Google Scholar] [CrossRef]
- Rebinder, P.A. Superfical Phenomena in Dispersed Systems; Colloid Chemistry; Nauka: Moscow, Russia, 1978; pp. 300–332. (In Russian) [Google Scholar]
- Summ, B.D.; Goryunov, Y.V. Phys-Chemical Foundations of Wetting and Spreading; Himiya: Moscow, Russia, 1976; 232p. (In Russian) [Google Scholar]
- Kamanina, N.V.; Toikka, A.S.; Barnash, Y.a.V.; Redka, D.N.; Lihkomanova, S.V.; Zybtsova, Y.u.A.; Kyzhakov, P.V.; Jovanovic, Z.; Jovanovic, S. Functioning features of liquid crystalline cells doped with CoFe2O4 nanoparticles. Liq. Cryst. Their Appl. 2022, 22, 83–91. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Zubtsova, Y.A.; Toikka, A.S.; Likhomanova, S.V.; Zak, A.; Tenne, R. Temporal Characteristics of Liquid Crystal Cell with WS2 Nanoparticles: Mesophase Sensitization and Relief features. Liq. Cryst. Their Appl. 2020, 20, 34–40. [Google Scholar] [CrossRef]
- Sofi, A.H.; Shah, M.A.; Asokan, K. Structural, Optical and Electrical Properties of ITO thin films. J. Electron. Mater. 2018, 47, 1344–1352. [Google Scholar] [CrossRef]
- Kerkache, L.; Layadi, A.; Dogheche, E.; Remiens, D. Physical properties of RF sputtered ITO thin films and annealing effect. J. Phys. D Appl. Phys. 2006, 39, 184–189. [Google Scholar] [CrossRef]
- Kim, J.H.; Jeon, K.A.; Kim, G.H.; Lee, S.Y. Electrical, structural, and optical properties of ITO thin films prepared at room temperature by pulsed laser deposition. Appl. Surf. Sci. 2006, 252, 4834–4837. [Google Scholar] [CrossRef]
- Merck. Sigma-Aldrich: Carbon Nanotube Single-Walled, 704121. Available online: https://www.sigmaaldrich.com/RU/en/product/aldrich/704121 (accessed on 15 December 2023).
- Mitsuyama, R.; Tadera, S.; Kyakuno, H.; Suzuki, R.; Ishii, H.; Nakai, Y.; Miyata, Y.; Yanagi, K.; Kataura, H.; Maniwa, Y. Chirality fingerprinting and geometrical determination of single-walled carbon nanotubes: Analysis of fine structure of X-ray diffraction pattern. Carbon 2014, 75, 299–306. [Google Scholar] [CrossRef]
- Miyata, Y.; Yanagi, K.; Maniwa, Y.; Tanaka, T.; Kataura, H. Diameter Analysis of Rebundled Single-Wall Carbon Nanotubes Using X-ray Diffraction: Verification of Chirality Assignment Based on Optical Spectra. J. Phys. Chem. C 2008, 112, 15997–16001. [Google Scholar] [CrossRef]
- Futaba, D.N.; Yamada, T.; Kobashi, K.; Yumura, M.; Hata, K. Macroscopic wall number analysis of single-walled, double-walled and few-walled carbon nanotubes by X-ray diffraction. J. Am. Chem. Soc. 2011, 133, 5716–5719. [Google Scholar] [CrossRef]
- Ferreira, S.H.; Morais, M.; Nunes, D.; Oliveira, M.J.; Rovisco, A.; Pimentel, A.; Águas, H.; Fortunato, E.; Martins, R. High UV and Sunlight Photocatalytic Performance of Porous ZnO Nanostructures Synthesized by a Facile and Fast Microwave Hydrothermal Method. Materials 2021, 14, 2385. [Google Scholar] [CrossRef] [PubMed]
- Muslimov, A.E.; Asvarov, A.S.; Shabanov, N.C.; Kanevsky, V.M. The influence of topographic defects on the superhydrophobic properties of coatings based on ZnO. Tech. Phys. Lett. 2020, 46, 15–18. (In Russian) [Google Scholar] [CrossRef]
- Jain, N.; Sharma, S.; Puri, N.K. Investigation of charge transport mechanism in hydrothermally synthesized reduced graphene oxide (rGO) incorporated zinc oxide (ZnO) nanocomposite films. J. Mater. Sci. Mater. Electron. 2022, 33, 1307–1323. [Google Scholar] [CrossRef]
