Sulfonated Molecules and Their Latest Applications in the Field of Biomaterials: A Review
Abstract
:1. Introduction
2. Sulfonates
2.1. Sulfonated Kraft Lignin and Sulfonated Porous Surface of Tantalum Pentoxide/Polyimide Composite
2.2. Sulfonated Polyetheretherketone
2.3. Sulfonated Chitosan Derivatives
2.4. Sulfonated Graphene
2.5. A Thermo-Responsive Injectable Gel with Sulfonated Properties
2.6. Sulfonated Cladophora Nano-Cellulose Beads
2.7. Sulfonated Cryogel Scaffolds
- A user-friendly scheme: this is attributed to their mechanical strength and sponge-like nature.
- Convenient storage: cryogels are easily stored before use.
- Simple loading process: agents can be loaded directly onto the dry materials, facilitating controlled release.
- Precise targeting: cryogels enable accurate and reproducible specific targeting.
2.8. Sulfonated Hyaluronic Acid
2.9. Marine-Derived Sulfonated Molecules
- FucoidansSource: brown algae (Phaeophyta).Features: Fucoidans are sulfated polysaccharides with various biological activities, such as anticoagulant, antiviral, anti-inflammatory, and antioxidant properties. They have potential applications in pharmaceuticals, cosmetics, and biomaterials [98].
- Carrageenans:Source: red algae (Rhodophyta).Features: Carrageenans are sulfated polysaccharides widely used in the food industry as gelling and thickening agents. They also exhibit antiviral and anti-inflammatory properties. They have been studied for their various applications, including in tissue engineering, wound care, and drug delivery [99].
- Glycosaminoglycans (GAGs):Source: various marine organisms, including fish.Features: GAGs are sulfated polysaccharides with roles in cell adhesion, signaling, and tissue development. They have applications in medicine and biotechnology [100].
- Sulfated Sterols:Source: certain marine sponges.Features: Sulfated sterols from marine sponges may exhibit antibacterial, antifungal, and antiviral activities. They are studied for their potential in drug development [101].
- Sulfonated aromatic compounds:Source: various marine organisms.Features: some marine organisms produce sulfonated aromatic compounds with potential antioxidant, anti-inflammatory, and other bioactive properties [102].
- Sulfonated peptides:Source: marine organisms, including sponges and mollusks.Features: Sulfonated peptides may exhibit antimicrobial and antifungal activities. They are of interest in the development of novel therapeutic agents [103].
- Sulfated nucleosides:Source: marine microorganisms.Features: Sulfated nucleosides are compounds with antiviral and antitumor activities. They are studied for their potential in pharmaceutical applications [104].
3. Sulfated or Sulfonated Compounds
4. Conclusions
5. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leung, A.W.Y.; Backstrom, I.; Bally, M.B. Sulfonation, an underexploited area: From skeletal development to infectious diseases and cancer. Oncotarget 2016, 7, 55811–55827. [Google Scholar] [CrossRef]
- Strott, C.A. Sulfonation and molecular action. Endocr. Rev. 2002, 23, 703–732. [Google Scholar] [CrossRef]
- Chen, M.; Geng, Z.; Yang, S. Synthesis of alkyl sulfonated fullerenes without catalyst: Improved water solubility by the sulfonate groups. J. Nanosci. Nanotechnol. 2011, 11, 10093–10101. [Google Scholar] [CrossRef] [PubMed]
