Surface Modifications of Medical Grade Stainless Steel
Abstract
:1. Introduction
2. Improvements of Properties of Bare Medical Grade Stainless Steel
2.1. Improvement of Antibacterial and Anti-Biofilm Activities
2.2. Improvement of Biocompatibility
Material (s) | Findings | Refs. |
---|---|---|
PEGDMA | Developed homogenous, durable, and non-toxic coating. | [109] |
PDA, HA-collagen | Enhanced adhesion, cell attachment, proliferation, and differentiation. | [110] |
LSM | Enhanced corrosion resistance and cell proliferation. | [42] |
Se | Enhanced cell adhesion, proliferation, osteogenic activity, and upregulated gene expression of OPN, RUNX-2, and ALP. | [111] |
scFv, glycan-VEGF-TiO2 | Enhanced immobilization of VEGFR2 binding recombinant antibody fragments without any toxicity. | [112] |
HA, Ti | Enhanced bone formation and osteointegration. | [56] |
VEGF, VEGF, Anti-CD34 | Enhanced re-endothelialization and reduced stent restenosis without toxicity. | [113] |
CH, Fluoride | Enhanced corrosion resistance, bioactivity, and cytocompatibility. | [114] |
CHX, PDA | Enhanced bioactivity, osteoblastic maturation, and mineralization. | [115] |
H2SO4, H2O2 | Enhanced cell activity and sensing filopodia, and reduced bacterial adhesion. | [116] |
BG61, PMMA-BG61, | Enhanced bioactivity and corrosion resistance. | [54] |
Nd: YAG laser, HA, TiO2 | Enhanced biomimetic apatite formation and biocompatibility. | [43] |
PEDOT, Sr, Mg-HA | Enhanced adhesion strength and bioactivity. | [32] |
HA, CH | Enhanced corrosion resistance, anti-bacterial activities, and apatite formation. | [83] |
PBGHA | Enhanced bone-like apatite formation, stem cell attachment, and viability. | [74] |
TiO2, ZrO2 | Enhanced corrosion resistance and biocompatibility. | [30] |
Graphene | Enhanced endothelial cell phenotype and endothelial-to-mesenchymal transition. | [118] |
Smart ion (Sr, Zn, Mg), HA, SiNTs, PPy | Enhanced corrosion resistance and osteoblast cell attachment. | [33] |
Ti-C:H | Enhanced wear resistance, corrosion resistance, and biocompatibility. | [47] |
HA | Reduced cytotoxicity. | [63] |
Fe- based metallic glass | Reduced cytotoxicity and enhanced cell attachment | [117] |
N-doped, C-doped, Plasma nitriding | Enhanced physical properties without affecting biocompatibility. | [119] |
Glass-ceramic-silica | Generated new bone around implants. | [66] |
Collagen-I, Ti | Enhanced cell viability and cell attachment rate. | [29] |
HA, Ti | Enhanced corrosion resistance. | [58] |
Ta, Ta2O5, Collagen-I | Enhanced cell adhesion and proliferation. | [120] |
SiO2, ZrO2 | Enhanced bone marrow-derived MSCs proliferation. | [121] |
GO | Enhanced stability, non-reactivity, non-toxicity, cell adhesion, spreading, and proliferation. | [122] |
Ferroelectric LiTaO3 | Enhanced tissue regeneration and integration of the implant in the host tissue. | [84] |
Ti-6A-l4V, TiO2, SiO2 | Reduced the production of proinflammatory cytokines by local tissues. | [67] |
Silica, GlcNAc, Gal | Controlled glycan density. | [22] |
Ca3(PO4)2 | Reduced inflammatory response and enhanced biocompatibility. | [68] |
HA, TiN | Formed HA coating | [123] |
Hard Cr2O3 | Enhanced biocompatibility, corrosion, and wear resistance and showed less Cr ion release. | [48] |
ZrTiO4, ZrTiO4-PMMA | Enhanced hydrophilicity, corrosion resistance, and cytocompatibility. | [69] |
PPy, Nb2O5 | Enhanced biocompatibility and corrosion resistance. | [124] |
NbOxNy | Enhanced antibacterial activity and biocompatibility. | [125] |
HA-zircon | Enhanced bioactivity, roughness, and hard tissue formation. | [126] |
PPyNSE | Enhanced biocompatibility. | [127] |
MAP | Enhanced biomolecule immobilization. | [128] |
MPC. PHB | Enhanced biocompatibility and inhibit bacterial growth. | [129] |
Nano-HA, Ni-P | Enhanced bioactivity and biocompatibility. | [34] |
Sr incorporated Nb2O5 | Enhanced bioactivity, HA growth, and corrosion resistance. | [76] |
PoP | Developed biocompatible carrier for vasoactive drugs. | [130] |
TiN, NbN | Enhanced corrosion resistance. | [49] |
HEP, Ta, Au | Reduced platelet activation and leukocyte–platelet aggregation. | [131] |
Silicon | Reduced thrombogenicity and enhanced biocompatibility. | [132] |
Graphene | Enhanced adhesion and collagen secretion of mesenchymal stem cells. | [25] |
Ni-free MSS | Enhanced cell response and biocompatibility. | [133] |
2.3. Improvement of Corrosion and Wear Resistance
2.4. Improvement of Drug Delivery Properties
2.5. Improvement of Hemocompatibility
2.6. Improvement of Osseointegration, Bioactivity, Cell Adhesion, Proliferation, and Bone Formation
2.7. Improvement of Physical, Inflammatory, and Miscellaneous Properties
Material (s) | Findings | Refs. |
---|---|---|
Ca2ZnSi2O7 | Enhanced corrosion resistance and bioactivity. | [39] |
CH, NSAID, DCF | Enhanced anti-inflammatory response without altering the corrosion resistance and biocompatibility. | [244] |
SiO2 | Reduced barrier properties and maintained biocompatibility. | [72] |
a-C:H, Ti, Nb | Reduced the roughness and coefficient of friction, and enhanced tribomechanical properties. | [28] |
HA | Electrodeposited on an MSS. | [245] |
Parylene N and C | Enhanced mechanical and protective properties. | [246] |
Nano-TiO2, Arg-Glu-Asp-Val | Reduced in-stent restenosis and enhanced re-endothelialization. | [247] |
Mg-doped nano-HA, CH | Enhanced bioactivity, corrosion resistance, and biocompatibility. | [248] |
HA, CH | Enhanced corrosion resistance, bioactivity, and biocompatibility. | [249] |
APTS, PrTMOS | Allowed complex geometries coating. | [73] |
NH3, O2 | Enhanced corrosion resistance, reduced platelet, and leukocyte attachment. | [250] |
pHEMA | Enhanced interfacial adhesion, withstand shear and tensile stresses. | [82] |
Polyurethane | Enhanced holding force and reduced histobiological reaction. | [251] |
TiN | Enhanced fatigue strength and biocompatibility. | [62] |
PDLLA,Ti-6Al-4V, Co-Cr-Mo | Enhanced mechanical stability without influencing T-cell reactivity. | [253] |
Carbostent | No reduction of in-stent restenosis. | [254] |
Graphene | Enhanced surface hardness. | [255] |
NSAIDs, Pectin, Xanthan | Enhanced corrosion resistance and developed drug-releasing properties. | [256] |
VB4, Ethylene glycol | Reduced surface roughness without altering the elemental composition. | [257] |
Boron | Enhanced mechanical properties, corrosion resistance, and bioactivity. | [258] |
MTPA | Reduced non-specific cell adhesion. | [259] |
CH, Graphene, Graphene sheets, TiO2NPs | Enhanced the mechanical properties and showed no blood adhesion. | [260] |
rGO | Enhanced mechanical and biological properties without toxicity. | [261] |
Nb, Ta, V | Enhanced tribological behavior. | [252] |
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
References
- Buhagiar, J.; Dong, H. Corrosion properties of S-phase layers formed on medical grade austenitic stainless steel. J. Mater. Sci. Mater. Med. 2012, 23, 271–281. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Y.; Chen, Y.; Liu, S.; Maitz, M.F.; Wang, X.; Zhang, K.; Wang, J.; Wang, Y.; Chen, J. Immobilization of heparin/poly-l-lysine nanoparticles on dopamine-coated surface to create a heparin density gradient for selective direction of platelet and vascular cells behavior. Acta Biomater. 2014, 10, 1940–1954. [Google Scholar] [CrossRef] [PubMed]
- Maver, U.; Xhanari, K.; Žižek, M.; Gradišnik, L.; Repnik, K.; Potočnik, U.; Finšgar, M. Carboxymethyl cellulose/diclofenac bioactive coatings on AISI 316LVM for controlled drug delivery, and improved osteogenic potential. Carbohydr. Polym. 2020, 230, 115612. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yin, T.; Wang, Y.; Du, F.; Zou, X.; Gregersen, H.; Wang, G. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro. Mater. Sci. Eng. C 2014, 43, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Demo, J. Structure, Constitution, and General Characteristics of Wrought Ferritic Stainless Steels: Sponsored by Committee A-1 on Steel, Stainless Steel, and Related Alloys; ASTM International: West Conshohocken, PA, USA, 1977. [Google Scholar]
- Merola, M.; Affatato, S. Materials for hip prostheses: A review of wear and loading considerations. Materials 2019, 12, 495. [Google Scholar] [CrossRef]
- Madl, A.K.; Liong, M.; Kovochich, M.; Finley, B.L.; Paustenbach, D.J.; Oberdörster, G. Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants Part I: Physicochemical properties in patient and simulator studies. Nanomedicine 2015, 11, 1201–1215. [Google Scholar] [CrossRef]
- Madl, A.K.; Kovochich, M.; Liong, M.; Finley, B.L.; Paustenbach, D.J.; Oberdörster, G. Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants Part II: Importance of physicochemical properties and dose in animal and in vitro studies as a basis for risk assessment. Nanomedicine 2015, 11, 1285–1298. [Google Scholar] [CrossRef]
- Zagra, L. Advances in hip arthroplasty surgery: What is justified? EFORT Open Rev. 2017, 2, 171–178. [Google Scholar] [CrossRef]
- Sharplin, P.; Wyatt, M.C.; Rothwell, A.; Frampton, C.; Hooper, G. Which is the best bearing surface for primary total hip replacement? A New Zealand Joint Registry study. Hip Int. 2018, 28, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.Y.; Yoon, T.-R. Recent updates for biomaterials used in total hip arthroplasty. Biomater. Res. 2018, 22, 33. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-M. The current concepts of total hip arthroplasty. Hip Pelvis 2016, 28, 191–200. [Google Scholar] [CrossRef]
- Bekmurzayeva, A.; Duncanson, W.J.; Azevedo, H.S.; Kanayeva, D. Surface modification of stainless steel for biomedical applications: Revisiting a century-old material. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 93, 1073–1089. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, L.E.; Tumurbaatar, B.; Ghavaminejad, A.; Park, C.H.; Kim, C.S. Functionalized non-vascular nitinol stent via electropolymerized polydopamine thin film coating loaded with bortezomib adjunct to hyperthermia therapy. Sci. Rep. 2017, 7, 9432. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, L.E.; GhavamiNejad, A.; Park, C.H.; Kim, C.S. On-demand drug release and hyperthermia therapy applications of thermoresponsive poly-(NIPAAm-co-HMAAm)/polyurethane core-shell nanofiber mat on non-vascular nitinol stents. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Resnik, M.; Benčina, M.; Levičnik, E.; Rawat, N.; Iglič, A.; Junkar, I. Strategies for improving antimicrobial properties of stainless steel. Materials 2020, 13, 2944. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.F. On the mechanisms of biocompatibility. Biomaterials 2008, 29, 2941–2953. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.L.; Brown, S.A.; Merritt, K. Electrochemical studies on the influence of proteins on the corrosion of implant alloys. Biomaterials 1988, 9, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Black, J. Systemic effects of biomaterials. Biomater. Silver Jubil. Compend. 1984, 5, 27–34. [Google Scholar]
