Contribution of Magnetization Mechanisms in MnZn Ferrites with Different Grain Sizes and Sintering Densification
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sai, R.; Shivashankar, S.A.; Yamaguchi, M.; Bhat, N. Magnetic Nanoferrites for RF CMOS: Enabling 5G and Beyond. Electrochem. Soc. Interface 2017, 26, 71. [Google Scholar] [CrossRef]
- Rahman, A.; Yi, N.M.; Ahmed, A.U.; Alam, T.; Singh, M.J.; Islam, M.T. A Compact 5G Antenna Printed on Manganese Zinc Ferrite Substrate Material. IEICE Electron. Express 2016, 13, 20160377. [Google Scholar] [CrossRef]
- Hu, J.; Wen, B.; Burgos, R.; Kang, Y. Design of a Wide-Input-Voltage PCB-Embedded Transformer Based Active-Clamp Flyback Converter Considering Permeability Degradation. IEEE Trans. Power Electron. 2021, 36, 10355–10365. [Google Scholar] [CrossRef]
- Jafari, A.; Samizadeh Nikoo, M.; van Erp, R.; Matioli, E. Optimized Kilowatt-Range Boost Converter Based on Impulse Rectification with 52 kW/l and 98.6% Efficiency. IEEE Trans. Power Electron. 2021, 36, 7389–7394. [Google Scholar] [CrossRef]
- Mathúna, C.O.; Wang, N.; Kulkarni, S.; Roy, S. Review of Integrated Magnetics for Power Supply on Chip (PwrSoC). IEEE Trans. Power Electron. 2012, 27, 4799–4816. [Google Scholar] [CrossRef]
- Di Capua, G.; Femia, N. A Novel Method to Predict the Real Operation of Ferrite Inductors with Moderate Saturation in Switching Power Supply Applications. IEEE Trans. Power Electron. 2016, 31, 2456–2464. [Google Scholar] [CrossRef]
- Wu, S.; Sun, A.; Xu, W.; Zhang, Q.; Zhai, F.; Logan, P.; Volinsky, A.A. Iron-Based Soft Magnetic Composites with Mn–Zn Ferrite Nanoparticles Coating Obtained by Sol–Gel Method. J. Magn. Magn. Mater. 2012, 324, 3899–3905. [Google Scholar] [CrossRef]
- Yavuz, Ö.; Ram, M.K.; Aldissi, M.; Poddar, P.; Hariharan, S. Synthesis and the Physical Properties of MnZn Ferrite and NiMnZn Ferrite–Polyaniline Nanocomposite Particles. J. Mater. Chem. 2005, 15, 810–817. [Google Scholar] [CrossRef]
- Yi, S.; Bai, G.; Wang, X.; Zhang, X.; Hussain, A.; Jin, J.; Yan, M. Development of High-Temperature High-Permeability MnZn Power Ferrites for MHz Application by Nb2O5 and TiO2 Co-Doping. Ceram. Int. 2020, 46, 8935–8941. [Google Scholar] [CrossRef]
- Kalarus, J.; Kogias, G.; Holz, D.; Zaspalis, V.T. High Permeability–High Frequency Stable MnZn Ferrites. J. Magn. Magn. Mater. 2012, 324, 2788–2794. [Google Scholar] [CrossRef]
- Keluskar, S.H.; Tangsali, R.B.; Naik, G.K.; Budkuley, J.S. High Permeability of Low Loss Mn–Zn Ferrite Obtained by Sintering Nanoparticle Mn–Zn Ferrite. J. Magn. Magn. Mater. 2006, 305, 296–303. [Google Scholar] [CrossRef]
- Janghorban, K.; Shokrollahi, H. Influence of V2O5 Addition on the Grain Growth and Magnetic Properties of Mn–Zn High Permeability Ferrites. J. Magn. Magn. Mater. 2007, 308, 238–242. [Google Scholar] [CrossRef]
- Su, H.; Zhang, H.; Tang, X.; Wei, X. Effects of Calcining and Sintering Parameters on the Magnetic Properties of High-Permeability MnZn Ferrites. IEEE Trans. Magn. 2005, 41, 4225–4228. [Google Scholar] [CrossRef]
- Zulauf, G.; Tong, Z.; Plummer, J.D.; Rivas-Davila, J.M. Active Power Device Selection in High- and Very-High-Frequency Power Converters. IEEE Trans. Power Electron. 2019, 34, 6818–6833. [Google Scholar] [CrossRef]
- Kollár, P.; Olekšáková, D.; Vojtek, V.; Füzer, J.; Fáberová, M.; Bureš, R. Steinmetz Law for Ac Magnetized Iron-Phenolformaldehyde Resin Soft Magnetic Composites. J. Magn. Magn. Mater. 2017, 424, 245–250. [Google Scholar] [CrossRef]
- Ying, Y.; Hu, L.; Li, Z.; Zheng, J.; Yu, J.; Li, W.; Qiao, L.; Cai, W.; Li, J.; Bao, D.; et al. Preparation of Densified Fine-Grain High-Frequency MnZn Ferrite Using the Cold Sintering Process. Materials 2023, 16, 3454. [Google Scholar] [CrossRef]
