Wear Behavior of TiAlVN-Coated Tools in Milling Operations of INCONEL® 718
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Machining Tools
2.1.2. Machined Material
2.2. Methods
2.2.1. Machining Tests
2.2.2. Machined Surface Roughness Analysis
2.2.3. Tool Wear Analysis
3. Results and Discussion
3.1. Machined Surface Roughness Analysis
3.2. Wear Measurements and Characterization
3.3. Analysis of Wear Mechanisms
3.3.1. Cutting Speed of 75 m/min
3.3.2. Cutting Speed of 100 m/min
3.3.3. Cutting Speed of 125 m/min
4. Conclusions
- The parameters had a direct influence on both the roughness of the machined surface and the resulting wear;
- In general, as for the roughness of the machined surface, the condition that allowed the best result was S125F75L5. However, when increasing the cutting length, the surface roughness values also increased;
- No clear trend was observed for the influence of feed per tooth and cutting speed regarding the roughness of the machined surface. However, in general, when these parameters were increased, the roughness also increased;
- As the selected milling strategy was a spiral, there were some measurement differences in the center and periphery of the part, causing the standard deviation to be higher in some situations. This happened due to the wear progress of the tool over the cutting length from the center to the periphery;
- Flank wear was higher for condition S100F150L15 and lower for condition S125F100L5, which show the influence of the cutting length and, maybe, a conjugated slight influence of the cutting speed;
- The longer the cutting length, the greater the abrasive wear, for example, when comparing conditions S75F100L5 and S75F100L15;
- The higher the cutting speed, the more developed was the wear, for example, when comparing the conditions tested at 100 m/min and 125 m/min; in the latter, the wear was more developed and of greater intensity;
- Abrasive wear, material adhesion, and delamination were the predominant wear mechanisms identified in all tested conditions. Furthermore, cracking, bubbles in the coating, chipping, and breakage of the cutting tool’s edge were also observed under different conditions;
- For condition S75F75L5, abrasive wear, delamination, and material adhesion were mainly observed, and for condition S75F75L15, the intensity of abrasive wear was more intense, as well as the appearance of chipping, cracking, and bubbles in the coating;
- In the case of conditions S75F100L5 and S75F100L15, the abrasive wear and coating delamination were of high intensity in the second, with the presence of delamination, adhered material, bubbles, and cracking;
- For conditions S100F75L5 and S100F75L15, the mechanisms were delamination, cracking, blisters, abrasive wear, and material adhesion;
- Conditions S100F100L15 and S100F150L15 had a failure and fracture due to the increase in process temperature, causing delamination and causing the tool substrate to be in direct contact with the workpiece to be machined;
- Conditions at 125 m/min cutting speed had abrasive wear, adhesion, delamination, cracking, blisters, and eventual fracture of the cutting edge;
- The factors that led to the delamination of the coating were the low resistance to crack propagation of the monolayer coating, as well as the presence of bubbles on its surface. These bubbles result from the PVD deposition process and made the chip flow over the tools’ surface difficult, promoting coating detachment in localized areas. These detachments leave the substrate visible, create favorable conditions to deposit adhered material from the workpiece, and work as anchors for the further development of cracks. Due to the high hardness of the coating, which implies lower toughness, the coating tends to break and detach in a more severe way from the substrate. This makes the wear drastically increase, leaving the substrate uncoated in the contact area. The remaining phenomena that originated from the severe cutting conditions promoted effects such as breakage of the tool’s cutting edges. Furthermore, the high heat generation in the process also had an influence on the phenomenon previously described.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
S75F75L5 | S75F75L15 | S75F100L5 | S75F100L15 | S75F150L5 | S75F150L15 | S100F75L5 | S100F75L15 | S100F100L5 | S100F100L15 | S100F150L5 | S100F150L15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.809 | 0.694 | 0.800 | 0.902 | 0.813 | 1.009 | 0.932 | 0.720 | 0.678 | 1.217 | 0.816 | 2.819 |
Variance | 0.005 | 0.009 | 0.004 | 0.015 | 0.001 | 0.007 | 0.046 | 0.023 | 0.015 | 0.194 | 0.035 | 0.281 |
Observations | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Hypothesized mean Difference | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
df | 7 | 7 | 6 | 7 | 6 | 6 | ||||||
t-Score | 2.140 | −1.650 | −4.655 | 1.802 | −2.634 | −7.969 | ||||||
P(T ≤ t) two-tail (p-value) | 0.065 | 0.138 | 0.003 | 0.115 | 0.039 | 0.000 | ||||||
t critical two-tail | 2.365 | 2.365 | 2.447 | 2.365 | 2.447 | 2.447 |
S125F75L5 | S125F75L15 | S125F100L5 | S125F100L15 | S125F150L5 | S125F150L15 | |