- Teoh, S.H. Engineering Materials for Biomedical Applications; World Scientific: Singapore, 2004; Volume 1. [Google Scholar]
- Niinomi, M.; Nakai, M.; Hieda, J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012, 8, 3888–3903. [Google Scholar] [CrossRef]
- Slaney, A.M.; Wright, V.A.; Meloncelli, P.J.; Harris, K.D.; West, L.J.; Lowary, T.L.; Buriak, J.M. Biocompatible carbohydrate-functionalized stainless steel surfaces: A new method for passivating biomedical implants. ACS Appl. Mater. Interfaces 2011, 3, 1601–1612. [Google Scholar] [CrossRef]
- Mondal, J.; Marques, A.; Aarik, L.; Kozlova, J.; Simões, A.; Sammelselg, V. Development of a thin ceramic-graphene nanolaminate coating for corrosion protection of stainless steel. Corros. Sci. 2016, 105, 161–169. [Google Scholar] [CrossRef]
- Zhong, Q.; Yan, J.; Qian, X.; Zhang, T.; Zhang, Z.; Li, A. Atomic layer deposition enhanced grafting of phosphorylcholine on stainless steel for intravascular stents. Colloids Surf. B Biointerfaces 2014, 121, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Jiang, M.; Xin, Y.; Sun, G.; Long, S.; Bao, S.; Cao, X.; Ji, S.; Jin, P. Surface deposition of graphene layer for bioactivity improvement of biomedical 316 stainless steel. Mater. Lett. 2017, 192, 123–127. [Google Scholar] [CrossRef]
- Pu, N.-W.; Shi, G.-N.; Liu, Y.-M.; Sun, X.; Chang, J.-K.; Sun, C.-L.; Ger, M.-D.; Chen, C.-Y.; Wang, P.-C.; Peng, Y.-Y. Graphene grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates. J. Power Sources 2015, 282, 248–256. [Google Scholar] [CrossRef]
- Ruammaitree, A.; Phokharatkul, D.; Nuntawong, N.; Wisitsoraat, A. Improvement In Corrosion Resistance Of Stainless Steel Foil By Graphene Coating Using Thermal Chemical Vapor Deposition. Surf. Rev. Lett. 2018, 25, 1840003. [Google Scholar] [CrossRef]
- Kapnisis, K.; Constantinou, M.; Kyrkou, M.; Nikolaou, P.; Anayiotos, A.; Constantinides, G. Nanotribological response of aC: H coated metallic biomaterials: The cases of stainless steel, titanium, and niobium. J. Appl. Biomater. Funct. Mater. 2018, 16, 230–240. [Google Scholar] [PubMed]
- Burnett, A.L.; Chang, A.G.; Crone, J.K.; Huang, P.L.; SEZEN, S.F. Noncholinergic penile erection in mice lacking the gene for endothelial nitric oxide synthase. J. Androl. 2002, 23, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, S.; Mohana, M.; Sudhagar, P.; Raman, V.; Nishimura, T.; Kim, S.; Kang, Y.S.; Rajendran, N. Nanocomposite coatings on biomedical grade stainless steel for improved corrosion resistance and biocompatibility. ACS Appl. Mater. Interfaces 2012, 4, 5134–5141. [Google Scholar] [CrossRef]
- Sai Pavan, A.; Ramanan, S.R. A study on corrosion resistant graphene films on low alloy steel. Appl. Nanosci. 2016, 6, 1175–1181. [Google Scholar] [CrossRef]
- Gopi, D.; Ramya, S.; Rajeswari, D.; Surendiran, M.; Kavitha, L. Development of strontium and magnesium substituted porous hydroxyapatite/poly (3,4-ethylenedioxythiophene) coating on surgical grade stainless steel and its bioactivity on osteoblast cells. Colloids Surf. B Biointerfaces 2014, 114, 234–240. [Google Scholar] [CrossRef]
- Ananth, K.P.; Nathanael, A.J.; Jose, S.P.; Oh, T.H.; Mangalaraj, D. A novel silica nanotube reinforced ionic incorporated hydroxyapatite composite coating on polypyrrole coated 316L SS for implant application. Mater. Sci. Eng. C 2016, 59, 1110–1124. [Google Scholar] [CrossRef] [PubMed]
- Shibli, S.; Jayalekshmi, A. A novel nano hydroxyapatite-incorporated Ni–P coating as an effective inter layer for biological applications. J. Mater. Sci. Mater. Med. 2009, 20, 711–718. [Google Scholar] [CrossRef]
- Ananth, K.P.; Sun, J.; Bai, J. An innovative approach to manganese-substituted hydroxyapatite coating on zinc oxide–coated 316L SS for implant application. Int. J. Mol. Sci. 2018, 19, 2340. [Google Scholar] [CrossRef]
- Karbowniczek, J.; Cordero-Arias, L.; Virtanen, S.; Misra, S.K.; Valsami-Jones, E.; Tuchscherr, L.; Rutkowski, B.; Górecki, K.; Bała, P.; Czyrska-Filemonowicz, A. Electrophoretic deposition of organic/inorganic composite coatings containing ZnO nanoparticles exhibiting antibacterial properties. Mater. Sci. Eng. C 2017, 77, 780–789. [Google Scholar] [CrossRef]
- Lukman, S.K.; Al-Ashwal, R.H.; Sultana, N.; Saidin, S. Electrodeposition of ginseng/polyaniline encapsulated poly (lactic-co-glycolic acid) microcapsule coating on stainless steel 316L at different deposition parameters. Chem. Pharm. Bull. 2019, 67, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Jing, J.; Qi, H.; Ahmed, I.; Yang, H.; Liu, X.; Lu, T.; Boccaccini, A.R. Electric field-assisted orientation of short phosphate glass fibers on stainless steel for biomedical applications. ACS Appl. Mater. Interfaces 2018, 10, 11529–11538. [Google Scholar] [CrossRef]
- Bagherpour, I.; Naghib, S.M.; Yaghtin, A.H. Synthesis and characterisation of nanostructured hardystonite coating on stainless steel for biomedical application. IET Nanobiotechnol. 2018, 12, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.; Li, K.; Li, D.; Qin, Y. Antibacterial effects of silver incorporated zeolite coatings on 3D printed porous stainless steels. Mater. Sci. Eng. C 2020, 108, 110430. [Google Scholar] [CrossRef]
- Mohan, C.C.; Cherian, A.M.; Kurup, S.; Joseph, J.; Nair, M.B.; Vijayakumar, M.; Nair, S.V.; Menon, D. Stable titania nanostructures on stainless steel coronary stent surface for enhanced corrosion resistance and endothelialization. Adv. Healthc. Mater. 2017, 6, 1601353. [Google Scholar] [CrossRef]
- Balla, V.K.; Dey, S.; Muthuchamy, A.A.; Janaki Ram, G.; Das, M.; Bandyopadhyay, A. Laser surface modification of 316L stainless steel. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 569–577. [Google Scholar] [CrossRef]
- Ghaith, E.-S.; Hodgson, S.; Sharp, M. Laser surface alloying of 316L stainless steel coated with a bioactive hydroxyapatite–titanium oxide composite. J. Mater. Sci. Mater. Med. 2015, 26, 83. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.-K.; Chu, T.-M.; Dechow, P.; Stewart, K.; Kyung, H.-M.; Liu, S.S.-Y. Laser-treated stainless steel mini-screw implants: 3D surface roughness, bone-implant contact, and fracture resistance analysis. Eur. J. Orthod. 2016, 38, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Vreuls, C.; Zocchi, G.; Garitte, G.; Archambeau, C.; Martial, J.; Van de Weerdt, C. Biomolecules in multilayer film for antimicrobial and easy-cleaning stainless steel surface applications. Biofouling 2010, 26, 645–656. [Google Scholar] [CrossRef] [PubMed]
- Saurer, E.M.; Jewell, C.M.; Roenneburg, D.A.; Bechler, S.L.; Torrealba, J.R.; Hacker, T.A.; Lynn, D.M. Polyelectrolyte multilayers promote stent-mediated delivery of DNA to vascular tissue. Biomacromolecules 2013, 14, 1696–1704. [Google Scholar] [CrossRef] [PubMed]
- Kao, W.; Su, Y.-L.; Horng, J.; Zhang, K. Effects of Ti–C: H coating and plasma nitriding treatment on tribological, electrochemical, and biocompatibility properties of AISI 316L. J. Biomater. Appl. 2016, 31, 215–229. [Google Scholar] [CrossRef]
- Mohammadtaheri, M.; Li, Y.; Yang, Q. Hard Cr2O3 coatings on SS316L substrates prepared by reactive magnetron sputtering technique: A potential candidate for orthopedic implants. Environ. Sci. Pollut. Res. 2021, 28, 25146–25154. [Google Scholar] [CrossRef]
- Subramanian, B. Enhancement of biocompatibility of metal implants by nanoscale TiN/NbN multilayer coatings. J. Nanosci. Nanotechnol. 2013, 13, 4565–4572. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, Z.; Chen, T.; Gong, F. Tribocorrosion failure mechanism of TiN/SiO x duplex coating deposited on AISI304 stainless steel. Materials 2016, 9, 963. [Google Scholar] [CrossRef]
- Subramanian, B.; Ananthakumar, R.; Kobayashi, A.; Jayachandran, M. Surface modification of 316L stainless steel with magnetron sputtered TiN/VN nanoscale multilayers for bio implant applications. J. Mater. Sci. Mater. Med. 2012, 23, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Oje, A.; Ogwu, A. Chromium oxide coatings with the potential for eliminating the risk of chromium ion release in orthopaedic implants. R. Soc. Open Sci. 2017, 4, 170218. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, B.; Maruthamuthu, S.; Rajan, S.T. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels. Int. J. Nanomed. 2015, 10, 17. [Google Scholar] [CrossRef]
- Floroian, L.; Samoila, C.; Badea, M.; Munteanu, D.; Ristoscu, C.; Sima, F.; Negut, I.; Chifiriuc, M.; Mihailescu, I. Stainless steel surface biofunctionalization with PMMA-bioglass coatings: Compositional, electrochemical corrosion studies and microbiological assay. J. Mater. Sci. Mater. Med. 2015, 26, 195. [Google Scholar] [CrossRef] [PubMed]
- Floroian, L.; Ristoscu, C.; Mihailescu, N.; Negut, I.; Badea, M.; Ursutiu, D.; Chifiriuc, M.C.; Urzica, I.; Dyia, H.M.; Bleotu, C. Functionalized antimicrobial composite thin films printing for stainless steel implant coatings. Molecules 2016, 21, 740. [Google Scholar] [CrossRef]
- Popkov, A.V.; Gorbach, E.N.; Kononovich, N.A.; Popkov, D.A.; Tverdokhlebov, S.I.; Shesterikov, E.V. Bioactivity and osteointegration of hydroxyapatite-coated stainless steel and titanium wires used for intramedullary osteosynthesis. Strateg. Trauma Limb Reconstr. 2017, 12, 107–113. [Google Scholar] [CrossRef]
- Lim, Y.W.; Kwon, S.Y.; Sun, D.H.; Kim, Y.S. The Otto Aufranc Award: Enhanced biocompatibility of stainless steel implants by titanium coating and microarc oxidation. Clin. Orthop. Relat. Res. 2011, 469, 330–338. [Google Scholar] [CrossRef]
- Fathi, M.; Salehi, M.; Saatchi, A.; Mortazavi, V.; Moosavi, S. In vitro corrosion behavior of bioceramic, metallic, and bioceramic–metallic coated stainless steel dental implants. Dent. Mater. 2003, 19, 188–198. [Google Scholar] [CrossRef]
- Guzmán, P.; Yate, L.; Sandoval, M.; Caballero, J.; Aperador, W. Characterization of the micro-abrasive wear in coatings of TaC-HfC/Au for biomedical implants. Materials 2017, 10, 842. [Google Scholar] [CrossRef]
- Hai, K.; Sawase, T.; Matsumura, H.; Atsuta, M.; Baba, K.; Hatada, R. Corrosion resistance of a magnetic stainless steel ion-plated with titanium nitride. J. Oral Rehabil. 2000, 27, 361–366. [Google Scholar] [CrossRef]
- Paschoal, A.L.; Vanâncio, E.C.; Canale, L.d.C.F.; Silva, O.L.d.; Huerta-Vilca, D.; Motheo, A.d.J. Metallic biomaterials TiN-coated: Corrosion analysis and biocompatibility. Artif. Organs 2003, 27, 461–464. [Google Scholar] [CrossRef]