- Alnouti, Y.; Klaassen, C.D. Tissue distribution and ontogeny of sulfotransferase enzymes in mice. Toxicol. Sci. 2006, 93, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Dutta, S.; Lote, V. The Role of Sulfonation in the Fields of Pharmacology and Toxicology. IJFANS Int. J. Food Nutr. Sci. 2022, 11, 760–764. [Google Scholar]
- Zappe, A.; Miller, R.L.; Struwe, W.B.; Pagel, K. State-of-the-art glycosaminoglycan characterization. Mass Spectrom. Rev. 2022, 41, 1040–1071. [Google Scholar] [CrossRef]
- Damiens, E.; Yazidi, I.E.; Mazurier, J.; Elass-Rochard, E.; Duthille, I.; Spik, G.; Boilly-Marer, Y. Role of heparan sulphate proteoglycans in the regulation of human lactoferrin binding and activity in the MDA-MB-231 breast cancer cell line. Eur. J. Cell Biol. 1998, 77, 344–351. [Google Scholar] [CrossRef]
- Huttner, W.B. Tyrosine sulfation and the secretory pathway. Annu. Rev. Physiol. 1988, 50, 363–376. [Google Scholar] [CrossRef] [PubMed]
- Baenziger, J.U. Glycosylation: To what end for the glycoprotein hormones? Endocrinology 1996, 137, 1520–1522. [Google Scholar] [CrossRef]
- Chatterjee, B.; Echchgadda, I.; Seog Song, C. Vitamin D receptor regulation of the steroid/bile acid sulfotransferase SULT2A1. Methods Enzymol. 2005, 400, 165–191. [Google Scholar] [CrossRef]
- Jaymand, M. Sulfur functionality-modified starches: Review of synthesis strategies, properties, and applications. Int. J. Biol. Macromol. 2022, 197, 111–120. [Google Scholar] [CrossRef]
- Zhang, H.; Bai, Y.; Zhou, W.; Chen, F. Color reduction of sulfonated eucalyptus kraft lignin. Int. J. Biol. Macromol. 2017, 97, 201–208. [Google Scholar] [CrossRef]
- Asadullah, S.; Mei, S.; Wang, D.; Yao, Y.; Pan, Y.; Wang, D.; Guo, H.; Wei, J. Sulfonated porous surface of tantalum pentoxide/polyimide composite with micro-submicro structures displaying antibacterial performances and stimulating cell responses. Mater. Des. 2020, 190, 108510. [Google Scholar] [CrossRef]
- Najeeb, S.; Khurshid, Z.; Matinlinna, J.P.; Siddiqui, F.; Nassani, M.Z.; Baroudi, K. Nanomodified Peek Dental Implants: Bioactive Composites and Surface Modification—A Review. Int. J. Dent. 2015, 2015, 381759. [Google Scholar] [CrossRef]
- Anselme, K. Osteoblast adhesion on biomaterials. Biomaterials 2000, 21, 667–681. [Google Scholar] [CrossRef]
- Huang, R.Y.M.; Shao, P.; Burns, C.M.; Feng, X. Sulfonation of poly(ether ether ketone)(PEEK): Kinetic study and characterization. J. Appl. Polym. Sci. 2001, 82, 2651–2660. [Google Scholar] [CrossRef]
- Li, M.; Mondrinos, M.J.; Chen, X.; Gandhi, M.R.; Ko, F.K.; Lelkes, P.I. Elastin Blends for Tissue Engineering Scaffolds. J. Biomed. Mater. Res. Part A 2006, 79, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Yin, G. Methanol permeability in sulfonated poly(etheretherketone) membranes: A comparison with Nafion membranes. Eur. Polym. J. 2006, 42, 776–785. [Google Scholar] [CrossRef]
- Shibuya, N.; Porter, R.S. Kinetics of PEEK Sulfonation in Concentrated Sulfuric Acid. Macromolecules 1992, 25, 6495–6499. [Google Scholar] [CrossRef]
- Yee, R.S.L.; Zhang, K.; Ladewig, B.P. The effects of sulfonated poly(ether ether ketone) ion exchange preparation conditions on membrane properties. Membranes 2013, 3, 182–195. [Google Scholar] [CrossRef]