---|---|---|---|---|---|---|
Mean | 0.563 | 0.795 | 0.899 | 1.307 | 0.728 | 2.142 |
Variance | 0.006 | 0.013 | 0.004 | 0.219 | 0.009 | 0.115 |
Observations | 5 | 5 | 5 | 5 | 5 | 5 |
Hypothesized mean Difference | 0 | 0 | 0 | |||
df | 6 | 7 | 5 | |||
t-Score | −7.969 | −3.786 | −1.926 | |||
P(T ≤ t) two-tail (p-value) | 0.000 | 0.007 | 0.112 | |||
t critical two-tail | 2.447 | 2.365 | 2.571 |
S75F75L5 | S75F100L5 | S75F75L15 | S75F100L15 | S100F75L5 | S100F100L5 | S100F75L15 | S100F100L15 | S125F75L5 | S125F100L5 | S125F75L15 | S125F100L15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.809 | 0.800 | 0.694 | 0.902 | 0.932 | 0.678 | 0.720 | 1.217 | 0.563 | 0.899 | 0.795 | 1.307 |
Variance | 0.005 | 0.004 | 0.009 | 0.015 | 0.046 | 0.015 | 0.023 | 0.194 | 0.006 | 0.004 | 0.013 | 0.219 |
Observations | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Hypothesized mean Difference | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
df | 7 | 8 | 7 | 6 | 7 | 5 | ||||||
t-Score | 0.215 | −2.954 | 2.307 | −2.381 | −7.416 | −2.372 | ||||||
P(T ≤ t) two-tail (p-value) | 0.836 | 0.021 | 0.055 | 0.001 | 0.000 | 0.064 | ||||||
t critical two-tail | 2.571 | 2.365 | 2.365 | 2.447 | 2.365 | 2.571 |
S75F100L5 | S75F150L5 | S75F100L15 | S75F150L15 | S100F100L5 | S100F150L5 | S100F100L15 | S100F150L15 | S125F100L5 | S125F150L5 | S125F100L15 | S125F150L15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.800 | 0.813 | 0.902 | 1.009 | 0.678 | 0.816 | 1.217 | 2.819 | 0.899 | 0.728 | 1.307 | 2.142 |
Variance | 0.004 | 0.001 | 0.015 | 0.007 | 0.015 | 0.035 | 0.194 | 0.281 | 0.004 | 0.009 | 0.219 | 0.115 |
Observations | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Hypothesized mean Difference | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
df | 7 | 7 | 7 | 7 | 7 | 7 | ||||||
t-Score | −4.104 | −1.580 | −1.382 | −5.195 | 3.336 | −3.227 | ||||||
P(T ≤ t) two-tail (p-value) | 0.694 | 0.158 | 0.209 | 0.001 | 0.012 | 0.015 | ||||||
t critical two-tail | 2.365 | 2.365 | 2.365 | 2.365 | 2.365 | 2.365 |
S75F75L5 | S75F150L5 | S75F75L15 | S75F150L15 | S100F75L5 | S100F150L5 | S100F75L15 | S100F150L15 | S125F75L5 | S125F150L5 | S125F75L15 | S125F150L15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.809 | 0.813 | 0.694 | 1.009 | 0.932 | 0.816 | 0.720 | 2.819 | 0.563 | 0.728 | 0.795 | 2.142 |
Variance | 0.005 | 0.001 | 0.009 | 0.007 | 0.046 | 0.035 | 0.023 | 0.281 | 0.006 | 0.009 | 0.013 | 0.115 |
Observations | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Hypothesized mean Difference | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
df | 7 | 7 | 7 | 6 | 7 | 6 | ||||||
t-Score | −0.112 | −5.406 | 0.913 | −8.508 | −3.072 | −8.421 | ||||||
P(T ≤ t) two-tail (p-value) | 0.914 | 0.001 | 0.392 | 0.000 | 0.018 | 0.000 | ||||||
t critical two-tail | 2.365 | 2.365 | 2.365 | 2.447 | 2.365 | 2.447 |
S75F75L5 | S100F75L5 | S75F75L15 | S100F75L15 | S75F100L5 | S100F100L5 | S75F100L15 | S100F100L15 | S75F150L5 | S100F150L5 | S75F150L15 | S100F150L15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.809 | 0.932 | 0.694 | 0.720 | 0.800 | 0.678 | 0.902 | 1.217 | 0.813 | 0.816 | 1.009 | 2.819 |
Variance | 0.005 | 0.046 | 0.009 | 0.023 | 0.004 | 0.015 | 0.015 | 0.194 | 0.001 | 0.035 | 0.007 | 0.281 |
Observations | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Hypothesized mean Difference | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
df | 6 | 7 | 6 | 6 | 5 | 5 | ||||||
t-Score | −1.220 | −0.321 | 2.000 | −1.538 | −0.035 | −7.536 | ||||||
P(T ≤ t) two-tail (p-value) | 0.268 | 0.758 | 0.086 | 0.175 | 0.973 | 0.001 | ||||||
t critical two-tail | 2.447 | 2.365 | 2.365 | 2.447 | 2.571 | 2.571 |
S100F75L5 | S125F75L5 | S100F75L15 | S125F75L15 | S100F100L5 | S125F100L5 | S100F100L15 | S125F100L15 | S100F150L5 | S125F150L5 | S100F150L15 | S125F150L15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.932 | 0.563 | 0.720 | 0.795 | 0.678 | 0.899 | 1.217 | 1.307 | 0.816 | 0.728 | 2.819 | 2.142 |
Variance | 0.046 | 0.006 | 0.023 | 0.013 | 0.015 | 0.004 | 0.001 | 0.219 | 0.035 | 0.009 | 0.281 | 0.115 |
Observations | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Hypothesized mean Difference | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
df | 6 | 7 | 7 | 7 | 7 | 7 | ||||||
t-Score | 3.633 | −0.879 | −3.550 | −0.313 | 0.942 | 2.406 | ||||||
P(T ≤ t) two-tail (p-value) | 0.011 | 0.409 | 0.009 | 0.764 | 0.377 | 0.047 | ||||||
t critical two-tail | 2.447 | 2.365 | 2.365 | 2.365 | 2.365 | 2.365 |
S75F75L5 | S125F75L5 | S75F75L15 | S125F75L15 | S75F100L5 | S125F100L5 | S75F100L15 | S125F100L15 | S75F150L5 | S125F150L5 | S75F150L15 | S125F150L15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.809 | 0.563 | 0.694 | 0.795 | 0.800 | 0.899 | 0.902 | 1.307 | 0.813 | 0.728 | 1.009 | 2.142 |
Variance | 0.005 | 0.006 | 0.009 | 0.013 | 0.004 | 0.004 | 0.002 | 0.219 | 0.001 | 0.009 | 0.007 | 0.115 |
Observations | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Hypothesized mean Difference | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
df | 7 | 7 | 7 | 5 | 6 | 5 | ||||||