- Suka, T. Experimental study on biomaterials coated with titanium-nitride ceramic for orthopedics. Nihon Seikeigeka Gakkai Zasshi 1986, 60, 637–647. [Google Scholar]
- Ossa, C.; Rogero, S.; Tschiptschin, A. Cytotoxicity study of plasma-sprayed hydroxyapatite coating on high nitrogen austenitic stainless steels. J. Mater. Sci. Mater. Med. 2006, 17, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Moroni, A.; Orienti, L.; Stea, S.; Visentin, M. Improvement of the bone-pin interface with hydroxyapatite coating: An in vivo long-term experimental study. J. Orthop. Trauma 1996, 10, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Ukegawa, Y. Pull-out strength and bone tissue reaction of plasma-sprayed hydroxyapatite coatings with different thicknesses or substrates. Nihon Seikeigeka Gakkai Zasshi 1992, 66, 688–702. [Google Scholar] [PubMed]
- Ballarre, J.; Desimone, P.M.; Chorro, M.; Baca, M.; Orellano, J.C.; Ceré, S.M. Bone quality around bioactive silica-based coated stainless steel implants: Analysis by Micro-Raman, XRF and XAS techniques. J. Struct. Biol. 2013, 184, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Urbanski, W.; Marycz, K.; Krzak, J.; Pezowicz, C.; Dragan, S.F. Cytokine induction of sol-gel-derived TiO(2) and SiO(2) coatings on metallic substrates after implantation to rat femur. Int. J. Nanomed. 2017, 12, 1639–1645. [Google Scholar] [CrossRef] [PubMed]
- Kraft, C.; Weber, W.; Burian, B.; Zander, D.; Wallny, T.; Schmitt, O.; Diedrich, O. Striated muscle microvascular response to implants with sol-gel calcium phosphate coating. A comparative in vivo study. Z. Fur Orthop. Und Ihre Grenzgeb. 2002, 140, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Salahinejad, E.; Hadianfard, M.; Macdonald, D.; Mozafari, M.; Walker, K.; Rad, A.T.; Madihally, S.; Vashaee, D.; Tayebi, L. Surface modification of stainless steel orthopedic implants by sol–gel ZrTiO4 and ZrTiO4–PMMA coatings. J. Biomed. Nanotechnol. 2013, 9, 1327–1335. [Google Scholar] [CrossRef]
- Nablo, B.J.; Rothrock, A.R.; Schoenfisch, M.H. Nitric oxide-releasing sol–gels as antibacterial coatings for orthopedic implants. Biomaterials 2005, 26, 917–924. [Google Scholar] [CrossRef]
- Ballarre, J.; Manjubala, I.; Schreiner, W.H.; Orellano, J.C.; Fratzl, P.; Ceré, S. Improving the osteointegration and bone–implant interface by incorporation of bioactive particles in sol–gel coatings of stainless steel implants. Acta Biomater. 2010, 6, 1601–1609. [Google Scholar] [CrossRef]
- Walke, W.; Paszenda, Z.; Pustelny, T.; Opilski, Z.; Drewniak, S.; Kościelniak-Ziemniak, M.; Basiaga, M. Evaluation of physicochemical properties of SiO2-coated stainless steel after sterilization. Mater. Sci. Eng. C 2016, 63, 155–163. [Google Scholar] [CrossRef]
- Okner, R.; Favaro, G.; Radko, A.; Domb, A.J.; Mandler, D. Electrochemical codeposition of sol–gel films on stainless steel: Controlling the chemical and physical coating properties of biomedical implants. Phys. Chem. Chem. Phys. 2010, 12, 15265–15273. [Google Scholar] [CrossRef]
- Mehdikhani-Nahrkhalaji, M.; Fathi, M.; Mortazavi, V.; Mousavi, S.; Hashemi-Beni, B.; Razavi, S. Novel nanocomposite coating for dental implant applications in vitro and in vivo evaluation. J. Mater. Sci. Mater. Med. 2012, 23, 485–495. [Google Scholar] [CrossRef]
- Mehdikhani-Nahrkhalaji, M.; Fathi, M.H.; Mortazavi, V.; Mousavi, S.B.; Akhavan, A.; Haghighat, A.; Hashemi-Beni, B.; Razavi, S.M.; Mashhadiabbas, F. Biodegradable nanocomposite coatings accelerate bone healing: In vivo evaluation. Dent. Res. J. 2015, 12, 89. [Google Scholar]
- Pauline, S.A.; Rajendran, N. Effect of Sr on the bioactivity and corrosion resistance of nanoporous niobium oxide coating for orthopaedic applications. Mater. Sci. Eng. C 2014, 36, 194–205. [Google Scholar] [CrossRef]
- Mondal, J.; Kozlova, M.; Sammelselg, V. Graphene nanoplatelets based protective and functionalizing coating for stainless steel. J. Nanosci. Nanotechnol. 2015, 15, 6747–6750. [Google Scholar] [CrossRef]
- Liu, X.; Chen, H.-H.; Lin, Y.-C.; Nabilla, S.C.; Liu, W.-C.; Wang, W.-C.; Shih, S.-J.; Li, Y.; Lin, C.-P.; Zhao, G. Composite polyelectrolyte multilayer and mesoporous bioactive glass nanoparticle coating on 316L stainless steel for controlled antibiotic release and biocompatibility. J. Biomed. Nanotechnol. 2018, 14, 725–735. [Google Scholar] [CrossRef]
- Pauline, S.A.; Rajendran, N. Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications. Appl. Surf. Sci. 2014, 290, 448–457. [Google Scholar] [CrossRef]
- Sivaraj, D.; Vijayalakshmi, K. Enhanced antibacterial and corrosion resistance properties of Ag substituted hydroxyapatite/functionalized multiwall carbon nanotube nanocomposite coating on 316L stainless steel for biomedical application. Ultrason. Sonochem. 2019, 59, 104730. [Google Scholar] [CrossRef] [PubMed]
- Kollum, M.; Farb, A.; Schreiber, R.; Terfera, K.; Arab, A.; Geist, A.; Haberstroh, J.; Wnendt, S.; Virmani, R.; Hehrlein, C. Particle debris from a nanoporous stent coating obscures potential antiproliferative effects of tacrolimus-eluting stents in a porcine model of restenosis. Catheter. Cardiovasc. Interv. 2005, 64, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Indolfi, L.; Causa, F.; Netti, P.A. Coating process and early stage adhesion evaluation of poly (2-hydroxy-ethyl-methacrylate) hydrogel coating of 316L steel surface for stent applications. J. Mater. Sci. Mater. Med. 2009, 20, 1541–1551. [Google Scholar] [CrossRef]
- Sutha, S.; Kavitha, K.; Karunakaran, G.; Rajendran, V. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants. Mater. Sci. Eng. C 2013, 33, 4046–4054. [Google Scholar] [CrossRef] [PubMed]
- Zlotnik, S.; Maltez-da Costa, M.; Barroca, N.; Hortigüela, M.J.; Singh, M.K.; Fernandes, M.H.V.; Vilarinho, P.M. Functionalized-ferroelectric-coating-driven enhanced biomineralization and protein-conformation on metallic implants. J. Mater. Chem. B 2019, 7, 2177–2189. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-S.; Chang, S.-J.; Feng, C.-K.; Lin, W.-L.; Liao, S.-C. Plasma deposition and UV light induced surface grafting polymerization of NIPAAm on stainless steel for enhancing corrosion resistance and its drug delivery property. Polymers 2018, 10, 1009. [Google Scholar] [CrossRef] [PubMed]
- Alhumade, H.; Yu, A.; Elkamel, A.; Simon, L.; Abdala, A. Enhanced protective properties and UV stability of epoxy/graphene nanocomposite coating on stainless steel. Express Polym. Lett. 2016, 10, 1034–1046. [Google Scholar] [CrossRef]
- Aguilar, L.E.; Lee, J.Y.; Park, C.H.; Kim, C.S. Biomedical grade stainless steel coating of polycaffeic acid via combined oxidative and ultraviolet light-assisted polymerization process for bioactive implant application. Polymers 2019, 11, 584. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W. Biofilm theory can guide the treatment of device-related orthopaedic infections. Clin. Orthop. Relat. Res. 2005, 437, 7–11. [Google Scholar] [CrossRef]
- Gristina, A.G.; Costerton, J. Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. JBJS 1985, 67, 264–273. [Google Scholar] [CrossRef]
- Jennings, J.A.; Carpenter, D.P.; Troxel, K.S.; Beenken, K.E.; Smeltzer, M.S.; Courtney, H.S.; Haggard, W.O. Novel antibiotic-loaded point-of-care implant coating inhibits biofilm. Clin. Orthop. Relat. Res. 2015, 473, 2270–2282. [Google Scholar] [CrossRef]
- Magetsari, R.; Dewo, P.; Saputro, B.; Lanodiyu, Z. Cinnamon oil and chitosan coating on orthopaedic implant surface for prevention of Staphylococcus epidermidis biofilm formation. Malays. Orthop. J. 2014, 8, 11. [Google Scholar] [CrossRef]
- DeVasConCellos, P.; Bose, S.; Beyenal, H.; Bandyopadhyay, A.; Zirkle, L.G. Antimicrobial particulate silver coatings on stainless steel implants for fracture management. Mater. Sci. Eng. C 2012, 32, 1112–1120. [Google Scholar] [CrossRef]
- Meyer-Kobbe, V.; Doll, K.; Stiesch, M.; Schwestka-Polly, R.; Demling, A. Comparison of intraoral biofilm reduction on silver-coated and silver ion-implanted stainless steel bracket material. J. Orofac. Orthop./Fortschritte Der Kieferorthopädie 2019, 80, 32–43. [Google Scholar] [CrossRef]
- Kruszewski, K.M.; Nistico, L.; Longwell, M.J.; Hynes, M.J.; Maurer, J.A.; Hall-Stoodley, L.; Gawalt, E.S. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers. Mater. Sci. Eng. C 2013, 33, 2059–2069. [Google Scholar] [CrossRef]
- Shinonaga, Y.; Arita, K. Surface modification of stainless steel by plasma-based fluorine and silver dual ion implantation and deposition. Dent. Mater. J. 2009, 28, 735–742. [Google Scholar] [CrossRef]
- Soininen, A.; Tiainen, V.M.; Konttinen, Y.T.; Van der Mei, H.C.; Busscher, H.J.; Sharma, P.K. Bacterial adhesion to diamond-like carbon as compared to stainless steel. J. Biomed. Mater. Res. Part B Appl. Biomater. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2009, 90, 882–885. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Z.; Zara, J.N.; Hsu, C.; Soofer, D.E.; Lee, K.S.; Siu, R.K.; Miller, L.S.; Zhang, X.; Carpenter, D. The antimicrobial and osteoinductive properties of silver nanoparticle/poly (DL-lactic-co-glycolic acid)-coated stainless steel. Biomaterials 2012, 33, 8745–8756. [Google Scholar] [CrossRef] [PubMed]
- Pishbin, F.; Mouriño, V.; Flor, S.; Kreppel, S.; Salih, V.; Ryan, M.P.; Boccaccini, A.R. Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants. ACS Appl. Mater. Interfaces 2014, 6, 8796–8806. [Google Scholar] [CrossRef] [PubMed]
- Khalilpour, P.; Lampe, K.; Wagener, M.; Stigler, B.; Heiss, C.; Ullrich, M.S.; Domann, E.; Schnettler, R.; Alt, V. Ag/SiOxCy plasma polymer coating for antimicrobial protection of fracture fixation devices. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 94, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Pradhaban, G.; Kaliaraj, G.S.; Vishwakarma, V. Antibacterial effects of silver–zirconia composite coatings using pulsed laser deposition onto 316L SS for bio implants. Prog. Biomater. 2014, 3, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.; Galm, A.; Chatterjee, S.; Wells, R.; Pedersen, S.; Parizi, A.M.; Goodship, A.; Blunn, G. Modulation of the soft tissue reactions to percutaneous orthopaedic implants. J. Orthop. Res. 2006, 24, 1377–1383. [Google Scholar] [CrossRef] [PubMed]
- Colmano, G.; Edwards, S.; Barranco, S. Activation of antibacterial silver coatings on surgical implants by direct current: Preliminary studies in rabbits. Am. J. Vet. Res. 1980, 41, 964–966. [Google Scholar]
- Colmano, G.; Edwards, S.; Barranco, S. Activated silver coatings for surgical implants. Va. Med. 1979, 106, 928–930. [Google Scholar] [PubMed]