- Wu, T.; Wang, C.; Li, Z.; Lan, Z.; Yu, Z.; Du, Y.; Wu, C.; Jiang, X.; Li, Q.; Wang, C.; et al. A Comprehensive Study on MnZn Ferrite Materials with High Saturation Magnetic Induction Intensity and High Permeability for Magnetic Field Energy Harvesting. J. Magn. Magn. Mater. 2024, 590, 171635. [Google Scholar] [CrossRef]
- Li, Z.; Ying, Y.; Wang, N.; Zheng, J.; Yu, J.; Li, W.; Qiao, L.; Cai, W.; Li, J.; Huang, H.; et al. Effect of Compressive Stress on Power Loss of Mn–Zn Ferrite for High-Frequency Applications. Ceram. Int. 2022, 48, 17723–17728. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, J.; Liu, T.; Han, Y.; Zhang, H. Calcination Induced Phase Transformation in MnZn Ferrite Powders. J. Alloys Compd. 2020, 814, 152307. [Google Scholar] [CrossRef]
- Bhandare, S.V.; Kumar, R.; Anupama, A.V.; Choudhary, H.K.; Jali, V.M.; Sahoo, B. Mechanistic Insights into the Sol-Gel Synthesis of Complex (Quaternary) Co–Mn–Zn-Spinel Ferrites: An Annealing Dependent Study. Ceram. Int. 2020, 46, 17400–17415. [Google Scholar] [CrossRef]
- Xu, Z.; Yu, Z.; Sun, K.; Li, L.; Ji, H.; Lan, Z. Microstructure and Magnetic Properties of Sn-Substituted MnZn Ferrites. J. Magn. Magn. Mater. 2009, 321, 2883–2889. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, J.; Zhou, L.; Yao, D. The Improved Saturation Magnetization and Initial Permeability in Mn–NiZn Ferrites after Cooling in Vacuum. Appl. Phys. A 2022, 128, 306. [Google Scholar] [CrossRef]
- Marracci, M.; Tellini, B. Hysteresis Losses of Minor Loops versus Temperature in MnZn Ferrite. IEEE Trans. Magn. 2013, 49, 2865–2869. [Google Scholar] [CrossRef]
- Töpfer, J.; Angermann, A. Complex Additive Systems for Mn-Zn Ferrites with Low Power Loss. J. Appl. Phys. 2015, 117, 17A504. [Google Scholar] [CrossRef]
- Sun, K.; Wu, C.; Yang, Y.; Yu, Z.; Guo, R.; Wei, P.; Jiang, X.; Lan, Z. Cation Distribution and Temperature Dependence of Brillouin Function for Nickel-Substituted Manganese–Zinc Ferrites. IEEE Trans. Magn. 2015, 51, 6301304. [Google Scholar] [CrossRef]
- Praveena, K.; Chen, H.-W.; Liu, H.-L.; Sadhana, K.; Murthy, S.R. Enhanced Magnetic Domain Relaxation Frequency and Low Power Losses in Zn2+ Substituted Manganese Ferrites Potential for High Frequency Applications. J. Magn. Magn. Mater. 2016, 420, 129–142. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, Z.; Guo, Q.; Sun, K.; Guo, R.; Jiang, X.; Liu, Y.; Liu, H.; Wu, G.; Lan, Z. Thermomagnetization Characteristics and Ferromagnetic Resonance Linewidth Broadening Mechanism for Ca-Sn Co-Substituted YIG Ferrites. Ceram. Int. 2018, 44, 11718–11723. [Google Scholar] [CrossRef]
- Wu, C.; Wang, W.; Li, Q.; Wei, M.; Luo, Q.; Fan, Y.; Jiang, X.; Lan, Z.; Jiao, Z.; Tian, Y.; et al. Barium Hexaferrites with Narrow Ferrimagnetic Resonance Linewidth Tailored by Site-Controlled Cu Doping. J. Am. Ceram. Soc. 2022, 105, 7492–7501. [Google Scholar] [CrossRef]
- Dhiman, R.L.; Taneja, S.P.; Reddy, V.R. Structural and Mössbauer Spectral Studies of Nanosized Aluminum Doped Manganese Zinc Ferrites. Adv. Condens. Matter Phys. 2009, 2008, e839536. [Google Scholar] [CrossRef]
- Siddique, M.; Butt, N.M.; Shafi, M.; Abbas, T.; Misbah, U.-I. Cation Distribution in Ni-Substituted Mn-Ferrites by Mössbauer Technique. J. Radioanal. Nucl. Chem. 2003, 258, 525–529. [Google Scholar] [CrossRef]
- Wu, G.; Yu, Z.; Guo, R.; Wang, Z.; Wang, H.; Hu, Z.; Liu, M. Effects of Magnetic Domain Morphology on the Magnetic Spectrum and High-Frequency Core Losses of MnZn Ferrites. J. Am. Ceram. Soc. 2024, 107, 1117–1126. [Google Scholar] [CrossRef]