t-Score | 5.289 | −1.509 | −2.443 | −1.867 | 1.906 | −7.239 | ||||||
P(T ≤ t) two-tail (p-value) | 0.001 | 0.175 | 0.045 | 0.121 | 0.105 | 0.001 | ||||||
t critical two-tail | 2.365 | 2.776 | 2.365 | 2.571 | 2.447 | 2.571 |
References
- Abegunde, O.O.; Akinlabi, E.T.; Oladijo, O.P.; Akinlabi, S.; Ude, A.U. Overview of Thin Film Deposition Techniques. AIMS Mater. Sci. 2019, 6, 174–199. [Google Scholar] [CrossRef]
- M’Saoubi, R.; Outeiro, J.C.; Chandrasekaran, H.; Dillon, O.W., Jr.; Jawahir, I.S. A Review of Surface Integrity in Machining and Its Impact on Functional Performance and Life of Machined Products. Int. J. Sustain. Manuf. 2008, 1, 203–236. [Google Scholar] [CrossRef]
- Sheu, H.-H.; Lin, M.-H.; Jian, S.-Y.; Hong, T.-Y.; Hou, K.-H.; Ger, M.-D. Improve the Mechanical Properties and Wear Resistance of Cr-C Thin Films by Adding Al2O3 Particles. Surf. Coat. Technol. 2018, 350, 1036–1044. [Google Scholar] [CrossRef]
- Durst, O.; Ellermeier, J.; Berger, C. Influence of Plasma-Nitriding and Surface Roughness on the Wear and Corrosion Resistance of Thin Films (PVD/PECVD). Surf. Coat. Technol. 2008, 203, 848–854. [Google Scholar] [CrossRef]
- Sousa, V.F.C.; Silva, F.J.G. Recent Advances on Coated Milling Tool Technology—A Comprehensive Review. Coatings 2020, 10, 235. [Google Scholar] [CrossRef]
- Vasudev, H.; Singh, G.; Bansal, A.; Vardhan, S.; Thakur, L. Microwave Heating and Its Applications in Surface Engineering: A Review. Mater. Res. Express 2019, 6, 102001. [Google Scholar] [CrossRef]
- Stroosnijder, M.F.; Mévrel, R.; Bennett, M.J. The Interaction of Surface Engineering and High Temperature Corrosion Protection. Mater. High. Temp. 1994, 12, 53–66. [Google Scholar] [CrossRef]
- Bhushan, B.; Gupta, B.K. Handbook of Tribology: Materials, Coatings, and Surface Treatments; McGraw-Hill, Ed.; McGraw-Hill: New York, NY, USA, 1991; Volume 1, ISBN 9780070052499. [Google Scholar]
- González, J.; Rodríguez, I.; Prado-Cerqueira, J.-L.; Diéguez, J.L.; Pereira, A. Additive Manufacturing with GMAW Welding and CMT Technology. Procedia Manuf. 2017, 13, 840–847. [Google Scholar] [CrossRef]
- Lee, J.; Park, H.J.; Chai, S.; Kim, G.R.; Yong, H.; Bae, S.J.; Kwon, D. Review on Quality Control Methods in Metal Additive Manufacturing. Appl. Sci. 2021, 11, 1966. [Google Scholar] [CrossRef]
- Bambach, M.; Sviridov, A.; Weisheit, A.; Schleifenbaum, J.H. Case Studies on Local Reinforcement of Sheet Metal Components by Laser Additive Manufacturing. Metals 2017, 7, 113. [Google Scholar] [CrossRef]
- Kashani, H.; Amadeh, A.; Ghasemi, H.M. Room and High Temperature Wear Behaviors of Nickel and Cobalt Base Weld Overlay Coatings on Hot Forging Dies. Wear 2007, 262, 800–806. [Google Scholar] [CrossRef]
- Sebbe, N.P.V.; Fernandes, F.; Sousa, V.F.C.; Silva, F.J.G. Hybrid Manufacturing Processes Used in the Production of Complex Parts: A Comprehensive Review. Metals 2022, 12, 1874. [Google Scholar] [CrossRef]
- Padaki, M.; Isloor, A.M.; Nagaraja, K.K.; Nagaraja, H.S.; Pattabi, M. Conversion of Microfiltration Membrane into Nanofiltration Membrane by Vapour Phase Deposition of Aluminium for Desalination Application. Desalination 2011, 274, 177–181. [Google Scholar] [CrossRef]
- Sousa, V.F.C.; Silva, F.J.G.; Lopes, H.; Casais, R.C.B.; Baptista, A.; Pinto, G.; Alexandre, R. Wear Behavior and Machining Performance of TiAlSiN-Coated Tools Obtained by Dc MS and HiPIMS: A Comparative Study. Materials 2021, 14, 5122. [Google Scholar] [CrossRef]
- Pedersen, H.; Elliott, S.D. Studying Chemical Vapor Deposition Processes with Theoretical Chemistry. Theor. Chem. Acc. 2014, 133, 1476. [Google Scholar] [CrossRef]
- Seshan, K. Handbook of Thin Film Deposition Techniques Principles, Methods, Equipment and Applications, Second Editon; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar] [CrossRef]
- Sousa, V.F.C.; Da Silva, F.J.G.; Pinto, G.F.; Baptista, A.; Alexandre, R. Characteristics and Wear Mechanisms of TiAlN-Based Coatings for Machining Applications: A Comprehensive Review. Metals 2021, 11, 260. [Google Scholar] [CrossRef]
- Carlsson, J.-O.; Martin, P.M. Chemical Vapor Deposition. In Handbook of Deposition Technologies for Films and Coatings; Elsevier: Amsterdam, The Netherlands, 2010; pp. 314–363. [Google Scholar] [CrossRef]
- Schalk, N.; Keckes, J.; Czettl, C.; Burghammer, M.; Penoy, M.; Michotte, C.; Mitterer, C. Investigation of the Origin of Compressive Residual Stress in CVD TiB2 Hard Coatings Using Synchrotron X-Ray Nanodiffraction. Surf. Coat. Technol. 2014, 258, 121–126. [Google Scholar] [CrossRef]
- Kainz, C.; Schalk, N.; Tkadletz, M.; Mitterer, C.; Czettl, C. The Effect of B and C Addition on Microstructure and Mechanical Properties of TiN Hard Coatings Grown by Chemical Vapor Deposition. Thin Solid Films 2019, 688, 137283. [Google Scholar] [CrossRef]
- Mattox, D.M. Physical Vapor Deposition (PVD) Processes. Metal Finish. 2002, 100, 394–408. [Google Scholar] [CrossRef]
- Mattox, D.M. Deposition Processes. In The Foundations of Vacuum Coating Technology; Springer: Berlin/Heidelberg, Germany, 2003; pp. 11–33. [Google Scholar] [CrossRef]