- Zhao, Y.; Wong, H.M.; Wang, W.; Li, P.; Xu, Z.; Chong, E.Y.W.; Yan, C.H.; Yeung, K.W.K.; Chu, P.K. Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Biomaterials 2013, 34, 9264–9277. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Luo, C.J.; Huang, J.; Edirisinghe, M. PEEK surface modification by fast ambient-temperature sulfonation for bone implant applications. J. R. Soc. Interface 2019, 16, 20180955. [Google Scholar] [CrossRef] [PubMed]
- Dimassi, S.; Tabary, N.; Chai, F.; Blanchemain, N.; Martel, B. Sulfonated and sulfated chitosan derivatives for biomedical applications: A review. Carbohydr. Polym. 2018, 202, 382–396. [Google Scholar] [CrossRef] [PubMed]
- Synowiecki, J.; Al-khateeb, N.A.; Synowiecki, J. Critical Reviews in Food Science and Nutrition Production, Properties, and Some New Applications of Chitin and Its Derivatives Production, Properties, and Some New Applications of Chitin and Its Derivatives. Crit. Rev. Food Sci. Nutr. 2011, 43, 145–171. [Google Scholar] [CrossRef] [PubMed]
- Franconetti, A.; Contreras-Bernal, L.; Prado-Gotor, R.; Cabrera-Escribano, F. Synthesis of hyperpolarizable biomaterials at molecular level based on pyridinium-chitosan complexes. RSC Adv. 2015, 5, 74274–74283. [Google Scholar] [CrossRef]
- Liu, H.; Sun, Z.; Guo, C. Chemical Modification of Silk Proteins: Current Status and Future Prospects. Adv. Fiber Mater. 2022, 4, 705–719. [Google Scholar] [CrossRef]
- Mostafa, A.; El-Dissouky, A.; Fawzy, A.; Farghaly, A.; Peu, P.; Dabert, P.; Roux, S.L.; Tawfik, A. Magnetite/graphene oxide nano-composite for enhancement of hydrogen production from gelatinaceous wastewater. Bioresour. Technol. 2016, 216, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Tondro, H.; Zilouei, H.; Zargoosh, K.; Bazarganipour, M. Investigation of heterogeneous sulfonated graphene oxide to hydrolyze cellulose and produce dark fermentative biohydrogen using Enterobacter aerogenes. Bioresour. Technol. 2020, 306, 123124. [Google Scholar] [CrossRef]
- Oger, N.; Lin, Y.F.; Labrugère, C.; Grognec, E.L.; Rataboul, F.; Felpin, F.X. Practical and scalable synthesis of sulfonated graphene. Carbon 2016, 96, 342–350. [Google Scholar] [CrossRef]
- Tawfik, A.; Eraky, M.; Khalil, M.N.; Osman, A.I.; Rooney, D.W. Sulfonated graphene nanomaterials for membrane antifouling, pollutant removal, and production of chemicals from biomass: A review. Environ. Chem. Lett. 2023, 21, 1093–1116. [Google Scholar] [CrossRef]
- Hara, M.; Yoshida, T.; Takagaki, A.; Takata, T.; Kondo, J.N.; Hayashi, S.; Domen, K. A carbon material as a strong protonic acid. Angew. Chem. Int. Ed. 2004, 43, 2955–2958. [Google Scholar] [CrossRef]
- Anastasiou, E.; Lorentz, K.O.; Stein, G.J.; Mitchell, P.D. Prehistoric schistosomiasis parasite found in the Middle East. Lancet Infect. Dis. 2014, 14, 553–554. [Google Scholar] [CrossRef]
- Upare, P.P.; Yoon, J.W.; Kim, M.Y.; Kang, H.Y.; Hwang, D.W.; Hwang, Y.K.; Kung, H.H.; Chang, J.S. Chemical conversion of biomass-derived hexose sugars to levulinic acid over sulfonic acid-functionalized graphene oxide catalysts. Green Chem. 2013, 15, 2935–2943. [Google Scholar] [CrossRef]
- Liu, F.; Sun, J.; Zhu, L.; Meng, X.; Qi, C.; Xiao, F.S. Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions. J. Mater. Chem. 2012, 22, 5495–5502. [Google Scholar] [CrossRef]
- Fujimoto, K.L.; Ma, Z.; Nelson, D.M.; Hashizume, R.; Guan, J.; Tobita, K.; Wagner, W.R. Synthesis, characterization and therapeutic efficacy of a biodegradable, thermoresponsive hydrogel designed for application in chronic infarcted myocardium. Biomaterials 2009, 30, 4357–4368. [Google Scholar] [CrossRef] [PubMed]