- Wu, G.; Yu, Z.; Sun, K.; Guo, R.; Wang, B.; Jiang, X.; Li, L.; Lan, Z. Excellent Tunable DC Bias Superposition Characteristics for Manganese–Zinc Ferrites. IEEE Trans. Power Electron. 2020, 35, 1845–1854. [Google Scholar] [CrossRef]
- Baguley, C.A.; Madawala, U.K.; Carsten, B. The Influence of Remanence on Magnetostrictive Vibration and Hysteresis in Mn-Zn Ferrite Cores. IEEE Trans. Magn. 2012, 48, 1844–1850. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Y.; Yu, C.; Young, L.; Spector, J.; Harris, V.G. Emerging Magnetodielectric Materials for 5G Communications: 18H Hexaferrites. Acta Mater. 2022, 231, 117854. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Y.; Li, Q.; Li, L.; Qian, K.; Harris, V.G. Suppressed Domain Wall Damping in Planar BaM Hexaferrites for Miniaturization of Microwave Devices. J. Magn. Magn. Mater. 2020, 514, 167172. [Google Scholar] [CrossRef]
- Ahns, S.J.; Yoon, C.S.; Yoon, S.G.; Kim, C.K.; Byun, T.Y.; Hong, K.S. Domain Structure of Polycrystalline MnZn Ferrites. Mater. Sci. Eng. B 2001, 84, 146–154. [Google Scholar] [CrossRef]
- Acher, O.; Adenot, A.L. Bounds on the Dynamic Properties of Magnetic Materials. Phys. Rev. B 2000, 62, 11324–11327. [Google Scholar] [CrossRef]
- Race, C.P.; Hadian, R.; von Pezold, J.; Grabowski, B.; Neugebauer, J. Mechanisms and Kinetics of the Migration of Grain Boundaries Containing Extended Defects. Phys. Rev. B 2015, 92, 174115. [Google Scholar] [CrossRef]
- Xing, Y.; Myers, J.; Obi, O.; Sun, N.X.; Zhuang, Y. Excessive Grain Boundary Conductivity of Spin-Spray Deposited Ferrite/Non-Magnetic Multilayer. J. Appl. Phys. 2012, 111, 07A512. [Google Scholar] [CrossRef]
- Fujita, A.; Gotoh, S. Temperature Dependence of Core Loss in Co-Substituted MnZn Ferrites. J. Appl. Phys. 2003, 93, 7477–7479. [Google Scholar] [CrossRef]
- Tsutaoka, T. Frequency Dispersion of Complex Permeability in Mn–Zn and Ni–Zn Spinel Ferrites and Their Composite Materials. J. Appl. Phys. 2003, 93, 2789–2796. [Google Scholar] [CrossRef]
Sample No. | D (μm) | μi (f = 1 kHz) | Ms (kA/m3) | Hc (kA/m) | d (g/cm3) | P (%) |
---|---|---|---|---|---|---|
1 | 3.7 | 2794 | 440 | 3 | 5.09 | 1.9 |
2 | 5.5 | 2796 | 442 | 3 | 5.11 | 1.5 |
3 | 8.9 | 2961 | 441 | 2 | 5.11 | 1.5 |
4 | 11.5 | 3097 | 441 | 3 | 5.10 | 1.7 |
5 | 14.1 | 2996 | 439 | 5 | 5.07 | 2.3 |
No. | χd0 | χs0 | α | β (×108) | ωd (×108 Hz) | ωs (×108 Hz) | (×107 Hz) | (×107 Hz) |
---|---|---|---|---|---|---|---|---|
1 | 1536 | 1454 | 26.1 | 0.13 | 0.13 | 7.9 | 2.18 | 2.72 |
2 | 1637 | 1339 | 26.4 | 0.15 | 0.13 | 7.6 | 1.33 | 2.81 |
3 | 1701 | 1316 | 24.7 | 0.15 | 0.11 | 6.4 | 1.22 | 4.75 |
4 | 1742 | 1289 | 19.5 | 0.10 | 0.08 | 4.3 | 2.20 | 6.47 |
5 | 1663 | 1471 | 20.6 | 0.11 | 0.09 | 4.8 | 1.52 | 5.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Liao, J.; Li, C.; Huang, G. Contribution of Magnetization Mechanisms in MnZn Ferrites with Different Grain Sizes and Sintering Densification. Coatings 2024, 14, 302. https://doi.org/10.3390/coatings14030302
Liu H, Liao J, Li C, Huang G. Contribution of Magnetization Mechanisms in MnZn Ferrites with Different Grain Sizes and Sintering Densification. Coatings. 2024; 14(3):302. https://doi.org/10.3390/coatings14030302
Chicago/Turabian StyleLiu, Hai, Jihong Liao, Chonghua Li, and Gang Huang. 2024. "Contribution of Magnetization Mechanisms in MnZn Ferrites with Different Grain Sizes and Sintering Densification" Coatings 14, no. 3: 302. https://doi.org/10.3390/coatings14030302
APA StyleLiu, H., Liao, J., Li, C., & Huang, G. (2024). Contribution of Magnetization Mechanisms in MnZn Ferrites with Different Grain Sizes and Sintering Densification. Coatings, 14(3), 302. https://doi.org/10.3390/coatings14030302