- Furkert, F.H.; Sörensen, J.H.; Arnoldi, J.; Robioneck, B.; Steckel, H. Antimicrobial efficacy of surface-coated external fixation pins. Curr. Microbiol. 2011, 62, 1743–1751. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ren, L.; Zhang, Y.; Xue, N.; Yang, K.; Zhong, M. Antibacterial activity against Porphyromonas gingivalis and biological characteristics of antibacterial stainless steel. Colloids Surf. B Biointerfaces 2013, 105, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Qamer, S.; Che-Hamzah, F.; Misni, N.; Joseph, N.M.S.; Al-Haj, N.A.; Amin-Nordin, S. Deploying a Novel Approach to Prepare Silver Nanoparticle Bellamya bengalensis Extract Conjugate Coating on Orthopedic Implant Biomaterial Discs to Prevent Potential Biofilm Formation. Antibiotics 2023, 12, 1403. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.J.; Chen, C.H.; Dash, P.; Lin, Y.C.; Hsu, C.W.; Shih, S.J.; Chung, R.J. Angiogenesis, Osseointegration, and Antibacterial Applications of Polyelectrolyte Multilayer Coatings Incorporated With Silver/Strontium Containing Mesoporous Bioactive Glass on 316L Stainless Steel. Front. Bioeng. Biotechnol. 2022, 10, 818137. [Google Scholar] [CrossRef]
- Trzaskowska, P.A.; Kuźmińska, A.; Butruk-Raszeja, B.; Rybak, E.; Ciach, T. Electropolymerized hydrophilic coating on stainless steel for biomedical applications. Colloids Surf. B Biointerfaces 2018, 167, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Tapsir, Z.; Jamaludin, F.H.; Pingguan-Murphy, B.; Saidin, S. Immobilisation of hydroxyapatite-collagen on polydopamine grafted stainless steel 316L: Coating adhesion and in vitro cells evaluation. J. Biomater. Appl. 2018, 32, 987–995. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Cui, R.; Mei, L.; Ni, S.; Sun, H.; Zhang, C.; Ni, S. Cytocompatibility and bone-formation potential of se-coated 316L stainless steel with nano-pit arrays. J. Biomed. Nanotechnol. 2018, 14, 716–724. [Google Scholar] [CrossRef]
- Foerster, A.; Hołowacz, I.; Sunil Kumar, G.; Anandakumar, S.; Wall, J.; Wawrzyńska, M.; Paprocka, M.; Kantor, A.; Kraskiewicz, H.; Olsztyńska-Janus, S. Stainless steel surface functionalization for immobilization of antibody fragments for cardiovascular applications. J. Biomed. Mater. Res. Part A 2016, 104, 821–832. [Google Scholar] [CrossRef]
- Song, C.; Li, Q.; Zhang, J.; Wang, J.; Xue, X.; Wang, G.; Shi, Y.; Diao, H.; Liu, B. Study of a novel coating strategy for coronary stents: Evaluation of stainless metallic steel coated with VEGF and anti-CD34 antibody in vitro. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 311–316. [Google Scholar]
- Karimi, S.; Salahinejad, E.; Sharifi, E.; Nourian, A.; Tayebi, L. Bioperformance of chitosan/fluoride-doped diopside nanocomposite coatings deposited on medical stainless steel. Carbohydr. Polym. 2018, 202, 600–610. [Google Scholar] [CrossRef]
- Daud, N.M.; Al-Ashwal, R.H.; Kadir, M.R.A.; Saidin, S. Polydopamine-assisted chlorhexidine immobilization on medical grade stainless steel 316L: Apatite formation and in vitro osteoblastic evaluation. Ann. Anat. Anat. Anz. 2018, 220, 29–37. [Google Scholar] [CrossRef]
- Rodriguez-Contreras, A.; Bello, D.G.; Flynn, S.; Variola, F.; Wuest, J.D.; Nanci, A. Chemical nanocavitation of surfaces to enhance the utility of stainless steel as a medical material. Colloids Surf. B Biointerfaces 2018, 161, 677–687. [Google Scholar] [CrossRef]
- Esmaeili, A.; Ghaffari, S.A.; Nikkhah, M.; Malek Ghaini, F.; Farzan, F.; Mohammadi, S. Biocompatibility assessments of 316L stainless steel substrates coated by Fe-based bulk metallic glass through electro-spark deposition method. Colloids Surf. B Biointerfaces 2021, 198, 111469. [Google Scholar] [CrossRef]
- Wawrzyńska, M.; Bil-Lula, I.; Krzywonos-Zawadzka, A.; Arkowski, J.; Łukaszewicz, M.; Hreniak, D.; Stręk, W.; Sawicki, G.; Woźniak, M.; Drab, M. Biocompatible carbon-based coating as potential endovascular material for stent surface. BioMed Res. Int. 2018, 2018, 2758347. [Google Scholar] [CrossRef]
- Bordjih, K.; Jouzeau, J.-Y.; Mainard, D.; Payan, E.; Delagoutte, J.-P.; Netter, P. Evaluation of the effect of three surface treatments on the biocompatibility of 316L stainless steel using human differentiated cells. Biomaterials 1996, 17, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.; Abke, J.; Schnell, E.; Macionczyk, F.; Gbureck, U.; Mehrl, R.; Ruszczak, Z.; Kujat, R.; Englert, C.; Nerlich, M. Surface engineering of stainless steel materials by covalent collagen immobilization to improve implant biocompatibility. Biomaterials 2005, 26, 6962–6972. [Google Scholar] [CrossRef] [PubMed]
- Śmieszek, A.; Donesz-Sikorska, A.; Grzesiak, J.; Krzak, J.; Marycz, K. Biological effects of sol–gel derived ZrO2 and SiO2/ZrO2 coatings on stainless steel surface—In vitro model using mesenchymal stem cells. J. Biomater. Appl. 2014, 29, 699–714. [Google Scholar] [CrossRef] [PubMed]
- Tasnim, N.; Kumar, A.; Joddar, B. Attenuation of the in vitro neurotoxicity of 316L SS by graphene oxide surface coating. Mater. Sci. Eng. C 2017, 73, 788–797. [Google Scholar] [CrossRef] [PubMed]
- Nam, P.T.; Lam, T.D.; Huong, H.T.; Phuong, N.T.; Trang, N.T.; Hoang, T.; Huong, N.T.; Thang, L.B.; Drouet, C.; Grossin, D.; et al. Electrodeposition and Characterization of Hydroxyapatite on TiN/316LSS. J. Nanosci. Nanotechnol. 2015, 15, 9991–10001. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.M.; Nagarajan, S.; Ramakrishna, S.; Sudhagar, P.; Kang, Y.S.; Kim, H.; Gasem, Z.M.; Rajendran, N. Electrochemical and in vitro bioactivity of polypyrrole/ceramic nanocomposite coatings on 316L SS bio-implants. Mater. Sci. Eng. C 2014, 43, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Senocak, T.C.; Ezirmik, K.V.; Aysin, F.; Simsek Ozek, N.; Cengiz, S. Niobium-oxynitride coatings for biomedical applications: Its antibacterial effects and in-vitro cytotoxicity. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 120, 111662. [Google Scholar] [CrossRef] [PubMed]
- Karamian, E.; Khandan, A.; Kalantar Motamedi, M.R.; Mirmohammadi, H. Surface characteristics and bioactivity of a novel natural HA/zircon nanocomposite coated on dental implants. BioMed Res. Int. 2014, 2014, 410627. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.; Kapoor, M.; Kumar, N. Covalent attachment of proteins to functionalized polypyrrole-coated metallic surfaces for improved biocompatibility. Acta Biomater. 2007, 3, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lan, H.; Yin, T.; Zhang, X.; Huang, J.; Fu, H.; Huang, J.; McGinty, S.; Gao, H.; Wang, G. Covalent immobilization of biomolecules on stent materials through mussel adhesive protein coating to form biofunctional films. Mater. Sci. Eng. C 2020, 106, 110187. [Google Scholar] [CrossRef] [PubMed]
- Suo, D.; Rao, J.; Wang, H.; Zhang, Z.; Leung, P.H.; Zhang, H.; Tao, X.; Zhao, X. A universal biocompatible coating for enhanced lubrication and bacterial inhibition. Biomater. Sci. 2022, 10, 3493–3502. [Google Scholar] [CrossRef]
- De Scheerder, I.K.; Wilczek, K.L.; Verbeken, E.V.; Vandorpe, J.; Lan, P.N.; Schacht, E.; De Geest, H.; Piessens, J. Biocompatibility of polymer-coated oversized metallic stents implanted in normal porcine coronary arteries. Atherosclerosis 1995, 114, 105–114. [Google Scholar] [CrossRef]
- Tárnok, A.; Mahnke, A.; Müller, M.; Zotz, R.J. Rapid in vitro biocompatibility assay of endovascular stents by flow cytometry using platelet activation and platelet-leukocyte aggregation. Cytometry 1999, 38, 30–39. [Google Scholar] [CrossRef]
- Fournier, J.; Calabuig, J.; Merchan, A.; Auge, J.; Melgares, R.; Colman, T.; Martín De Dios, R.; Insag, L.; Santos, I. Initial results and 6 month clinical follow-up after implantation of a silicon carbide coated coronary stent. Rev. Esp. De Cardiol. 2001, 54, 567–572. [Google Scholar] [CrossRef]
- Tulinski, M.; Jurczyk, M. Nanostructured nickel-free austenitic stainless steel/hydroxyapatite composites. J. Nanosci. Nanotechnol. 2012, 12, 8779–8782. [Google Scholar] [CrossRef]
- Reclaru, L.; Lerf, R.; Eschler, P.-Y.; Meyer, J.-M. Corrosion behavior of a welded stainless-steel orthopedic implant. Biomaterials 2001, 22, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Kraft, C.N.; Burian, B.; Perlick, L.; Wimmer, M.A.; Wallny, T.; Schmitt, O.; Diedrich, O. Impact of a nickel-reduced stainless steel implant on striated muscle microcirculation: A comparative in vivo study. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2001, 57, 404–412. [Google Scholar] [CrossRef]
- Neumann, P.; Bourauel, C.; Jäger, A. Corrosion and permanent fracture resistance of coated and conventional orthodontic wires. J. Mater. Sci. Mater. Med. 2002, 13, 141–147. [Google Scholar] [CrossRef]
- Yonekura, Y.; Endo, K.; Iijima, M.; Ohno, H.; Mizoguchi, I. In vitro corrosion characteristics of commercially available orthodontic wires. Dent. Mater. J. 2004, 23, 197–202. [Google Scholar] [CrossRef]
- Airoldi, F.; Colombo, A.; Tavano, D.; Stankovic, G.; Klugmann, S.; Paolillo, V.; Bonizzoni, E.; Briguori, C.; Carlino, M.; Montorfano, M. Comparison of diamond-like carbon-coated stents versus uncoated stainless steel stents in coronary artery disease. Am. J. Cardiol. 2004, 93, 474–477. [Google Scholar] [CrossRef] [PubMed]
- Bayram, C.; Mizrak, A.K.; Aktürk, S.; Kurşaklioğlu, H.; Iyisoy, A.; Ifran, A.; Denkbaş, E.B. In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents. Biomed. Mater. 2010, 5, 055007. [Google Scholar] [CrossRef]
- Broaddus, W.C.; Holloway, K.L.; Winters, C.J.; Bullock, M.R.; Graham, R.S.; Mathern, B.E.; Ward, J.D.; Young, H.F. Titanium miniplates or stainless steel wire for cranial fixation: A prospective randomized comparison. J. Neurosurg. 2002, 96, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Edlich, R.; Drake, D.B.; Rodeheaver, G.T.; Winters, K.L.; Greene, J.A.; Long III, W.B.; Britt, L.; Winters, S.P.; Scott, C.C.; Lin, K.Y. Syneture™ Stainless STEEL Suture. A Collective Review of Its Performance in Surgical Wound Closure. J. Long-Term Eff. Med. Implant. 2006, 16, 101–110. [Google Scholar] [CrossRef]
- Pacifici, L.; De Angelis, F.; Orefici, A.; Cielo, A. Metals used in maxillofacial surgery. Oral Implant. 2016, 9, 107–111. [Google Scholar] [CrossRef]
- Bertrand, O.F.; Sipehia, R.; Mongrain, R.; Rodés, J.; Tardif, J.-C.; Bilodeau, L.; Côté, G.; Bourassa, M.G. Biocompatibility aspects of new stent technology. J. Am. Coll. Cardiol. 1998, 32, 562–571. [Google Scholar]
- Szewczenko, J.; Kajzer, W.; Grygiel-Pradelok, M.; Jaworska, J.; Jelonek, K.; Nowińska, K.; Gawliczek, M.; Libera, M.; Marcinkowski, A.; Kasperczyk, J. Corrosion resistance of PLGA-coated biomaterials. Acta Bioeng. Biomech. 2017, 19, 173–179. [Google Scholar]