- Wassenaar, J.W.; Gaetani, R.; Garcia, J.J.; Braden, R.L.; Luo, C.G.; Huang, D.; DeMaria, A.N.; Omens, J.H.; Christman, K.L. Evidence for mechanisms underlying the functional benefits of a myocardial matrix hydrogel for post-MI treatment. J. Am. Coll. Cardiol. 2016, 67, 1074–1086. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.J.; Fang, Y.H.; Lim, C.H.; Kim, B.S.; Son, H.S.; Park, Y.; Sun, K. Regeneration of ischemic heart using hyaluronic acid-based injectable hydrogel. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 91, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Rocker, A.J.; Cavasin, M.; Johnson, N.R.; Shandas, R.; Park, D. Sulfonated Thermoresponsive Injectable Gel for Sequential Release of Therapeutic Proteins to Protect Cardiac Function after Myocardial Infarction. ACS Biomater. Sci. Eng. 2022, 8, 3883–3898. [Google Scholar] [CrossRef] [PubMed]
- Garbern, J.C.; Hoffman, A.S.; Stayton, P.S. Injectable pH- and temperature-responsive poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for delivery of angiogenic growth factors. Biomacromolecules 2010, 11, 1833–1839. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Li, L.; Cai, C.; Li, G.; Zhang, F.; Linhardt, R.J. Heparin stability by determining unsubstituted amino groups using hydrophilic interaction chromatography mass spectrometry. Anal. Biochem. 2014, 461, 46–48. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.M.; Ma, Z.; Leeson, C.E.; Wagner, W.R. Extended and sequential delivery of protein from injectable thermoresponsive hydrogels. J. Biomed. Mater. Res. Part A 2012, 100A, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Cochain, C.; Channon, K.M.; Silvestre, J.S. Angiogenesis in the infarcted myocardium. Antioxid. Redox Signal. 2013, 18, 1100–1113. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ran, X.; Wang, J.; Wang, S.; Zhang, P.; Gao, E.; Bai, B.; Zhang, J.; Zhou, G.; Lei, D. Elastic Fiber-Reinforced Silk Fibroin Scaffold with A Double-Crosslinking Network for Human Ear-Shaped Cartilage Regeneration. Adv. Fiber Mater. 2023, 5, 1008–1024. [Google Scholar] [CrossRef]
- Yang, Q.; Guo, J.; Liu, Y.; Guan, F.; Song, J.; Gong, X. Improved Properties of Cellulose/Antarctic Krill Protein Composite Fibers with a Multiple Cross-Linking Network. Adv. Fiber Mater. 2022, 4, 256–267. [Google Scholar] [CrossRef]
- Ruan, C.; Strømme, M.; Lindh, J. A green and simple method for preparation of an efficient palladium adsorbent based on cysteine functionalized 2,3-dialdehyde cellulose. Cellulose 2016, 23, 2627–2638. [Google Scholar] [CrossRef]
- Ruan, C.Q.; Strømme, M.; Lindh, J. Preparation of porous 2,3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of Congo red dye. Carbohydr. Polym. 2018, 181, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Li, W.; Xu, Q.; Sun, Q. Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose 2015, 22, 2443–2456. [Google Scholar] [CrossRef]
- Fang, H.; Wei, J.; Yu, Y.T. In vivo studies of endotoxin removal by lysine-cellulose adsorbents. Biomaterials 2004, 25, 5433–5440. [Google Scholar] [CrossRef]
- Kai, Y.; Hamada, J.; Morioka, M.; Yano, S.; Nakamura, H.; Makino, K.; Mizuno, T.; Takeshima, H.; Kuratsu, J. Preoperative cellulose porous beads for therapeutic embolization of meningioma: Provocation test and technical considerations. Neuroradiology 2007, 49, 437–443. [Google Scholar] [CrossRef]