- Kelly, P.J.; Arnell, R.D. Magnetron Sputtering: A Review of Recent Developments and Applications. Vacuum 2000, 56, 159–172. [Google Scholar] [CrossRef]
- Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G. Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. Coatings 2018, 8, 402. [Google Scholar] [CrossRef]
- Sabzi, M.; Anijdan, S.H.M.; Shamsodin, M.; Farzam, M.; Hojjati-Najafabadi, A.; Feng, P.; Park, N.; Lee, U. A Review on Sustainable Manufacturing of Ceramic-Based Thin Films by Chemical Vapor Deposition (CVD): Reactions Kinetics and the Deposition Mechanisms. Coatings 2023, 13, 188. [Google Scholar] [CrossRef]
- Schalk, N.; Tkadletz, M.; Mitterer, C. Hard Coatings for Cutting Applications: Physical vs. Chemical Vapor Deposition and Future Challenges for the Coatings Community. Surf. Coat. Technol. 2022, 429, 127949. [Google Scholar] [CrossRef]
- Abdullah, M.Z.; Ahmad, M.A.; Abdullah, A.N.; Othman, M.H.; Hussain, P.; Zainuddin, A. Metal Release of Multilayer Coatings by Physical Vapour Deposition (PVD). Procedia Eng. 2016, 148, 254–260. [Google Scholar] [CrossRef]
- Jeong, D.; Reddy, V.R.M.; Pallavolu, M.R.; Cho, H.; Park, C. Investigation on the Performance of SnS Solar Cells Grown by Sputtering and Effusion Cell Evaporation. Korean J. Chem. Eng. 2020, 37, 1066–1070. [Google Scholar] [CrossRef]
- Ghailane, A.; Makha, M.; Larhlimi, H.; Alami, J. Design of Hard Coatings Deposited by HiPIMS and DcMS. Mater. Lett. 2020, 280, 128540. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Gao, K.; Liu, R. Adjustable TiN Coatings Deposited with HiPIMS on Titanium Bipolar Plates for PEMFC. Int. J. Hydrogen Energy 2022, 47, 39215–39224. [Google Scholar] [CrossRef]
- Narasimha, M.; Tewodros, D.; Rejikumar, R. Improving Wear Resistance of Cutting Tool by Coating. IOSR J. Eng. 2014, 4, 6–14. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Chen, M. Enhancing the Machining Performance by Cutting Tool Surface Modifications: A Focused Review. Mach. Sci. Technol. 2019, 23, 477–509. [Google Scholar] [CrossRef]
- Sreejith, P.S.; Ngoi, B.K.A. Dry Machining: Machining of the Future. J. Mater. Process. Technol. 2000, 101, 287–291. [Google Scholar] [CrossRef]
- Nogueira, F.R.; Pedroso, A.F.V.; Sousa, V.F.C.; Sebbe, N.P.V.; Sales-Contini, R.C.M.; Barbosa, M.L.S. A Brief Review of Injection-Mould Materials Hybrid Manufacturing Processes. In Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems; Silva, F.J.G., Pereira, A.B., Campilho, R.D.S.G., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 796–806. [Google Scholar] [CrossRef]
- Silva, F.J.G.; Martinho, R.P.; Alexandre, R.J.D.; Baptista, A.P.M. Increasing the Wear Resistance of Molds for Injection of Glass Fiber Reinforced Plastics. Wear 2011, 271, 2494–2499. [Google Scholar] [CrossRef]
- Silva, F.; Martinho, R.; Andrade, M.; Baptista, A.; Alexandre, R. Improving the Wear Resistance of Moulds for the Injection of Glass Fibre–Reinforced Plastics Using PVD Coatings: A Comparative Study. Coatings 2017, 7, 28. [Google Scholar] [CrossRef]
- Ghiotti, A.; Bruschi, S.; Sgarabotto, F.; Bariani, P.F. Tribological Performances of Zn-Based Coating in Direct Hot Stamping. Tribol. Int. 2014, 78, 142–151. [Google Scholar] [CrossRef]
- Borsetto, F.; Ghiotti, A.; Bruschi, S. Investigation of the High Strength Steel Al-Si Coating during Hot Stamping Operations. In Sheet Metal 2009; Key Engineering Materials; Trans Tech Publications Ltd.: Bäch, Switzerland, 2009; Volume 410, pp. 289–296. [Google Scholar] [CrossRef]
- Fotovvati, B.; Namdari, N.; Dehghanghadikolaei, A. On Coating Techniques for Surface Protection: A Review. J. Manuf. Mater. Process. 2019, 3, 28. [Google Scholar] [CrossRef]
- Mehta, N. Overview of Coating Deposition Techniques. In Tribology and Characterization of Surface Coatings; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2022; pp. 1–32. [Google Scholar] [CrossRef]
- Sivaprasad, K.; Ganesh Sundara Raman, S. Influence of Weld Cooling Rate on Microstructure and Mechanical Properties of Alloy 718 Weldments. Metall. Mater. Trans. A 2008, 39, 2115–2127. [Google Scholar] [CrossRef]
- Sonar, T.; Balasubramanian, V.; Malarvizhi, S.; Venkateswaran, T.; Sivakumar, D. An Overview on Welding of Inconel 718 Alloy—Effect of Welding Processes on Microstructural Evolution and Mechanical Properties of Joints. Mater. Charact. 2021, 174, 110997. [Google Scholar] [CrossRef]
- Sousa, V.F.C.; Fernandes, F.; Silva, F.J.G.; Costa, R.D.F.S.; Sebbe, N.; Sales-Contini, R.C.M. Wear Behavior Phenomena of TiN/TiAlN HiPIMS PVD-Coated Tools on Milling Inconel 718. Metals 2023, 13. [Google Scholar] [CrossRef]
- Venukumar, S.; Sarkar, P.; Sashank, J.S.; Sampath, P.; Saikiran, K. Microstructural and Mechanical Properties of Inconel 718 TIG Weldments. Mater. Today Proc. 2018, 5 Pt 2, 8480–8485. [Google Scholar] [CrossRef]
- Roy, S.; Kumar, R.; Anurag; Panda, A.; Das, R.K. A Brief Review on Machining of Inconel 718. Mater. Today Proc. 2018, 5 Pt 3, 18664–18673. [Google Scholar] [CrossRef]