- Mhaede, M.; Ahmed, A.; Wollmann, M.; Wagner, L. Evaluating the effects of hydroxyapatite coating on the corrosion behavior of severely deformed 316Ti SS for surgical implants. Mater. Sci. Eng. C 2015, 50, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Akram, W.; Zahid, R.; Usama, R.M.; AlQahtani, S.A.; Dahshan, M.; Basit, M.A.; Yasir, M. Enhancement of Antibacterial Properties, Surface Morphology and In Vitro Bioactivity of Hydroxyapatite-Zinc Oxide Nanocomposite Coating by Electrophoretic Deposition Technique. Bioengineering 2023, 10, 693. [Google Scholar] [CrossRef]
- Lewis, F.; Cloutier, M.; Chevallier, P.; Turgeon, S.; Pireaux, J.-J.; Tatoulian, M.; Mantovani, D. Influence of the 316 L stainless steel interface on the stability and barrier properties of plasma fluorocarbon films. ACS Appl. Mater. Interfaces 2011, 3, 2323–2331. [Google Scholar] [CrossRef] [PubMed]
- Thanh, D.T.; Pham, T.N.; Huong, H.T.; Phuong, N.T.; Hang, T.T.; Vy, U.V.; Hoang, T. The Electrochemical Behavior of TiN/316LSS Material in Simulated Body Fluid Solution. J. Nanosci. Nanotechnol. 2015, 15, 3887–3892. [Google Scholar] [CrossRef] [PubMed]
- Lappalainen, R.; Anttila, A.; Heinonen, H. Diamond coated total hip replacements. Clin. Orthop. Relat. Res. (1976–2007) 1998, 352, 118–127. [Google Scholar] [CrossRef]
- Dumée, L.F.; He, L.; Wang, Z.; Sheath, P.; Xiong, J.; Feng, C.; Tan, M.Y.; She, F.; Duke, M.; Gray, S. Growth of nano-textured graphene coatings across highly porous stainless steel supports towards corrosion resistant coatings. Carbon 2015, 87, 395–408. [Google Scholar] [CrossRef]
- Mondal, J.; Marandi, M.; Kozlova, J.; Merisalu, M.; Niilisk, A.; Sammelselg, V. Protection and functionalizing of stainless steel surface by graphene oxide-polypyrrole composite coating. J. Chem. Chem. Eng. 2014, 8, 786–793. [Google Scholar]
- Saedon, J.; Azmi, M.; Adenan, M.; Alam, S. Formation of S phase layer on medical grade AISI 316LVM via low-temperature hybrid gas diffusion process. J. Mech. Eng. 2020, 9, 55–64. [Google Scholar]
- Buhagiar, J.; Bell, T.; Sammons, R.; Dong, H. Evaluation of the biocompatibility of S-phase layers on medical grade austenitic stainless steels. J. Mater. Sci. Mater. Med. 2011, 22, 1269–1278. [Google Scholar] [CrossRef]
- Yang, J.; Wang, M.; Li, X.; Dong, Z.; Zhou, X.; Luan, J.; Guo, Y.; Xue, Y. Structural and electrochemical corrosion studies of spin coated ZrO2 thin films over stainless steel alloy for bone defect applications. J. Appl. Biomater. Funct. Mater. 2022, 20, 22808000211066784. [Google Scholar] [CrossRef]
- Logesh, M.; Lavanya, K.; Mabrouk, K.E.; Soundhararajan, R.; Srinivasan, H.; Ballamurugan, A.M. Evaluation of Time-Dependent Corrosion Inhibition Rate for f-MWCNT-BCP Composite Coatings on 316L Stainless Steel in Simulated Body Fluid for Orthopedic Implantation. Appl. Biochem. Biotechnol. 2023, 1–14. [Google Scholar] [CrossRef]
- Dong, Y.; Li, X.; Sammons, R.; Dong, H. The generation of wear-resistant antimicrobial stainless steel surfaces by active screen plasma alloying with N and nanocrystalline Ag. J. Biomed. Mater. Res. Part B Appl. Biomater. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2010, 93, 185–193. [Google Scholar] [CrossRef]
- Vasilev, K.; Cook, J.; Griesser, H.J. Antibacterial surfaces for biomedical devices. Expert Rev. Med. Devices 2009, 6, 553–567. [Google Scholar] [CrossRef]
- Gerits, E.; Kucharíková, S.; Van Dijck, P.; Erdtmann, M.; Krona, A.; Lövenklev, M.; Fröhlich, M.; Dovgan, B.; Impellizzeri, F.; Braem, A. Antibacterial activity of a new broad-spectrum antibiotic covalently bound to titanium surfaces. J. Orthop. Res. 2016, 34, 2191–2198. [Google Scholar] [CrossRef]
- Francolini, I.; Donelli, G. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol. Med. Microbiol. 2010, 59, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-W.; Knowles, J.C.; Kim, H.-E. Hydroxyapatite/poly (ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials 2004, 25, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Del Curto, B.; Brunella, M.F.; Giordano, C.; Pedeferri, M.; Valtulina, V.; Visai, L.; Cigada, A. Decreased bacterial adhesion to surface-treated titanium. Int. J. Artif. Organs 2005, 28, 718–730. [Google Scholar] [CrossRef] [PubMed]
- Couto, D.S.; Alves, N.M.; Mano, J.F. Nanostructured multilayer coatings combining chitosan with bioactive glass nanoparticles. J. Nanosci. Nanotechnol. 2009, 9, 1741–1748. [Google Scholar] [CrossRef] [PubMed]
- Maver, U.; Xhanari, K.; Žižek, M.; Korte, D.; Gradišnik, L.; Franko, M.; Finšgar, M. A combination of interdisciplinary analytical tools for evaluation of multi-layered coatings on medical grade stainless steel for biomedical applications. Eur. J. Pharm. Biopharm. 2018, 128, 230–246. [Google Scholar] [CrossRef]
- Vicario, P.P.; Lu, Z.; Grigorian, I.; Wang, Z.; Schottman, T. Cell adhesion and proliferation are reduced on stainless steel coated with polysaccharide-based polymeric formulations. J. Biomed. Mater. Res. Part B Appl. Biomater. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2009, 89, 114–121. [Google Scholar] [CrossRef]
- Okner, R.; Oron, M.; Tal, N.; Nyska, A.; Kumar, N.; Mandler, D.; Domb, A. Electrocoating of stainless steel coronary stents for extended release of paclitaxel. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2009, 88, 427–436. [Google Scholar] [CrossRef]
- Zhang, K.; Bai, Y.; Wang, X.; Li, Q.; Guan, F.; Li, J. Surface modification of esophageal stent materials by a polyethylenimine layer aiming at anti-cancer function. J. Mater. Sci. Mater. Med. 2017, 28, 125. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Lin, S.; Du, R.; Fu, M.; Rao, Q.; Yin, T.; Huang, Y.; Wang, G. Design, preparation and performance of a novel drug-eluting stent with multiple layer coatings. Biomater. Sci. 2017, 5, 1845–1857. [Google Scholar] [CrossRef] [PubMed]
- Shanshan, C.; Lili, T.; Yingxue, T.; Bingchun, Z.; Ke, Y. Study of drug-eluting coating on metal coronary stent. Mater. Sci. Eng. C 2013, 33, 1476–1480. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Wang, G.; Wu, X.; Li, Z.; Shen, Y.; Lee, J.C.-M.; Yu, Q. The impact of vascular endothelial growth factor-transfected human endothelial cells on endothelialization and restenosis of stainless steel stents. J. Vasc. Surg. 2011, 53, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Shen, Y.; Tang, C.; Wu, X.; Yu, Q.; Wang, G. Surface modification of coronary stents with SiCOH plasma nanocoatings for improving endothelialization and anticoagulation. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 103, 464–472. [Google Scholar] [CrossRef]
- Johnson, D.M.; Mahapatro, A.; Patel, D.N.; Feldman, M.D.; Ayon, A.A.; Agrawal, C.M. Drug delivery from therapeutic self-assembled monolayers (T-SAMs) on 316L stainless steel. Curr. Top. Med. Chem. 2008, 8, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Wieneke, H.; Dirsch, O.; Sawitowski, T.; Gu, Y.L.; Brauer, H.; Dahmen, U.; Fischer, A.; Wnendt, S.; Erbel, R. Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits. Catheter. Cardiovasc. Interv. 2003, 60, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.J.; Tang, J.; Weng, Y.; Wang, J.; Huang, N. Preparation, characterization and anticoagulation of curcumin-eluting controlled biodegradable coating stents. J. Control. Release 2006, 116, 42–49. [Google Scholar] [CrossRef]
- Brito, L.A.; Chandrasekhar, S.; Little, S.R.; Amiji, M.M. Non-viral eNOS gene delivery and transfection with stents for the treatment of restenosis. Biomed. Eng. OnLine 2010, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Salu, K.; Liu, X.; Li, S.; Wang, L.; Verbeken, E.; Bosmans, J.; De Scheerder, I. Methotrexate loaded SAE coated coronary stents reduce neointimal hyperplasia in a porcine coronary model. Heart 2004, 90, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Brito, L.A.; Chandrasekhar, S.; Little, S.R.; Amiji, M.M. In vitro and In vivo studies of local arterial gene delivery and transfection using lipopolyplexes-embedded stents. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2010, 93, 325–336. [Google Scholar] [CrossRef]
- Lilja, M.; Sörensen, J.H.; Brohede, U.; Åstrand, M.; Procter, P.; Arnoldi, J.; Steckel, H.; Strømme, M. Drug loading and release of tobramycin from hydroxyapatite coated fixation pins. J. Mater. Sci. Mater. Med. 2013, 24, 2265–2274. [Google Scholar] [CrossRef]
- Farb, A.; Heller, P.F.; Shroff, S.; Cheng, L.; Kolodgie, F.D.; Carter, A.J.; Scott, D.S.; Froehlich, J.; Virmani, R. Pathological analysis of local delivery of paclitaxel via a polymer-coated stent. Circulation 2001, 104, 473–479. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.; Li, S.; Liu, X.; Lee, K.; Verbeken, E.; Van de Werf, F.; de Scheerder, I. Stent-based tempamine delivery on neointimal formation in a porcine coronary model. Acute Card. Care 2006, 8, 210–216. [Google Scholar] [CrossRef]
- Wang, L.; Salu, K.; Verbeken, E.; Bosmans, J.; Van de Werf, F.; De Scheerder, I.; Huang, Y. Stent-mediated methylprednisolone delivery reduces macrophage contents and in-stent neointimal formation. Coron. Artery Dis. 2005, 16, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liu, X.; Wang, L.; Li, S.; Verbeken, E.; De Scheerder, I. Long-term biocompatibility evaluation of a novel polymer-coated stent in a porcine coronary stent model. Coron. Artery Dis. 2003, 14, 401–408. [Google Scholar] [CrossRef]
- Uurto, I.; Mikkonen, J.; Parkkinen, J.; Keski-Nisula, L.; Nevalainen, T.; Kellomäki, M.; Törmälä, P.; Salenius, J.-P. Drug-eluting biodegradable poly-D/L-lactic acid vascular stents: An experimental pilot study. J. Endovasc. Ther. 2005, 12, 371–379. [Google Scholar] [CrossRef]
- De Scheerder, I.K.; Wilczek, K.L.; Verbeken, E.V.; Vandorpe, J.; Lan, P.N.; Schacht, E.; Piessens, J.; De Geest, H. Biocompatibility of biodegradable and nonbiodegradable polymer-coated stents implanted in porcine peripheral arteries. Cardiovasc. Interv. Radiol. 1995, 18, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Richard, R.; Schwarz, M.; Chan, K.; Teigen, N.; Boden, M. Controlled delivery of paclitaxel from stent coatings using novel styrene maleic anhydride copolymer formulations. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2009, 90, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, M.; Anderson, J.M.; Bosworth, C.A.; Andukuri, A.; Minor, W.P.; Lancaster Jr, J.R.; Anderson, P.G.; Brott, B.C.; Jun, H.-W. A nitric oxide releasing, self assembled peptide amphiphile matrix that mimics native endothelium for coating implantable cardiovascular devices. Biomaterials 2010, 31, 1502–1508. [Google Scholar] [CrossRef]
- Lockwood, N.A.; Hergenrother, R.W.; Patrick, L.M.; Stucke, S.M.; Steendam, R.; Pacheco, E.; Virmani, R.; Kolodgie, F.D.; Hubbard, B. In vitro and in vivo characterization of novel biodegradable polymers for application as drug-eluting stent coatings. J. Biomater. Sci. Polym. Ed. 2010, 21, 529–552. [Google Scholar] [CrossRef]