- Hamada, J.I.; Kai, Y.; Nagahiro, S.; Hashimoto, N.; Iwata, H.; Ushio, Y. Embolization with cellulose porous beads, II: Clinical trial. Am. J. Neuroradiol. 1996, 17, 1901–1906. [Google Scholar] [PubMed]
- Kutsuki, H. β2-Microglobulin-selective direct hemoperfusion column for the treatment of dialysis-related amyloidosis. Biochim. Biophys. Acta Proteins Proteom. 2005, 1753, 141–145. [Google Scholar] [CrossRef]
- Gorbet, M.B.; Sefton, M.V. Biomaterial-associated thrombosis: Roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 2004, 25, 5681–5703. [Google Scholar] [CrossRef]
- Garcia Junqueiraa, D.R.; das Graças Carvalho, M.; Perini, E. Trombocitopenia induzida por heparina: Revisão de conceitos de uma importante reação adversa a medicamentos. Rev. Assoc. Med. Bras. 2013, 59, 161–166. [Google Scholar] [CrossRef]
- De Mel, A.; Cousins, B.G.; Seifalian, A.M. Surface modification of biomaterials: A quest for blood compatibility. Int. J. Biomater. 2012, 2012, 707863. [Google Scholar] [CrossRef] [PubMed]
- Ran, F.; Nie, S.; Li, J.; Su, B.; Sun, S.; Zhao, C. Heparin-like macromolecules for the modification of anticoagulant biomaterials. Macromol. Biosci. 2012, 12, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Sakiyama-Elbert, S.E. Incorporation of heparin into biomaterials. Acta Biomater. 2014, 10, 1581–1587. [Google Scholar] [CrossRef] [PubMed]
- Rocha, I.; Ferraz, N.; Mihranyan, A.; Strømme, M.; Lindh, J. Sulfonated nanocellulose beads as potential immunosorbents. Cellulose 2018, 25, 1899–1910. [Google Scholar] [CrossRef]
- Mihranyan, A.; Edsman, K.; Strømme, M. Rheological properties of cellulose hydrogels prepared from Cladophora cellulose powder. Food Hydrocoll. 2007, 21, 267–272. [Google Scholar] [CrossRef]
- Rocha, I.; Lindh, J.; Hong, J.; Strømme, M.; Mihranyan, A.; Ferraz, N. Blood compatibility of sulfonated Cladophora nanocellulose beads. Molecules 2018, 23, 601. [Google Scholar] [CrossRef] [PubMed]
- Mihranyan, A.; Andersson, S.B.; Ek, R. Sorption of nicotine to cellulose powders. Eur. J. Pharm. Sci. 2004, 22, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, D.O.; Lindh, J.; Nyholm, L.; Strømme, M.; Mihranyan, A. Cooxidant-free TEMPO-mediated oxidation of highly crystalline nanocellulose in water. RSC Adv. 2014, 4, 52289–52298. [Google Scholar] [CrossRef]
- Manukyan, L.; Li, P.; Gustafsson, S.; Mihranyan, A. Growth media filtration using nanocellulose-based virus removal filter for upstream biopharmaceutical processing. J. Memb. Sci. 2019, 572, 464–474. [Google Scholar] [CrossRef]
- Metreveli, G.; Wågberg, L.; Emmoth, E.; Belák, S.; Strømme, M.; Mihranyan, A. A Size-Exclusion Nanocellulose Filter Paper for Virus Removal. Adv. Healthc. Mater. 2014, 3, 1546–1550. [Google Scholar] [CrossRef] [PubMed]
- Asper, M.; Hanrieder, T.; Quellmalz, A.; Mihranyan, A. Removal of xenotropic murine leukemia virus by nanocellulose based filter paper. Biologicals 2015, 43, 452–456. [Google Scholar] [CrossRef]
- Ferraz, N.; Mihranyan, A. Is there a future for electrochemically assisted hemodialysis? Focus on the application of polypyrrole-nanocellulose composites. Nanomedicine 2014, 9, 1095–1110. [Google Scholar] [CrossRef]
- Ferraz, N.; Straømme, M.; Fellström, B.; Pradhan, S.; Nyholm, L.; Mihranyan, A. In vitro and in vivo toxicity of rinsed and aged nanocellulose-polypyrrole composites. J. Biomed. Mater. Res. Part A 2012, 100A, 2128–2138. [Google Scholar] [CrossRef]