- Baldin, V.; Baldin, C.R.B.; Machado, A.R.; Amorim, F.L. Machining of Inconel 718 with a Defined Geometry Tool or by Electrical Discharge Machining. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 265. [Google Scholar] [CrossRef]
- Sebbe, N.P.V.; Fernandes, F.; Silva, F.J.G.; Sousa, V.F.C.; Sales-Contini, R.C.M.; Campilho, R.D.S.G.; Pedroso, A.F.V. Wear Behavior Analysis of TiN/TiAlN Coated Tools in Milling of Inconel 718. In Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems; Springer Nature: Cham, Switzerland, 2024; pp. 784–795. [Google Scholar] [CrossRef]
- Ezugwu, E.O.; Wang, Z.M.; Okeke, C.I. Tool Life and Surface Integrity When Machining Inconel 718 With PVD- and CVD-Coated Tools. Tribol. Trans. 1999, 42, 353–360. [Google Scholar] [CrossRef]
- Merie, V.V.; Bȋrleanu, C.; Pustan, M.S.; Negrea, G.; Pintea, I.M. Analysis on Temperature Effect on the Mechanical and Tribological Properties of Titanium Nitride Thin Films. IOP Conf. Ser. Mater. Sci. Eng. 2016, 147, 12019. [Google Scholar] [CrossRef]
- Mitsuo, A.; Uchida, S.; Nihira, N.; Iwaki, M. Improvement of High-Temperature Oxidation Resistance of Titanium Nitride and Titanium Carbide Films by Aluminum Ion Implantation. Surf. Coat. Technol. 1998, 103–104, 98–103. [Google Scholar] [CrossRef]
- Yi, J.; Chen, S.; Chen, K.; Xu, Y.; Chen, Q.; Zhu, C.; Liu, L. Effects of Ni Content on Microstructure, Mechanical Properties and Inconel 718 Cutting Performance of AlTiN-Ni Nanocomposite Coatings. Ceram. Int. 2019, 45, 474–480. [Google Scholar] [CrossRef]
- Çomaklı, O. Improved Structural, Mechanical, Corrosion and Tribocorrosion Properties of Ti45Nb Alloys by TiN, TiAlN Monolayers, and TiAlN/TiN Multilayer Ceramic Films. Ceram. Int. 2021, 47, 4149–4156. [Google Scholar] [CrossRef]
- Li, G.; Zhang, L.; Cai, F.; Yang, Y.; Wang, Q.; Zhang, S. Characterization and Corrosion Behaviors of TiN/TiAlN Multilayer Coatings by Ion Source Enhanced Hybrid Arc Ion Plating. Surf. Coat. Technol. 2019, 366, 355–365. [Google Scholar] [CrossRef]
- Wang, J.; Yazdi, M.A.P.; Lomello, F.; Billard, A.; Kovács, A.; Schuster, F.; Guet, C.; White, T.J.; Sanchette, F.; Dong, Z. Influence of Microstructures on Mechanical Properties and Tribology Behaviors of TiN/TiXAl1−XN Multilayer Coatings. Surf. Coat. Technol. 2017, 320, 441–446. [Google Scholar] [CrossRef]
- Yang, K.; Xian, G.; Zhao, H.; Fan, H.; Wang, J.; Wang, H.; Du, H. Effect of Mo Content on the Structure and Mechanical Properties of TiAlMoN Films Deposited on WC–Co Cemented Carbide Substrate by Magnetron Sputtering. Int. J. Refract. Met. Hard Mater. 2015, 52, 29–35. [Google Scholar] [CrossRef]
- Liu, Z.R.; Chen, L.; Du, Y.; Zhang, S. Influence of Ru-Addition on Thermal Decomposition and Oxidation Resistance of TiAlN Coatings. Surf. Coat. Technol. 2020, 401, 126234. [Google Scholar] [CrossRef]
- Aninat, R.; Valle, N.; Chemin, J.-B.; Duday, D.; Michotte, C.; Penoy, M.; Bourgeois, L.; Choquet, P. Addition of Ta and Y in a Hard Ti-Al-N PVD Coating: Individual and Conjugated Effect on the Oxidation and Wear Properties. Corros. Sci. 2019, 156, 171–180. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, Y.; Qiao, H. Milling Mechanism and Chattering Stability of Nickel-Based Superalloy Inconel 718. Materials 2023, 16, 5748. [Google Scholar] [CrossRef] [PubMed]
- Kant, G.; Sangwan, K.S. Prediction and Optimization of Machining Parameters for Minimizing Power Consumption and Surface Roughness in Machining. J. Clean. Prod. 2014, 83, 151–164. [Google Scholar] [CrossRef]
- Sousa, V.F.C.; Silva, F.J.G.; Fecheira, J.S.; Lopes, H.M.; Martinho, R.P.; Casais, R.B.; Ferreira, L.P. Cutting Forces Assessment in CNC Machining Processes: A Critical Review. Sensors 2020, 20, 4536. [Google Scholar] [CrossRef] [PubMed]
- Vernon-Parry, K.D. Scanning Electron Microscopy: An Introduction. III-Vs Rev. 2000, 13, 40–44. [Google Scholar] [CrossRef]
- Zhou, W.; Apkarian, R.; Wang, Z.L.; Joy, D. Fundamentals of Scanning Electron Microscopy (SEM). In Scanning Microscopy for Nanotechnology: Techniques and Applications; Zhou, W., Wang, Z.L., Eds.; Springer: New York, NY, USA, 2007; pp. 1–40. [Google Scholar] [CrossRef]
- Cabibbo, M.; Forcellese, A.; Raffaeli, R.; Simoncini, M. Reverse Engineering and Scanning Electron Microscopy Applied to the Characterization of Tool Wear in Dry Milling Processes. Procedia CIRP 2017, 62, 233–238. [Google Scholar] [CrossRef]
- Kayaba, T.; Hokkirigawa, K.; Kato, K. Analysis of the Abrasive Wear Mechanism by Successive Observations of Wear Processes in a Scanning Electron Microscope. Wear 1986, 110, 419–430. [Google Scholar] [CrossRef]
- Lindvall, R.; Lenrick, F.; Persson, H.; M’Saoubi, R.; Ståhl, J.-E.; Bushlya, V. Performance and Wear Mechanisms of PCD and PcBN Cutting Tools during Machining Titanium Alloy Ti6Al4V. Wear 2020, 454–455, 203329. [Google Scholar] [CrossRef]
- Olsson, M.; Bushlya, V.; Lenrick, F.; Ståhl, J.-E. Evaluation of Tool Wear Mechanisms and Tool Performance in Machining Single-Phase Tungsten. Int. J. Refract. Met. Hard Mater. 2021, 94, 105379. [Google Scholar] [CrossRef]
- ISO 4288:1996; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture. International Organization for Standardization: Geneva, Switzerland, 1996.