- Bukhari, S.N.U.S.; Shah, A.A.; Bhatti, M.A.; Tahira, A.; Channa, I.A.; Shah, A.K.; Chandio, A.D.; Mahdi, W.A.; Alshehri, S.; Ibhupoto, Z.H.; et al. Psyllium-Husk-Assisted Synthesis of ZnO Microstructures with Improved Photocatalytic Properties for the Degradation of Methylene Blue (MB). Nanomaterials 2022, 12, 3568. [Google Scholar] [CrossRef] [PubMed]
- Nosidlak, N.; Jaglarz, J.; Vallati, A.; Dulian, P.; Jurzecka-Szymacha, M.; Gierałtowska, S.; Seweryn, A.; Wachnicki, Ł.; Witkowski, B.S.; Godlewski, M. The Optical Properties of Thin Film Alloys of ZnO, TiO2 and ZrO2 with Al2O3 Synthesised Using Atomic Layer Deposition. Coatings 2023, 13, 1872. [Google Scholar] [CrossRef]
Liquid | γlp, mN/m | γld, mN/m | γl, mN/m |
---|---|---|---|
Water | 48.1 | 24.1 | 72.2 |
Toluene | 1.3 | 27.2 | 28.5 |
Sample | II Order Fitting | III Order Fitting | ||
---|---|---|---|---|
Average | Standard Deviation | Average | Standard Deviation | |
Pure ITO | 11.6 | 4.7 | 4.4 | 1.7 |
ITO with CNTs (E = 100 V/cm) | 13.4 | 2.6 | 7.6 | 6.4 |
ITO with CNTs (E = 200 V/cm) | 51.1 | 9.8 | 25.4 | 5.4 |
ITO with CNTs (E = 600 V/cm) | 86.5 | 13.1 | 17.8 | 4.4 |
Sample | Young’s Angle, ° | Surface Free Energy, mJ/m2 | ||
---|---|---|---|---|
Water | Toluene | Polar | Dispersive | |
Pure ITO | 85.35 | 17.3 | 8.2 | 22.2 |
ITO with CNTs (E = 100 V/cm) | 115.65 | 24.9 | 0.8 | 29.2 |
ITO with CNTs (E = 200 V/cm) | 95.65 | 22.7 | 1.3 | 25.0 |
ITO with CNTs (E = 600 V/cm) | 119.5 | 19.1 | 1.8 | 31.4 |
Label | Structure | (222) | (400) | (440) | |||
---|---|---|---|---|---|---|---|
2θ, Deg. | FWHM, Deg. | 2θ, Deg. | FWHM, Deg. | 2θ, Deg. | FWHM, Deg. | ||
s1 | Pure ITO | 30.188 | 1.141 | 35.053 | 0.777 | 50.307 | 1.027 |
s2 | ITO + CNTs (E = 100 V/cm) | 30.183 | 1.121 | 35.035 | 0.874 | 50.304 | 1.184 |
s3 | ITO + CNTs (E = 200 V/cm) | 30.181 | 1.133 | 35.002 | 0.702 | 50.292 | 1.128 |
s4 | ITO + CNTs (E = 600 V/cm) | 30.165 | 1.373 | 35.066 | 1.268 | 50.239 | 1.140 |
Sample | Moment of Contact (t = 0 s) | Saturation Condition | 1 min Later (t = 60 s) |
---|---|---|---|
Pure ITO | 39.5 | 38.35 (t = 2.9 s) | 38.25 |
ITO with CNTs (E = 100 V/cm) | 52.1 | 52.8 (t = 4.8 s) 1 | 53.15 |
ITO with CNTs (E = 200 V/cm) | 60.1 | 58.95 (t = 2.7 s) | 58.6 |
ITO with CNTs (E = 600 V/cm) | 58.5 | 58.4 (t = 1.6 s) | 56.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toikka, A.; Ilin, M.; Kamanina, N. Perspective Coatings Based on Structured Conducting ITO Thin Films for General Optoelectronic Applications. Coatings 2024, 14, 178. https://doi.org/10.3390/coatings14020178
Toikka A, Ilin M, Kamanina N. Perspective Coatings Based on Structured Conducting ITO Thin Films for General Optoelectronic Applications. Coatings. 2024; 14(2):178. https://doi.org/10.3390/coatings14020178
Chicago/Turabian StyleToikka, Andrei, Matwei Ilin, and Natalia Kamanina. 2024. "Perspective Coatings Based on Structured Conducting ITO Thin Films for General Optoelectronic Applications" Coatings 14, no. 2: 178. https://doi.org/10.3390/coatings14020178
APA StyleToikka, A., Ilin, M., & Kamanina, N. (2024). Perspective Coatings Based on Structured Conducting ITO Thin Films for General Optoelectronic Applications. Coatings, 14(2), 178. https://doi.org/10.3390/coatings14020178