- Ferraz, N.; Carlsson, D.O.; Hong, J.; Larsson, R.; Fellström, B.; Nyholm, L.; Strømme, M.; Mihranyan, A. Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification. J. R. Soc. Interface 2012, 9, 1943–1955. [Google Scholar] [CrossRef]
- Xu, C.; Carlsson, D.O.; Mihranyan, A. Feasibility of using DNA-immobilized nanocellulose-based immunoadsorbent for systemic lupus erythematosus plasmapheresis. Colloids Surf. B Biointerfaces 2016, 143, 1–6. [Google Scholar] [CrossRef]
- Lancaster, M.A.; Renner, M.; Martin, C.A.; Wenzel, D.; Bicknell, L.S.; Hurles, M.E.; Homfray, T.; Penninger, J.M.; Jackson, A.P.; Knoblich, J.A. Cerebral organoids model human brain development and microcephaly. Nature 2013, 501, 373–379. [Google Scholar] [CrossRef]
- Mason, J.O.; Price, D.J. Building brains in a dish: Prospects for growing cerebral organoids from stem cells. Neuroscience 2016, 334, 105–118. [Google Scholar] [CrossRef]
- Lancaster, M.A.; Huch, M. Disease modelling in human organoids. DMM Dis. Model. Mech. 2019, 12, dmm039347. [Google Scholar] [CrossRef] [PubMed]
- Di Lullo, E.; Kriegstein, A.R. The use of brain organoids to investigate neural development and disease. Nat. Rev. Neurosci. 2017, 18, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Ardhanareeswaran, K.; Mariani, J.; Coppola, G.; Abyzov, A.; Vaccarino, F.M. Human induced pluripotent stem cells for modelling neurodevelopmental disorders. Nat. Rev. Neurol. 2017, 13, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Kyrousi, C.; Cappello, S. Using brain organoids to study human neurodevelopment, evolution and disease. Wiley Interdiscip. Rev. Dev. Biol. 2020, 9, e347. [Google Scholar] [CrossRef] [PubMed]
- Eigel, D.; Schuster, R.; Männel, M.J.; Thiele, J.; Panasiuk, M.J.; Andreae, L.C.; Varricchio, C.; Brancale, A.; Welzel, P.B.; Huttner, W.B.; et al. Sulfonated cryogel scaffolds for focal delivery in ex-vivo brain tissue cultures. Biomaterials 2021, 271, 120712. [Google Scholar] [CrossRef] [PubMed]
- Bastiancich, C.; Danhier, P.; Préat, V.; Danhier, F. Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma. J. Control Release 2016, 243, 29–42. [Google Scholar] [CrossRef]
- Tang-Schomer, M.D.; Kaplan, D.L.; Whalen, M.J. Film interface for drug testing for delivery to cells in culture and in the brain. Acta Biomater. 2019, 94, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Ucar, B.; Kajtez, J.; Foidl, B.M.; Eigel, D.; Werner, C.; Long, K.R.; Emnéus, J.; Bizeau, J.; Lomora, M.; Pandit, A.; et al. Biomaterial based strategies to reconstruct the nigrostriatal pathway in organotypic slice co-cultures. Acta Biomater. 2021, 121, 250–262. [Google Scholar] [CrossRef]
- Eigel, D.; Zoupi, L.; Sekizar, S.; Welzel, P.B.; Werner, C.; Williams, A.; Newland, B. Cryogel scaffolds for regionally constrained delivery of lysophosphatidylcholine to central nervous system slice cultures: A model of focal demyelination for multiple sclerosis research. Acta Biomater. 2019, 97, 216–229. [Google Scholar] [CrossRef]
- Zoupi, L.; Booker, S.A.; Eigel, D.; Werner, C.; Kind, P.C.; Spires-Jones, T.L.; Newland, B.; Williams, A.C. Selective vulnerability of inhibitory networks in multiple sclerosis. Acta Neuropathol. 2021, 141, 415–429. [Google Scholar] [CrossRef]
- Schirmer, L.; Hoornaert, C.; Blon, D.L.; Eigel, D.; Neto, C.; Gumbleton, M.; Welzel, P.B.; Rosser, A.E.; Werner, C.; Ponsaerts, P.; et al. Heparin-based, injectable microcarriers for controlled delivery of interleukin-13 to the brain. Biomater. Sci. 2020, 8, 4997–5004. [Google Scholar] [CrossRef]