- ISO 8688-2:1986; Tool Life Testing in Milling—Part 2: End Milling. International Organization for Standardization: Geneva, Switzerland, 1986.
- de Oliveira, E.L.; de Souza, A.F.; Diniz, A.E. Evaluating the Influences of the Cutting Parameters on the Surface Roughness and Form Errors in 4-Axis Milling of Thin-Walled Free-Form Parts of AISI H13 Steel. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 334. [Google Scholar] [CrossRef]
- Čep, R.; Janásek, A.; Petrů, J.; Sadilek, M.; Mohyla, P.; Valíček, J.; Harničárová, M.; Czán, A. Surface Roughness after Machining and Influence of Feed Rate on Process. In Precision Machining VII.; Key Engineering Materials; Trans Tech Publications Ltd.: Bäch, Switzerland, 2014; Volume 581, pp. 341–347. [Google Scholar] [CrossRef]
- Sun, S.; Brandt, M.; Dargusch, M.S. Characteristics of Cutting Forces and Chip Formation in Machining of Titanium Alloys. Int. J. Mach. Tools Manuf. 2009, 49, 561–568. [Google Scholar] [CrossRef]
- Korkut, I.; Donertas, M.A. The Influence of Feed Rate and Cutting Speed on the Cutting Forces, Surface Roughness and Tool–Chip Contact Length during Face Milling. Mater. Des. 2007, 28, 308–312. [Google Scholar] [CrossRef]
- Parhad, P.; Likhite, A.; Bhatt, J.; Peshwe, D. The Effect of Cutting Speed and Depth of Cut on Surface Roughness During Machining of Austempered Ductile Iron. Trans. Indian. Inst. Met. 2015, 68, 99–108. [Google Scholar] [CrossRef]
- Makhesana, M.A.; Patel, K.M.; Bagga, P.J. Evaluation of Surface Roughness, Tool Wear and Chip Morphology during Machining of Nickel-Based Alloy under Sustainable Hybrid Nanofluid-MQL Strategy. Lubricants 2022, 10, 315. [Google Scholar] [CrossRef]
- Liu, D.; Liu, Z.; Wang, B. Effect of Cutting Parameters on Tool Chipping Mechanism and Tool Wear Multi-Patterns in Face Milling Inconel 718. Lubricants 2022, 10, 218. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Z. Tool Wear Behaviors and Corresponding Machined Surface Topography during High-Speed Machining of Ti-6Al-4V with Fine Grain Tools. Tribol. Int. 2018, 121, 321–332. [Google Scholar] [CrossRef]
- Guo, C.-Q.; Li, H.-Q.; Peng, Y.-L.; Dai, M.-J.; Lin, S.-S.; Shi, Q.; Wei, C.-B. Residual Stress and Tribological Behavior of Hydrogen-Free Al-DLC Films Prepared by HiPIMS under Different Bias Voltages. Surf. Coat. Technol. 2022, 445, 128713. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, D.; Geng, D.; Shao, Z.; Liu, Y.; Jiang, X. Effects of Tool Vibration on Surface Integrity in Rotary Ultrasonic Elliptical End Milling of Ti–6Al–4V. J. Alloys Compd. 2020, 821, 153266. [Google Scholar] [CrossRef]
- Dehghan, S.; Soury, E. A Comparative Study on Machining and Tool Performance in Friction Drilling of Difficult-to-Machine Materials AISI304, Ti-6Al-4V, Inconel718. J. Manuf. Process. 2021, 61, 128–152. [Google Scholar] [CrossRef]
- Ning, Y.; Rahman, M.; Wong, Y.S. Investigation of Chip Formation in High Speed End Milling. J. Mater. Process. Technol. 2001, 113, 360–367. [Google Scholar] [CrossRef]
- Sarıkaya, M.; Gupta, M.K.; Tomaz, I.; Pimenov, D.Y.; Kuntoğlu, M.; Khanna, N.; Yıldırım, Ç.V.; Krolczyk, G.M. A State-of-the-Art Review on Tool Wear and Surface Integrity Characteristics in Machining of Superalloys. CIRP J. Manuf. Sci. Technol. 2021, 35, 624–658. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Li, H.; Yang, W. Delamination Mechanism Maps for Coatings/Substrates System Subjected to Adhesive Contact Loads. Thin Solid Films 2017, 626, 159–167. [Google Scholar] [CrossRef]
- Zhou, J.; Bushlya, V.; Avdovic, P.; Ståhl, J.E. Study of Surface Quality in High Speed Turning of Inconel 718 with Uncoated and Coated CBN Tools. Int. J. Adv. Manuf. Technol. 2012, 58, 141–151. [Google Scholar] [CrossRef]
- De Bartolomeis, A.; Newman, S.T.; Jawahir, I.S.; Biermann, D.; Shokrani, A. Future Research Directions in the Machining of Inconel 718. J. Mater. Process. Technol. 2021, 297, 117260. [Google Scholar] [CrossRef]