- Unverdorben, M.; Spielberger, A.; Schywalsky, M.; Labahn, D.; Schneider, M.; Degenhardt, R.; Schüttler, J.; Vallbracht, C. First results in an animal model on stents sheathed with a polytetrafluoroethylene membrane. Rofo Fortschritte Auf Dem Geb. Der Rontgenstrahlen Und Der Nukl. 2001, 173, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Richter, G.M.; Stampfl, U.; Stampfl, S.; Rehnitz, C.; Holler, S.; Schnabel, P.; Grunze, M. A new polymer concept for coating of vascular stents using PTFEP (poly (bis (trifluoroethoxy) phosphazene) to reduce thrombogenicity and late in-stent stenosis. Investig. Radiol. 2005, 40, 210–218. [Google Scholar] [CrossRef]
- Satzl, S.; Henn, C.; Christoph, P.; Kurz, P.; Stampfl, U.; Stampfl, S.; Thomas, F.; Radeleff, B.; Berger, I.; Grunze, M. The efficacy of nanoscale poly [bis (trifluoroethoxy) phosphazene](PTFEP) coatings in reducing thrombogenicity and late in-stent stenosis in a porcine coronary artery model. Investig. Radiol. 2007, 42, 303–311. [Google Scholar] [CrossRef]
- Shih, C.M.; Shih, C.C.; Su, Y.Y.; Chang, N.C.; Lin, S.J. In vitro study of drug loading on polymer-free oxide films of metallic implants. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2005, 75, 519–529. [Google Scholar] [CrossRef]
- Dichek, D.A.; Neville, R.F.; Zwiebel, J.A.; Freeman, S.M.; Leon, M.B.; Anderson, W.F. Seeding of intravascular stents with genetically engineered endothelial cells. Circulation 1989, 80, 1347–1353. [Google Scholar] [CrossRef]
- Wu, Y.; Johnson, T.; Herdeg, C.; Baumbach, A.; Newby, A.C.; Karsch, K.K.; Oberhoff, M. Stent-based local delivery of therapeutic adenovirus effectively reduces neointimal proliferation in porcine coronaries. Di 1 Jun Yi Da Xue Xue Bao Acad. J. First Med. Coll. PLA 2003, 23, 1263–1265. [Google Scholar]
- Moschovitis, A.; Simon, R.; Seidenstücker, A.; Klauss, V.; Baylacher, M.; Lüscher, T.F.; Moccetti, T.; Windecker, S.; Meier, B.; Hess, O.M. Randomised comparison of titanium-nitride-oxide coated stents with bare metal stents: Five year follow-up of the TiNOX trial. EuroIntervention 2010, 6, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, Y.; Nishi, S.; Ishibashi-Ueda, H.; Okamoto, Y.; Nemoto, Y. Development of microporous covered stents: Geometrical design of the luminal surface. Int. J. Artif. Organs 2005, 28, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, K.K.; Robinson, K.A.; Chronos, N.A.; Cui, J.; Palmer, S.J.; Nordrehaug, J.E. Phosphorylcholine-coated metallic stents in rabbit iliac and porcine coronary arteries. Scand. Cardiovasc. J. 1998, 32, 261–268. [Google Scholar] [PubMed]
- Antoniucci, D.; Bartorelli, A.; Valenti, R.; Montorsi, P.; Santoro, G.M.; Fabbiocchi, F.; Bolognese, L.; Loaldi, A.; Trapani, M.; Trabattoni, D. Clinical and angiographic outcome after coronary arterial stenting with the carbostent. Am. J. Cardiol. 2000, 85, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Billinger, M.; Buddeberg, F.; Hubbell, J.A.; Elbert, D.L.; Schaffner, T.; Mettler, D.; Windecker, S.; Meier, B.; Hess, O.M. Polymer stent coating for prevention of neointimal hyperplasia. J. Invasive Cardiol. 2006, 18, 423–426, discussion 427. [Google Scholar]
- ürgen vom Dahl, J.; Haager, P.K.; Grube, E.; Gross, M.; Beythien, C.; Kromer, E.P.; Cattelaens, N.; Hamm, C.W.; Hoffmann, R.; Reineke, T. Effects of gold coating of coronary stents on neointimal proliferation following stent implantation. Am. J. Cardiol. 2002, 89, 801–805. [Google Scholar] [CrossRef]
- Nandi, S.K.; Shivaram, A.; Bose, S.; Bandyopadhyay, A. Silver nanoparticle deposited implants to treat osteomyelitis. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 1073–1083. [Google Scholar] [CrossRef]
- Abizaid, A.; Lansky, A.J.; Fitzgerald, P.J.; Tanajura, L.F.; Feres, F.; Staico, R.; Mattos, L.; Abizaid, A.; Chaves, A.; Centemero, M. Percutaneous coronary revascularization using a trilayer metal phosphorylcholine-coated zotarolimus-eluting stent. Am. J. Cardiol. 2007, 99, 1403–1408. [Google Scholar] [CrossRef]
- Cahill, E.M.; Keaveney, S.; Stuettgen, V.; Eberts, P.; Ramos-Luna, P.; Zhang, N.; Dangol, M.; O’Cearbhaill, E.D. Metallic microneedles with interconnected porosity: A scalable platform for biosensing and drug delivery. Acta Biomater. 2018, 80, 401–411. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Zhao, Y.; Zhao, J.; Zhang, B.; Xu, K. EGCG Regulates Cell Apoptosis of Human Umbilical Vein Endothelial Cells Grown on 316L Stainless Steel for Stent Implantation. Drug Des. Dev. Ther. 2021, 15, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-H.; Hsiao, Y.-C. Surface and protein adsorption properties of 316L stainless steel modified with polycaprolactone film. Polymers 2017, 9, 545. [Google Scholar] [CrossRef] [PubMed]
- Mrowietz, C.; Franke, R.; Seyfert, U.; Park, J.; Jung, F. Haemocompatibility of polymer-coated stainless steel stents as compared to uncoated stents. Clin. Hemorheol. Microcirc. 2005, 32, 89–103. [Google Scholar] [PubMed]
- Li, M.; Wu, H.; Wang, Y.; Yin, T.; Gregersen, H.; Zhang, X.; Liao, X.; Wang, G. Immobilization of heparin/poly-l-lysine microspheres on medical grade high nitrogen nickel-free austenitic stainless steel surface to improve the biocompatibility and suppress thrombosis. Mater. Sci. Eng. C 2017, 73, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Windecker, S.; Mayer, I.; De Pasquale, G.; Maier, W.; Dirsch, O.; De Groot, P.; Wu, Y.-P.; Noll, G.; Leskosek, B.; Meier, B. Stent coating with titanium-nitride-oxide for reduction of neointimal hyperplasia. Circulation 2001, 104, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Campelo, C.S.; Chevallier, P.; Vaz, J.M.; Vieira, R.S.; Mantovani, D. Sulfonated chitosan and dopamine based coatings for metallic implants in contact with blood. Mater. Sci. Eng. C 2017, 72, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Hietala, E.-M.; Maasilta, P.; Juuti, H.; Nuutinen, J.-P.; Harjula, A.L.; Salminen, U.-S.; Lassila, R. Platelet deposition on stainless steel, spiral, and braided polylactide stents. Thromb. Haemost. 2004, 92, 1394–1401. [Google Scholar] [PubMed]
- Yoshioka, T.; Tsuru, K.; Hayakawa, S.; Osaka, A. Preparation of alginic acid layers on stainless-steel substrates for biomedical applications. Biomaterials 2003, 24, 2889–2894. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.-Y.; Yang, M.-C.; Tsou, H.-M.; Liu, T.-Y. Hemocompatibility and anti-fouling behavior of multilayer biopolymers immobilized on gold-thiolized drug-eluting cardiovascular stents. Colloids Surf. B Biointerfaces 2019, 173, 470–477. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, X.; Liu, R.; Li, Y.; Zeng, J.; Zhou, M.; Zhao, Y. Bioinspired Vascular Stents with Microfluidic Electrospun Multilayer Coatings for Preventing In-Stent Restenosis. Adv. Health Mater. 2022, 11, e2200965. [Google Scholar] [CrossRef]
- Lu, L.; Li, Q.L.; Maitz, M.F.; Chen, J.L.; Huang, N. Immobilization of the direct thrombin inhibitor-bivalirudin on 316L stainless steel via polydopamine and the resulting effects on hemocompatibility in vitro. J. Biomed. Mater. Res. Part A 2012, 100, 2421–2430. [Google Scholar] [CrossRef]
- Schuler, P.; Assefa, D.; Ylänne, J.; Basler, N.; Olschewski, M.; Ahrens, I.; Nordt, T.; Bode, C.; Peter, K. Adhesion of monocytes to medical steel as used for vascular stents is mediated by the integrin receptor Mac-1 (CD11b/CD18; α M β 2) and can be inhibited by semiconductor coating. Cell Commun. Adhes. 2003, 10, 17–26. [Google Scholar] [CrossRef]
- Verheye, S.; Markou, C.P.; Salame, M.Y.; Wan, B.; King III, S.B.; Robinson, K.A.; Chronos, N.A.; Hanson, S.R. Reduced thrombus formation by hyaluronic acid coating of endovascular devices. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1168–1172. [Google Scholar] [CrossRef]
- Vicario, P.P.; Lu, Z.; Wang, Z.; Merritt, K.; Buongiovanni, D.; Chen, P. Antithrombogenicity of Hydromer’s polymeric formula F202TM immobilized on polyurethane and electropolished stainless steel. J. Biomed. Mater. Res. Part B Appl. Biomater. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2008, 86, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Tang, J.; Shao, Z.; Wang, J.; Huang, N. Improved blood compatibility of rapamycin-eluting stent by incorporating curcumin. Colloids Surf. B Biointerfaces 2007, 59, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Zhao, H.; Yang, D.; Qi, M. Study of bioactive nano-multiplayer films on medical stainless steel fabrication and haemocompatibility. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi J. Biomed. Eng. Shengwu Yixue Gongchengxue Zazhi 2008, 25, 108–112. [Google Scholar]
- Hietala, E.M.; Maasilta, P.; Välimaa, T.; Harjula, A.L.; Törmälä, P.; Salminen, U.S.; Lassila, R. Platelet responses and coagulation activation on polylactide and heparin–polycaprolactone-L-lactide-coated polylactide stent struts. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2003, 67, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.-C.; Tsou, H.-M.; Hsiao, Y.-S.; Cheng, Y.-W.; Liu, C.-C.; Huang, L.-Y.; Peng, X.-Y.; Liu, T.-Y.; Yung, M.-C.; Hsu, C.-C. Electrochemical polymerization of PEDOT–graphene oxide–heparin composite coating for anti-fouling and anti-clotting of cardiovascular stents. Polymers 2019, 11, 1520. [Google Scholar] [CrossRef] [PubMed]
- Goodman, S.B.; Yao, Z.; Keeney, M.; Yang, F. The future of biologic coatings for orthopaedic implants. Biomaterials 2013, 34, 3174–3183. [Google Scholar] [CrossRef]
- Hench, L.L. Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 1991, 74, 1487–1510. [Google Scholar] [CrossRef]
- Chen, Q.; Garcia, R.P.; Munoz, J.; Pérez de Larraya, U.; Garmendia, N.; Yao, Q.; Boccaccini, A.R. Cellulose Nanocrystals Bioactive Glass Hybrid Coating as Bone Substitutes by Electrophoretic Co-deposition: In Situ Control of Mineralization of Bioactive Glass and Enhancement of Osteoblastic Performance. ACS Appl. Mater. Interfaces 2015, 7, 24715–24725. [Google Scholar] [CrossRef]
- Akhtar, M.A.; Mariotti, C.E.; Conti, B.; Boccaccini, A.R. Electrophoretic deposition of ferulic acid loaded bioactive glass/chitosan as antibacterial and bioactive composite coatings. Surf. Coat. Technol. 2021, 405, 126657. [Google Scholar] [CrossRef]
- Agarwal, R.; González-García, C.; Torstrick, B.; Guldberg, R.E.; Salmerón-Sánchez, M.; García, A.J. Simple coating with fibronectin fragment enhances stainless steel screw osseointegration in healthy and osteoporotic rats. Biomaterials 2015, 63, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Branquinho, M.V.; Ferreira, S.O.; Alvites, R.D.; Magueta, A.F.; Ivanov, M.; Sousa, A.C.; Amorim, I.; Faria, F.; Fernandes, M.H.V.; Vilarinho, P.M.; et al. In Vitro and In Vivo Characterization of PLLA-316L Stainless Steel Electromechanical Devices for Bone Tissue Engineering—A Preliminary Study. Int. J. Mol. Sci. 2021, 22, 7655. [Google Scholar] [CrossRef] [PubMed]