- Pilloni, A.; Bernard, G.W. The effect of hyaluronan on mouse intramembranous osteogenesis in vitro. Cell Tissue Res. 1998, 294, 323–333. [Google Scholar] [CrossRef]
- Bayer, I.S. Hyaluronic acid and controlled release: A review. Molecules 2020, 25, 2649. [Google Scholar] [CrossRef]
- Nagira, T.; Nagahata-Ishiguro, M.; Tsuchiya, T. Effects of sulfated hyaluronan on keratinocyte differentiation and Wnt and Notch gene expression. Biomaterials 2007, 28, 844–850. [Google Scholar] [CrossRef]
- Salbach-Hirsch, J.; Kraemer, J.; Rauner, M.; Samsonov, S.A.; Pisabarro, M.T.; Moeller, S.; Schnabelrauch, M.; Scharnweber, D.; Hofbauer, L.C.; Hintze, V. The promotion of osteoclastogenesis by sulfated hyaluronan through interference with osteoprotegerin and receptor activator of NF-κB ligand/osteoprotegerin complex formation. Biomaterials 2013, 34, 7653–7661. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Sawada, R.; Tsuchiya, T. The effect of sulfated hyaluronan on the morphological transformation and activity of cultured human astrocytes. Biomaterials 2008, 29, 3503–3513. [Google Scholar] [CrossRef] [PubMed]
- Al-Maawi, S.; Rother, S.; Halfter, N.; Fiebig, K.M.; Moritz, J.; Moeller, S.; Schnabelrauch, M.; Kirkpatrick, C.J.; Sader, R.; Wiesmann, H.P.; et al. Covalent linkage of sulfated hyaluronan to the collagen scaffold Mucograft® enhances scaffold stability and reduces proinflammatory macrophage activation in vivo. Bioact. Mater. 2022, 8, 420–434. [Google Scholar] [CrossRef] [PubMed]
- Hennig, M.; Jordan, A.R.; Chipollini, J.; Hupe, M.; Kramer, M.; Lopez, L.E.; Merseburger, A.; Lokeshwar, V. 289 Sulfated hyaluronic acid: A novel antitumor agent for bladder cancer. Eur. Urol. Suppl. 2016, 15, e289. [Google Scholar] [CrossRef]
- Gronbach, M.; Mitrach, F.; Lidzba, V.; Müller, B.; Möller, S.; Rother, S.; Salbach-Hirsch, J.; Hofbauer, L.C.; Schnabelrauch, M.; Hintze, V.; et al. Scavenging of Dickkopf-1 by macromer-based biomaterials covalently decorated with sulfated hyaluronan displays pro-osteogenic effects. Acta Biomater. 2020, 114, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Lin, S.; Zhang, K.; Dong, C.; Wu, T.; Huang, H.; Yan, X.; Zhang, L.; Li, G.; Bian, L. Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy. Acta Biomater. 2017, 53, 329–342. [Google Scholar] [CrossRef]
- Miura, T.; Yuasa, N.; Ota, H.; Habu, M.; Kawano, M.; Nakayama, F.; Nishihara, S. Highly sulfated hyaluronic acid maintains human induced pluripotent stem cells under feeder-free and bFGF-free conditions. Biochem. Biophys. Res. Commun. 2019, 518, 506–512. [Google Scholar] [CrossRef]
- Lim, D.K.; Wylie, R.G.; Langer, R.; Kohane, D.S. Selective binding of C-6 OH sulfated hyaluronic acid to the angiogenic isoform of VEGF165. Biomaterials 2016, 77, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Sun, X.; Li, H.; Iqbal, M.; Hou, Y.; Jin, Z.; Li, J. Response of cardiovascular environment to sulfonated hyaluronic acid with higher sulfur content. Colloids Surf. B Biointerfaces 2023, 222, 113046. [Google Scholar] [CrossRef] [PubMed]
- Tong, P.; Chen, L.; Sun, X.; Li, H.; Feng, Y.; Li, J.; Guan, S. Surface modification of biodegradable magnesium alloy with Poly (L-lactic acid) and Sulfonated hyaluronic acid nanoparticles for cardiovascular application. Int. J. Biol. Macromol. 2023, 237, 124191. [Google Scholar] [CrossRef]