- Narutaki, N.; Yamane, Y.; Hayashi, K.; Kitagawa, T.; Uehara, K. High-Speed Machining of Inconel 718 with Ceramic Tools. CIRP Ann. 1993, 42, 103–106. [Google Scholar] [CrossRef]
- Ozkan, D.; Panjan, P.; Gok, M.S.; Karaoglanli, A.C. Experimental Study on Tool Wear and Delamination in Milling CFRPs with TiAlN- and TiN-Coated Tools. Coatings 2020, 10, 623. [Google Scholar] [CrossRef]
- Xie, W.; Zhao, Y.; Liao, B.; Wang, S.; Zhang, S. Comparative Tribological Behavior of TiN Monolayer and Ti/TiN Multilayers on AZ31 Magnesium Alloys. Surf. Coat. Technol. 2022, 441, 128590. [Google Scholar] [CrossRef]
- Lu, X.; Jia, Z.; Wang, H.; Si, L.; Liu, Y.; Wu, W. Tool Wear Appearance and Failure Mechanism of Coated Carbide Tools in Micro-Milling of Inconel 718 Super Alloy. Ind. Lubr. Tribol. 2016, 68, 267–277. [Google Scholar] [CrossRef]
- Mahesh, K.; Philip, J.T.; Joshi, S.N.; Kuriachen, B. Machinability of Inconel 718: A Critical Review on the Impact of Cutting Temperatures. Mater. Manuf. Process. 2021, 36, 753–791. [Google Scholar] [CrossRef]
- Anand Krishnan, N.; Mathew, J. Studies on Wear Behavior of AlTiN-Coated WC Tool and Machined Surface Quality in Micro Endmilling of Inconel 718. Int. J. Adv. Manuf. Technol. 2020, 110, 291–307. [Google Scholar] [CrossRef]
Tool Geometry Dimensions | Value |
---|---|
Cutting diameter | 6 mm |
Maximum cutting depth | 13 mm |
Total length | 57 mm |
Chamfer | 45°; 0.20 mm |
Helix angle | 35°/38° |
Rake angle | 12° |
Clearance angle | 10° |
Number of flutes | 4 |
Deposition Parameters | TiAlVN Layer |
---|---|
Reactor gases | Ar+ + Kr + N2 |
Target amount/composition | 4/TiAlV |
Pressure [mPa] | 580 |
Bias voltage [V] | −60 |
Holder rotational speed [rpm] | 1 |
Material Property | Value |
---|---|
Yield strength [MPa] | 1200 |
Ultimate tensile strength [MPa] | 1427 |
Hardness [HBW] | 441 |
Elements (%wt) | |||||||
---|---|---|---|---|---|---|---|
Ni | Cr | Fe | Nb | Mo | Ti | Al | Co |
53.89 | 18.05 | 17.78 | 5.350 | 2.900 | 0.960 | 0.510 | 0.200 |
Cu | Si | Mg | B | C | P | N | Mg |
0.100 | 0.080 | 0.078 | 0.039 | 0.023 | 0.010 | 0.007 | 0.0017 |
Reference | Vc [m/min] | fz [mm/tooth] | Lcut [m] | ap [mm] | ae [mm] |
---|---|---|---|---|---|
S75F75L5 | 75 | 0.0525 | 5 | 0.08 | 4.5 |
S75F75L15 | 75 | 0.0525 | 15 | 0.08 | 4.5 |
S75F100L5 | 75 | 0.0700 | 5 | 0.08 | 4.5 |
S75F100L15 | 75 | 0.0700 | 15 | 0.08 | 4.5 |
S75F150L5 | 75 | 0.1050 | 5 | 0.08 | 4.5 |
S75F150L15 | 75 | 0.1050 | 15 | 0.08 | 4.5 |
S100F75L5 | 100 | 0.0525 | 5 | 0.08 | 4.5 |
S100F75L15 | 100 | 0.0525 | 15 | 0.08 | 4.5 |
S100F100L5 | 100 | 0.0700 | 5 | 0.08 | 4.5 |
S100F100L15 | 100 | 0.0700 | 15 | 0.08 | 4.5 |
S100F150L5 | 100 | 0.1050 | 5 | 0.08 | 4.5 |
S100F150L15 | 100 | 0.1050 | 15 | 0.08 | 4.5 |
S125F75L5 | 125 | 0.0525 | 5 | 0.08 | 4.5 |
S125F75L15 | 125 | 0.0525 | 15 | 0.08 | 4.5 |
S125F100L5 | 125 | 0.0700 | 5 | 0.08 | 4.5 |
S125F100L15 | 125 | 0.0700 | 15 | 0.08 | 4.5 |
S125F150L5 | 125 | 0.1050 | 5 | 0.08 | 4.5 |
S125F150L15 | 125 | 0.1050 | 15 | 0.08 | 4.5 |
Reference | Average Ra Value [µm] |
---|---|
S75F75L5 | 0.809 ± 0.064 |
S75F75L15 | 0.694 ± 0.087 |
S75F100L5 | 0.800 ± 0.054 |
S75F100L15 | 0.902 ± 0.011 |
S75F150L5 | 0.813 ± 0.032 |
S75F150L15 | 1.009 ± 0.074 |
S100F75L5 | 0.932 ± 0.192 |
S100F75L15 | 0.719 ± 0.137 |
S100F100L5 | 0.678 ± 0.109 |
S100F100L15 | 1.217 ± 0.394 |
S100F150L5 | 0.815 ± 0.167 |
S100F150L15 | 2.819 ± 0.474 |
S125F75L5 | 0.563 ± 0.068 |
S125F75L15 | 0.795 ± 0.102 |
S125F100L5 | 0.899 ± 0.060 |
S125F100L15 | 1.307 ± 0.419 |
S125F150L5 | 0.728 ± 0.083 |
S125F150L15 | 2.142 ± 0.303 |
Condition | Comments |
---|---|
Lcut influence | As s increases, the influence of Lcut becomes greater. In the case of conditions S75F100L5 vs. S75F100L15, S100F75L5 vs. S100F75L15, and S125F100L5 vs. S125F100L15, surface quality is not affected by Lcut, as it is not statistically significant. |
f influence | The influence of f is not clear, but it appears that by increasing this parameter the surface quality is impaired, especially regarding the existence of abrasive wear. |