- Laure, B.; Besnier, J.M.; Bergemer-Fouquet, A.M.; Marquet-Van Der Mee, N.; Damie, F.; Quentin, R.; Favard, L.; Rosset, P. Effect of hydroxyapatite coating and polymethylmethacrylate on stainless steel implant-site infection with Staphylococcus epidermidis in a sheep model. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2008, 84, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Alas, G.R.; Agarwal, R.; Collard, D.M.; García, A.J. Peptide-functionalized poly [oligo (ethylene glycol) methacrylate] brushes on dopamine-coated stainless steel for controlled cell adhesion. Acta Biomater. 2017, 59, 108–116. [Google Scholar] [CrossRef]
- Wermelin, K.; Suska, F.; Tengvall, P.; Thomsen, P.; Aspenberg, P. Stainless steel screws coated with bisphosphonates gave stronger fixation and more surrounding bone. Histomorphometry in rats. Bone 2008, 42, 365–371. [Google Scholar] [CrossRef]
- Agholme, F.; Andersson, T.; Tengvall, P.; Aspenberg, P. Local bisphosphonate release versus hydroxyapatite coating for stainless steel screw fixation in rat tibiae. J. Mater. Sci. Mater. Med. 2012, 23, 743–752. [Google Scholar] [CrossRef]
- Tengvall, P.; Skoglund, B.; Askendal, A.; Aspenberg, P. Surface immobilized bisphosphonate improves stainless-steel screw fixation in rats. Biomaterials 2004, 25, 2133–2138. [Google Scholar] [CrossRef]
- Merolli, A.; Moroni, A.; Faldini, C.; Tranquilli Leali, P.; Giannini, S. Histomorphological study of bone response to hydroxyapatite coating on stainless steel. J. Mater. Sci. Mater. Med. 2003, 14, 327–333. [Google Scholar] [CrossRef]
- Fini, M.; Giavaresi, G.; Greggi, T.; Martini, L.; Aldini, N.N.; Parisini, P.; Giardino, R. Biological assessment of the bone–screw interface after insertion of uncoated and hydroxyapatite-coated pedicular screws in the osteopenic sheep. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2003, 66, 176–183. [Google Scholar] [CrossRef]
- Placzek, R.; Ruffer, M.; Deuretzbacher, G.; Heijens, E.; Meiss, A. The fixation strength of hydroxyapatite-coated Schanz screws and standard stainless steel Schanz screws in lower extremity lengthening. Arch. Orthop. Trauma Surg. 2006, 126, 369–373. [Google Scholar] [CrossRef]
- Muguruma, T.; Iijima, M.; Brantley, W.A.; Nakagaki, S.; Endo, K.; Mizoguchi, I. Frictional and mechanical properties of diamond-like carbon-coated orthodontic brackets. Eur. J. Orthod. 2013, 35, 216–222. [Google Scholar] [CrossRef]
- Sandén, B.; Olerud, C.; Johansson, C.; Larsson, S. Improved bone–screw interface with hydroxyapatite coating: An in vivo study of loaded pedicle screws in sheep. Spine 2001, 26, 2673–2678. [Google Scholar] [CrossRef] [PubMed]
- Kenar, H.; Akman, E.; Kacar, E.; Demir, A.; Park, H.; Abdul-Khaliq, H.; Aktas, C.; Karaoz, E. Femtosecond laser treatment of 316L improves its surface nanoroughness and carbon content and promotes osseointegration: An in vitro evaluation. Colloids Surf. B Biointerfaces 2013, 108, 305–312. [Google Scholar] [CrossRef]
- Rocca, M.; Fini, M.; Giavaresi, G.; Aldini, N.N.; Giardino, R. Tibial implants: Biomechanical and histomorphometric studies of hydroxyapatite-coated and uncoated stainless steel and titanium screws in long-term ovariectomized sheep. Int. J. Artif. Organs 2001, 24, 649–654. [Google Scholar] [CrossRef]
- Moroni, A.; Faldini, C.; Rocca, M.; Stea, S.; Giannini, S. Improvement of the bone–screw interface strength with hydroxyapatite-coated and titanium-coated AO/ASIF cortical screws. J. Orthop. Trauma 2002, 16, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Pommer, A.; Muhr, G.; Dávid, A. Hydroxyapatite-coated Schanz pins in external fixators used for distraction osteogenesis: A randomized, controlled trial. JBJS 2002, 84, 1162–1166. [Google Scholar] [CrossRef] [PubMed]
- Cimerman, M.; Cör, A.; Čveh, M.; Kristan, A.; Pižvem, J.; Tonin, M. Microstructural analysis of implant-bone interface of hydroxyapatite-coated and uncoated Schanz screws. J. Mater. Sci. Mater. Med. 2005, 16, 627–634. [Google Scholar] [CrossRef]
- Oron, A.; Agar, G.; Oron, U.; Stein, A. Enhancement of bony in-growth to metal implants by combining controlled hydroxyapatite coating and heat treatment. J. Biomed. Mater. Res. Part A 2012, 100, 1668–1672. [Google Scholar] [CrossRef]
- Caja, V.L.; Moroni, A. Hydroxyapatite coated external fixation pins: An experimental study. Clin. Orthop. Relat. Res. (1976–2007) 1996, 325, 269–275. [Google Scholar] [CrossRef]
- Ducheyne, P.; Hench, L.; Kagan, A.d.; Martens, M.; Bursens, A.; Mulier, J. Effect of hydroxyapatite impregnation on skeletal bonding of porous coated implants. J. Biomed. Mater. Res. 1980, 14, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Finšgar, M.; Uzunalić, A.P.; Stergar, J.; Gradišnik, L.; Maver, U. Novel chitosan/diclofenac coatings on medical grade stainless steel for hip replacement applications. Sci. Rep. 2016, 6, 26653. [Google Scholar] [CrossRef] [PubMed]
- Thanh, D.T.M.; Nam, P.T.; Phuong, N.T.; Van Anh, N.; Hoang, T.; Dai Lam, T. Controlling the electrodeposition, morphology and structure of hydroxyapatite coating on 316L stainless steel. Mater. Sci. Eng. C 2013, 33, 2037–2045. [Google Scholar] [CrossRef] [PubMed]
- Cieślik, M.; Kot, M.; Reczyński, W.; Engvall, K.; Rakowski, W.; Kotarba, A. Parylene coatings on stainless steel 316L surface for medical applications—Mechanical and protective properties. Mater. Sci. Eng. C 2012, 32, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, L.; Wang, G.; Jin, Y. The effect of REDV/TiO2 coating coronary stents on in-stent restenosis and re-endothelialization. J. Biomater. Appl. 2017, 31, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Sutha, S.; Dhineshbabu, N.; Prabhu, M.; Rajendran, V. Mg-doped hydroxyapatite/chitosan composite coated 316l stainless steel implants for biomedical applications. J. Nanosci. Nanotechnol. 2015, 15, 4178–4187. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Qin, J.; Ma, J. Cellulose acetate/hydroxyapatite/chitosan coatings for improved corrosion resistance and bioactivity. Mater. Sci. Eng. C 2015, 49, 251–255. [Google Scholar] [CrossRef]
- Chen, M.; Zamora, P.O.; Peña, L.; Som, P.; Osaki, S. NH3/O2 mixed gas plasmas alter the interaction of blood components with stainless steel. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2003, 67, 994–1000. [Google Scholar] [CrossRef]
- Matsui, H.; Hiroma, T.; Hasegawa, H.; Ogiso, Y. Decreased granulomatous reaction by polyurethane-coated stent in the trachea. Pediatr. Int. 2014, 56, 817–821. [Google Scholar] [CrossRef]
- Aldabagh, D.J.; Alzubadi, T.L.; Alhuwaizi, A.F. Tribology of Coated 316L SS by Various Nanoparticles. Int. J. Biomater. 2023, 2023, 6676473. [Google Scholar] [CrossRef] [PubMed]
- Gollwitzer, H.; Thomas, P.; Diehl, P.; Steinhauser, E.; Summer, B.; Barnstorf, S.; Gerdesmeyer, L.; Mittelmeier, W.; Stemberger, A. Biomechanical and allergological characteristics of a biodegradable poly (D, L-lactic acid) coating for orthopaedic implants. J. Orthop. Res. 2005, 23, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Haase, J.; Störger, H.; Hofmann, M.; Schwarz, C.-E.; Reinemer, H.; Schwarz, F. Comparison of stainless steel stents coated with turbostratic carbon and uncoated stents for percutaneous coronary interventions. J. Invasive Cardiol. 2003, 15, 562–565. [Google Scholar] [PubMed]
- Ruammaitree, A.; Phokharatkul, D.; Wisitsoraat, A. Surface hardening of stainless steel by coating graphene using thermal chemical vapor deposition. Solid State Phenom. 2018, 283, 173–178. [Google Scholar] [CrossRef]
- Horvat, G.; Xhanari, K.; Finšgar, M.; Gradišnik, L.; Maver, U.; Knez, Ž.; Novak, Z. Novel ethanol-induced pectin–xanthan aerogel coatings for orthopedic applications. Carbohydr. Polym. 2017, 166, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Fattah, T.M.; Loftis, D.; Mahapatro, A. Nanosized controlled surface pretreatment of biometallic alloy 316L stainless steel. J. Biomed. Nanotechnol. 2011, 7, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Bayraktaroglu, E.; Gulsoy, H.O.; Gulsoy, N.; Er, O.; Kilic, H. Effect of boron addition on injection molded 316L stainless steel: Mechanical, corrosion properties and in vitro bioactivity. Bio-Med. Mater. Eng. 2012, 22, 333–349. [Google Scholar] [CrossRef] [PubMed]
- Raman, A.; Gawalt, E.S. Reduction of 3T3 fibroblast adhesion on SS316L by methyl-terminated SAMs. Mater. Sci. Eng. C 2010, 30, 1157–1161. [Google Scholar] [CrossRef]
- ElSawy, A.M.; Attia, N.F.; Mohamed, H.I.; Mohsen, M.; Talaat, M. Innovative coating based on graphene and their decorated nanoparticles for medical stent applications. Mater. Sci. Eng. C 2019, 96, 708–715. [Google Scholar] [CrossRef]
- Cardenas, L.; MacLeod, J.; Lipton-Duffin, J.; Seifu, D.; Popescu, F.; Siaj, M.; Mantovani, D.; Rosei, F. Reduced graphene oxide growth on 316L stainless steel for medical applications. Nanoscale 2014, 6, 8664–8670. [Google Scholar] [CrossRef]
Target Properties Improvement | Modification Techniques |
---|---|
Antimicrobial and anti-biofilm activity Biocompatibility Corrosion and wear resistance Drug delivery Hemocompatibility Osseointegration, bioactivity, cell adhesion and proliferation, and new bone formation Physical, anti-inflammatory, and miscellaneous | Atomic layer deposition (ALD) [22,23,24] Chemical vapor deposition (CVD) [25,26,27,28] Cold low-pressure gas plasma [29] Dip-coating [30,31] Electrodeposition (ED) [32,33,34,35,36,37,38,39] Hydrothermal crystallization method [40,41] Laser surface melting [42,43,44] Layer-by-layer coating [45,46] Magnetron sputtering [47,48,49,50,51,52,53] Matrix-assisted pulsed laser evaporation (MAPLE) [54,55] Microarc oxidation [56,57] Physical vapor deposition (PVD) [58,59,60,61,62] Plasma-spray [63,64,65] Sol–gel coating [30,43,48,66,67,68,69,70,71,72,73] Solvent casting [74,75] Spin coating [76,77,78,79] Spray coating [80,81,82] Ultrasonic spray [80,81,82,83] UV irradiation [84,85,86,87] |
Material (s) | Findings | Refs. |
---|---|---|
PC, Amikacin, VAN, Ti | Reduced bacterial growth and biofilm formation. | [91] |
Cinnamon oil, CH | Reduced biofilm formation. | [92] |
Particulate Ag | Reduced bacterial colonization and non-toxic bone cells. | [93] |
Ag-HA-f-M, CNT | Reduced bacterial growth, enhanced corrosion resistance, and bioactivity. | [80] |
Ag | Reduced intraoral biofilm and increased the bactericidal effect. | [94] |
PBGHA | Enhanced bone-like apatite formation and provided an ideal surface for the stem cells’ attachment and viability. | [75] |
SAMs | Reduced biofilm formation. | [95] |
Fluorine, Ag | Enhanced abrasion resistance and hydrophobic properties. | [96] |
DLC | Showed similar bacterial adhesion like that on MSS. | [97] |
Ag, PLGA | Reduced bacterial growth and enhanced osteoinductive properties. | [98] |