- Xue, Z.; Sun, X.; Li, H.; Iqbal, M.; Qi, L.; Wang, F.; Hou, Y.; Li, J.; Guan, S. Composite coatings of S-HA nanoparticles and Schiff base on ZE21B alloy for stronger corrosion resistance and biological performance. J. Magnes. Alloys 2023, in press. [Google Scholar] [CrossRef]
- Sun, X.; Li, H.; Qi, L.; Wang, F.; Hou, Y.; Li, J.; Guan, S. Construction and biocompatibility evaluation of MOF/S-HA Composite Coating on the surface of magnesium alloy vascular stent. Prog. Org. Coat. 2024, 187, 108177. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Wu, H.; Liu, R. Overview on Biological Activities and Molecular Characteristics of Sulfated Polysaccharides from Marine Green Algae in Recent Years. Mar. Drugs 2014, 12, 4984–5020. [Google Scholar] [CrossRef]
- Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: Structure and bioactivity. Molecules 2008, 13, 1671–1695. [Google Scholar] [CrossRef] [PubMed]
- Yegappan, R.; Selvaprithiviraj, V.; Amirthalingam, S.; Jayakumar, R. Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydr. Polym. 2018, 198, 385–400. [Google Scholar] [CrossRef]
- Song, E.H.; Shang, J.; Ratner, D.M. Polysaccharides. Polym. Sci. A Compr. Ref. 2012, 9, 137–155. [Google Scholar] [CrossRef]
- Carvalhal, F.; Correia-da-Silva, M.; Sousa, E.; Pinto, M.; Kijjoa, A. SULFATION PATHWAYS: Sources and biological activities of marine sulfated steroids. J. Mol. Endocrinol. 2018, 61, T211–T231. [Google Scholar] [CrossRef] [PubMed]
- García-Bordejé, E.; Pires, E.; Fraile, J.M. Chapter 8—Carbon materials functionalized with sulfonic groups as acid catalysts. In Emerging Carbon Materials for Catalysis; Elsevier: Amsterdam, The Netherlands, 2021; pp. 255–298. [Google Scholar] [CrossRef]
- Kaufmann, C.; Sauter, M. Sulfated plant peptide hormones. J. Exp. Bot. 2019, 70, 4267–4277. [Google Scholar] [CrossRef] [PubMed]
- Chroeder, F.C.; Taggi, A.E.; Gronquist, M.; Malik, R.U.; Grant, J.B.; Eisner, T.; Meinwald, J. NMR-spectroscopic screening of spider venom reveals sulfated nucleosides as major components for the brown recluse and related species. Proc. Natl. Acad. Sci. USA 2008, 105, 14283–14287. [Google Scholar] [CrossRef] [PubMed]
Experimental Conditions of Chemical Modification | Properties |
---|---|
pH | Solubility |
Temperature | Molecular weight |
Reaction time | Rheology |
Sulfonate reagents | Degree of sulfation |
Solvents | Zeta potential |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akram, A.; Iqbal, M.; Yasin, A.; Zhang, K.; Li, J. Sulfonated Molecules and Their Latest Applications in the Field of Biomaterials: A Review. Coatings 2024, 14, 243. https://doi.org/10.3390/coatings14020243
Akram A, Iqbal M, Yasin A, Zhang K, Li J. Sulfonated Molecules and Their Latest Applications in the Field of Biomaterials: A Review. Coatings. 2024; 14(2):243. https://doi.org/10.3390/coatings14020243
Chicago/Turabian StyleAkram, Ambreen, Mujahid Iqbal, Aqeela Yasin, Kun Zhang, and Jingan Li. 2024. "Sulfonated Molecules and Their Latest Applications in the Field of Biomaterials: A Review" Coatings 14, no. 2: 243. https://doi.org/10.3390/coatings14020243
APA StyleAkram, A., Iqbal, M., Yasin, A., Zhang, K., & Li, J. (2024). Sulfonated Molecules and Their Latest Applications in the Field of Biomaterials: A Review. Coatings, 14(2), 243. https://doi.org/10.3390/coatings14020243