s influence | s is the most sensitive parameter, which has great variation and impact on the machined surface quality. In conditions considered more severe, it is a parameter that has a great influence on the machined surface quality. |
Reference | Average VB3 Value [µm] |
---|---|
S75F75L5 | 470.87 ± 95.54 |
S75F75L15 | 547.29 ± 73.92 |
S75F100L5 | 448.66 ± 85.82 |
S75F100L15 | 486.66 ± 27.80 |
S75F150L5 | 361.81 ± 86.81 |
S75F150L15 | 359.66 ± 92.08 |
S100F75L5 | 393.86 ± 90.26 |
S100F75L15 | 524.31 ± 57.41 |
S100F100L5 | 395.50 ± 89.94 |
S100F100L15 | 583.44 ± 31.10 |
S100F150L5 | 447.06 ± 53.43 |
S100F150L15 | 667.49 ± 59.56 |
S125F75L5 | 371.27 ± 109.8 |
S125F75L15 | 616.22 ± 136.2 |
S125F100L5 | 309.99 ± 45.16 |
S125F100L15 | 497.61 ± 117.6 |
S125F150L5 | 399.85 ± 32.37 |
S125F150L15 | 661.20 ± 133.3 |
Condition | Wear Mechanisms Observed |
---|---|
S75F75L5 | Abrasion |
Adhesion | |
Delamination | |
S75F75L15 | Abrasion |
Adhesion | |
Delamination | |
Chipping | |
Cracking | |
Bubbles (coating) | |
S75F100L5 | Abrasion |
Adhesion | |
Delamination | |
Bubbles (coating) | |
S75F100L15 | Abrasion |
Adhesion | |
Delamination | |
Bubbles | |
Cracking | |
S75F150L5 | Abrasion |
Adhesion | |
Delamination | |
Bubbles | |
S75F150L15 | Abrasion |
Adhesion | |
Delamination |
Condition | Wear Mechanisms Observed |
---|---|
S100F75L5 | Abrasion |
Adhesion | |
Delamination | |
Cracking | |
Bubbles | |
S100F75L15 | Abrasion |
Adhesion | |
Delamination | |
Cracking | |
Bubbles | |
S100F100L5 | Abrasion |
Adhesion | |
Delamination | |
Cracking | |
S100F100L15 | Abrasion |
Adhesion | |
Delamination | |
Fracture/break | |
S100F150L5 | Abrasion |
Adhesion | |
Delamination | |
S100F150L15 | Abrasion |
Adhesion | |
Delamination | |
Bubbles | |
Fracture/break |
Zone 1—Elements (%wt) | ||||||
---|---|---|---|---|---|---|
W | Co | C | Ti | Al | O | Cr |
86.52 | 7.66 | 1.52 | 1.39 | 1.32 | 0.8 | 0.78 |
Zone 2—Elements (%wt) | ||||
---|---|---|---|---|
Ni | Fe | Cr | Nb | Mo |
51.49 | 16.97 | 16.91 | 4.95 | 3.0 |
C | Co | Ti | W | Al |
2.04 | 1.85 | 1.11 | 1.05 | 0.62 |
Zone 3—Elements (%wt) | |||
---|---|---|---|
Ti | Al | V | N |
45.08 | 32.56 | 13.24 | 9.13 |
Condition | Wear Mechanisms Observed |
---|---|
S125F75L5 | Abrasion |
Adhesion | |
Delamination | |
Cracking | |
Bubbles | |
S125F75L15 | Abrasion |
Adhesion | |
Delamination | |
Cracking | |
Bubbles | |
Fracture/break | |
S125F100L5 | Abrasion |
Adhesion | |
Delamination | |
Cracking | |
S125F100L15 | Abrasion |
Adhesion | |
Delamination | |
Fracture/break | |
Cracking | |
Bubbles | |
S125F150L5 | Abrasion |
Adhesion | |
Delamination | |
Chipping | |
S125F150L15 | Abrasion |
Adhesion | |
Delamination | |
Bubbles | |
Fracture/break | |
Cracking |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebbe, N.P.V.; Fernandes, F.; Silva, F.J.G.; Pedroso, A.F.V.; Sales-Contini, R.C.M.; Barbosa, M.L.S.; Durão, L.M.; Magalhães, L.L. Wear Behavior of TiAlVN-Coated Tools in Milling Operations of INCONEL® 718. Coatings 2024, 14, 311. https://doi.org/10.3390/coatings14030311
Sebbe NPV, Fernandes F, Silva FJG, Pedroso AFV, Sales-Contini RCM, Barbosa MLS, Durão LM, Magalhães LL. Wear Behavior of TiAlVN-Coated Tools in Milling Operations of INCONEL® 718. Coatings. 2024; 14(3):311. https://doi.org/10.3390/coatings14030311
Chicago/Turabian StyleSebbe, Naiara P. V., Filipe Fernandes, Franciso J. G. Silva, André F. V. Pedroso, Rita C. M. Sales-Contini, Marta L. S. Barbosa, Luis M. Durão, and Luis L. Magalhães. 2024. "Wear Behavior of TiAlVN-Coated Tools in Milling Operations of INCONEL® 718" Coatings 14, no. 3: 311. https://doi.org/10.3390/coatings14030311
APA StyleSebbe, N. P. V., Fernandes, F., Silva, F. J. G., Pedroso, A. F. V., Sales-Contini, R. C. M., Barbosa, M. L. S., Durão, L. M., & Magalhães, L. L. (2024). Wear Behavior of TiAlVN-Coated Tools in Milling Operations of INCONEL® 718. Coatings, 14(3), 311. https://doi.org/10.3390/coatings14030311