CH, Bio glass-GEN | Reduced bacterial growth, and enhanced cell attachment and proliferation. | [99] |
AgSiOxCy | Reduced bacterial growth and enhanced biocompatibility. | [100] |
Polyelectrolyte copolymers P, Polyallylamine hydrochloride | Reduced bacterial growth and enhanced anti-adhesion and cleanability. | [45] |
NO | Reduced bacterial growth and adhesion. | [70] |
Ag incorporated zeolite | Enhanced antibacterial activity and biocompatibility. | [40] |
Ag-ZrO2 | Enhanced antibacterial activity. | [101] |
DLC, HA | Reduced biofilm formation and bacterial colonies. | [102] |
Ag+, AgCl, Cl- | Reduced bacterial growth. | [103] |
AgCl, AgNO3 | Reduced bacterial growth. | [104] |
nZnO | Reduced bacterial growth and enhanced corrosion resistance. | [36] |
Nano-Ag, Cu, Ti | Reduced bacterial growth. | [105] |
Cu | Reduced bacterial growth. | [106] |
AgNPs, AMP | Reduced bacterial and biofilm growth | [107] |
PEM/AgSrMBG | Enhanced antibacterial activity, biocompatibility, bioactivity, and hemocompatibility. | [108] |
Material (s) | Findings | Refs. |
---|---|---|
Mn-HA, ZnO | Enhanced corrosion resistance and bioactivity. | [35] |
TiN, SiOx | Enhanced failure of duplex coating. | [50] |
HMDSZ, NIPAAm, AAc | Enhanced adhesion ability and corrosion resistance. | [85] |
TiN, VN | Enhanced corrosion resistance and reduced bacterial attachment and colonization. | [51] |
HfC, TaC, Au | Enhanced the micro-abrasive wear resistance and bioactivity. | [59] |
PLGA, Ti-6A-l4V, Ti-6Al-7Nb | Reduced the degradation kinetics and enhanced the corrosion resistance. | [144] |
Ti. HA | Enhanced corrosion resistance. | [145] |
HA-ZnO | Enhanced corrosion resistance and inhibit bacteria. | [146] |
TiN | Enhanced corrosion resistance. | [60] |
Cr2O3 | Enhanced corrosion resistance and adhesion with a negligible chromium ion release. | [52] |
Fluorocarbon | Enhanced corrosion resistance. | [147] |
Ti, Ti-6Al-4V, Co-Cr-Mo, TiN | Enhanced mechanical properties. | [61] |
TiN | Enhanced corrosion resistance and durability. | [148] |
Diamond, Ti-6Al-4V, Co-Cr-Mo | Enhanced wear and corrosion resistance. | [149] |
GO, Graphene-nanoplatelets | Enhanced corrosion resistance. | [77] |
Ni | Enhanced corrosion resistance, conductivity, and hydrophobicity. | [26] |
rGO nanosheets, Al2O3, TiO2 | Enhanced corrosion resistance. | [23] |
Graphene | Enhanced corrosion resistance and electrical conductivity. | [150] |
Epoxy graphene | Enhanced corrosion resistance, UV stability, and impact resistance. | [86] |
Graphene-nanosheet | Enhanced corrosion resistance. | [31] |
Graphene | Enhanced corrosion resistance. | [27] |
GO, PPy, Nanoplatelets | Enhanced corrosion resistance. | [151] |
High-N | Enhanced corrosion resistance and biocompatibility. | [152,153] |
Zirconia | Enhanced corrosion resistance and biocompatibility. | [154] |
f-MWCNT, BCP | Enhanced corrosion resistance and bioactivity. | [155] |
Zr48Cu36Al8Ag8 | Enhanced corrosion resistance, and electrochemical stability, reduced the growth of bacteria, and toxicity. | [53] |
ASP, N, Ag | Enhanced surface hardness, wear resistance, and antimicrobial activity. | [156] |
Material (s) | Findings | Refs. |
---|---|---|
PCA | Enhanced wettability and surface area. | [87] |
PEMs-57S | Reduced bacterial growth and maintained cell viability. | [78] |
PMMA, Doxy | Reduced metal ion release, microbial growth, biofilm formation, and enhanced biocompatibility. | [55] |
Ginseng, polyaniline, PLGA | Enhanced controlled drug release. | [37] |
TiO2 | Enhanced rapid endothelialization and reduced SMC proliferation. | [41] |
DCF, CH | Enhanced controlled drug release. | [163] |
F200, F202 | Reduced the adhesion/proliferation of host cells. | [164] |
PPA, BuOPy | Enhanced biocompatibility and reduced toxicity. | [165] |
Al2O3 | Reduced protein adsorption and platelet adhesion, and enhanced the attachment and proliferation of host cells. | [24] |
PDA, PEI | Enhanced cell apoptosis and necrosis and anti-cancer function. | [166] |
SZ-21, VEGF | Enhanced re-endothelialization and reduced thrombosis, inflammation, and in-stent restenosis | [167] |
PLGA | Enhanced deformation and reduced the drug-eluting profile. | [168] |
HUVECs, VEGF | Reduced neointimal hyperplasia and in-stent restenosis, enhanced endothelialization. | [169] |
SiCOH plasma | Enhanced re-endothelialization and reduced in-stent restenosis. | [170] |
SAMs | Enhanced drug delivery. | [171] |
Al2O3, Tacrolimus | Reduced neointima formation and inflammatory response. | [172] |
PLGA | Enhanced sustained-release profile with no significant burst releases, and anticoagulation behavior. | [173] |
Al2O3, Tacrolimus | Enhanced antiproliferative effects. | [81] |
LPPs, PLGA, type B gelatin | Reduced smooth muscle cell growth and enhanced healthy endothelium. | [174] |
SAE | Reduced neointimal hyperplasia. | [175] |
UL-MBCP, LPP | Enhanced non-viral gene delivery. | [176] |
HA, TiO₂, Tobramycin | Enhanced fast-loading and controlled local drug administration. | [177] |
Chondroitin sulfate, Px | Reduced neointima formation. | [178] |
Nb2O5 | Enhanced bioactivity, controlled release of Sr ions, and corrosion resistance. | [79] |
co-PEA, Tempamine | Enhanced biocompatibility. | [179] |
C22H30O5 | Reduced vascular macrophage infiltration and in-stent neointimal hyperplasia. | [180] |
PTFEP | Enhanced biocompatibility. | [181] |
PLA-DEX, PLA-SIM, PLA-PDLLA, PLA-PCL | Enhanced biocompatibility, reliability, and less neointimal hyperplasia. | [182] |
PoP and APU | Enhanced biocompatibility. | [183] |
Px, SMA | Enhanced vascular response | [184] |
PAs, NO | Enhanced proliferation of endothelial cells, reduced proliferation of smooth muscle cells, and platelet attachment. | [185] |
UL-MBCP, hMDp, Sirolimus | Enhanced mechanical properties, elution and degradation rates, and biocompatibility. | [186] |
PTFE | Enhanced biocompatibility with no restenosis. | [187] |
PTFEP | Enhanced thromboresistance and reduced late in-stent stenosis. | [188,189] |
HEP | Enhanced corrosion resistance, reduced inflammation, thrombosis, and restenosis. | [190] |
Endothelial cells | Enhanced therapeutic protein secretion. | [191] |
Phosphorylcholine | Enhanced TIMP3 AdV transduction and transcription and reduced neointimal proliferation. | [192] |
TiNOX, SS | Reduced MACE with no stent thrombosis | [193] |
SPU | Reduced thrombus formation | [194] |
HA, | Enhanced bone-pin interface | [64] |
Phosphorylcholine | Reduced arterial neointima formation or luminal diameter | [195] |
Carbofilm | Reduced stent thrombosis and restenosis. | [196] |
PLL-g-PEG | Reduced neointimal hyperplasia and enhanced biocompatibility. | [197] |
Au | Enhanced neointimal tissue proliferation. | [198] |
Ag | Treated osteomyelitis without toxicity. | [199] |
PEMs | Enhanced stent-mediated gene transfer. | [46] |
Phosphorylcholine | Treated de novo coronary artery stenosis. | [200] |
Porous MSS | Enhanced drug release. | [201] |
EGCG | Reduced in-stent restenosis | [202] |
Material (s) | Findings | Refs. |
---|---|---|
PCL | Enhanced hydrophobicity, corrosion resistance, and anticoagulant properties. | [203] |
PTFEP | Enhanced adherence of thrombocytes and hemocompatibility. | [204] |
HEP, Poly-l-lysine microsphere, Dopa | Enhanced endothelialization and anticoagulation. | [205] |
TiNOX, Ceramic | Reduced neointimal hyperplasia. | [206] |
CH, dopa, PEG | Reduced platelet activation and clot formation. | [207] |
PLA, PCL-PLA | Enhanced hemocompatibility, and reduced platelet deposition. | [208] |
Gamma-APTS | Did not adsorb blood-clotting proteins or factors or stimulate them. | [209] |
ChS, HEP, Au | Enhanced blood clotting time, and reduced platelet adhesion. | [210] |
GelMA-PEGDA | Enhanced endothelialization and anticoagulation. | [211] |
BV, PDA | Enhanced aPTT and PT, reduced platelet, and fibrinogen activation. | [212] |
Monocyte | Reduced Mac-1-mediated adhesion of monocytes. | [213] |
HyA | Reduced platelet thrombus formation. | [214] |
F202, Polyurethane | Reduced clot formation, platelet adhesion, thrombogenicity, and cytotoxicity. | [215] |
RAPA, RAPA, CUR, PLGA | Enhanced hemocompatibility. | [216] |
PEI, HN | Reduced platelet adhesion, and enhanced hemocompatibility. | [217] |
PLA, HEP-P | Enhanced hemocompatibility. | [218] |
EDOT, GO, PSS, HEP | Enhanced hemocompatibility. | [219] |
Material (s) | Findings | Refs. |
---|---|---|
FN7-10 | Enhanced adhesion and differentiation of host cells. | [224] |
PLLA | Enhanced osteogenic activities. | [225] |
Ti | Enhanced the proliferation and migration of host cells, enhanced biocompatibility, and osseointegration. | [57] |
HA, PMMA | Enhanced risk of infection. | [226] |
sPGF, PAA matrix | Enhanced osteogenic differentiation. | [38] |
Poly-OEGMA, Dopa | Reduced protein adsorption, cell adhesion, and enhanced osseointegration. | [227] |
Bisphosphonates | Enhanced removal strength and bone remodeling. | [228] |
Bisphosphonate, HA | Enhanced bone formation. | [229] |
Bisphosphonate | Enhanced pullout force, increased pullout energy. | [230] |
TEOS-MTES, HA | Enhanced bioactivity and implant–tissue integration. | [71] |
HA, SS | Enhanced tight apposition between bone and the coating. | [231] |
HA | Enhanced bone ingrowth, microhardness, and mineralization. | [232] |
HA | Enhanced implant fixation. | [233] |
TiAlN | Reduced osseointegration. | [234] |
HA | Enhanced bone volume. | [235] |
Femtosecond laser | Enhanced bone formation rate under osteogenic conditions. | [236] |
HA, Ti | Enhanced extraction torque. | [237] |
HA, Ti | Enhanced optimal fixation strength. | [238] |
HA | Enhanced pullout strength. | [65] |
HA | Enhanced fixation to the bone, reduced the infection and loosening. | [239] |
HA | Enhanced bone growth. | [240] |
HA, Ti-6Al-4V | Enhanced bone growth. | [241] |
HA | Enhanced bone-to-pin interface. | [242] |
HA | Enhanced bone formation. | [243] |
Nd-YAG laser | Enhanced surface roughness and maintained fracture resistance. | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultana, N.; Nishina, Y.; Nizami, M.Z.I. Surface Modifications of Medical Grade Stainless Steel. Coatings 2024, 14, 248. https://doi.org/10.3390/coatings14030248
Sultana N, Nishina Y, Nizami MZI. Surface Modifications of Medical Grade Stainless Steel. Coatings. 2024; 14(3):248. https://doi.org/10.3390/coatings14030248
Chicago/Turabian StyleSultana, Nusrat, Yuta Nishina, and Mohammed Zahedul Islam Nizami. 2024. "Surface Modifications of Medical Grade Stainless Steel" Coatings 14, no. 3: 248. https://doi.org/10.3390/coatings14030248
APA StyleSultana, N., Nishina, Y., & Nizami, M. Z. I. (2024). Surface Modifications of Medical Grade Stainless Steel. Coatings, 14(3), 248. https://doi.org/10.3390/coatings14030248