Properties of Diamond-like Tungsten-Doped Carbon Coatings Lubricated with Cutting Fluid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Research Methodology
3. Results
3.1. Surface Morphology
3.2. Coating Thickness
3.3. Hardness
3.4. Contact Angle
3.5. Tribological Tests
3.6. Evaluation of Surface Morphology after Tribological Tests
3.7. Assessment of Surface Geometric Structure of Samples
4. Conclusions
- The a-C:H:W coating obtained by physical vapor deposition (PVD) was characterized by a heterogeneous structure. Spot analyses of the chemical composition indicated inclusions of tungsten particles. The average thickness of the coating was 3.06 ± 0.1 µm.
- The application of the coating contributed to a 3-fold increase in the hardness of instrumental steel 100Cr6.
- The results of wetting angle measurements indicated that both tested surfaces were characterized by hydrophilic properties. The smallest values of wetting angles were obtained for the a-C:H:W coating. They were about 27% smaller compared to 100Cr6 steel.
- Modification of the surface layer by deposition of carbon coatings doped with tungsten contributed to a significant increase in the wear resistance of 100Cr6 steel. In addition, good frictional cooperation was observed between the a-C:H:W coating and the applied cutting fluid.
- The results of tribological tests carried out with loads of 10 N and 50 N and microscopic observations of wear traces indicated that the a-C:H:W coating was characterized by the smallest coefficients of friction and good anti-wear resistance. The coefficients were 0.1 and 0.11, respectively, and were smaller by about 20% compared to the values obtained for steel 100Cr6. In addition, no wear traces were observed on a-C:H:W-coated specimens loaded with a force of 10 N; in the case of 50 N, the ear area was more than 15-fold smaller compared to the uncoated steel specimen.
- The dominant wear mechanism for 100Cr6 steel and the balls was abrasive wear with furrowing and adhesive wear. Micro-scratching and chipping of the deposited coating were observed on the surface of the coating.
- The application of diamond-like coatings of a-C:H:W type in the friction node studied improved the tribological properties through the use of cutting fluid. A synergistic interaction was observed between the surfaces of the friction pairs analyzed and the cutting fluid used for testing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burakowski, T.; Marczak, R. Eksploatacyjna warstwa wierzchnia i jej badanie. Zagadnienia Eksploat. Masz. 1995, 3, 327–337. [Google Scholar]
- Musiał, J. Zmiany zachodzące w warstwie wierzchniej w kolejnych fazach jej istnienia. Tribologia 2008, 3, 365–374. [Google Scholar]
- Niemczewska-Wójcik, M.; Madej, M.; Kowalczyk, J.; Piotrowska, K. A comparative study of the surface topography in dry and wet turning using the confocal and interferometric modes. Measurement 2022, 204, 112144. [Google Scholar] [CrossRef]
- Náprstková, N.; Novák, M.; Sviantek, J. Specific Cutting Conditions of 100Cr6 Steel Grinding and Selected Final Roughness Parameters. Adv. Sci. Technol. Res. J. 2020, 14, 184–189. [Google Scholar] [CrossRef]
- Walczak, M. Surface Characteristics and Wear Resistance of 316L Stainless Steel. Adv. Sci. Technol. Res. J. 2023, 17, 124–132. [Google Scholar] [CrossRef]
- Wolf, V.; Dobrucka, R.; Przekop, R.; Haubold, S. Innovation strategies in the context of the paradigm of the five dimensions of innovation strategy. Logforum 2021, 2, 205–211. [Google Scholar] [CrossRef]
- Kozior, T.; Hanon, M.M.; Zmarzły, P.; Gogolewski, D.; Rudnik, M.; Szot, W. Evaluation of the Influence of Technological Parameters of Selected 3D Printing Technologies on Tribological Properties. In 3D Printing and Additive Manufacturing; Ann Liebert, Inc.: New Rochelle, NY, USA, 2023. [Google Scholar]
- Vicen, M.; Krajánek, D.; Trško, L.; Bokuvka OBuchtík, M.; Florková, Z.; Frkán, M. Improving of 100Cr6 Steel Corrosion and Wear Properties in Simulted Sea Water Environment by Tungsten-Doped DLC Coating. Materials 2023, 16, 4334. [Google Scholar] [CrossRef]
- Sovelto, O. Principles of Lasers; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Orman, J.; Radek, N.; Pietraszek, J.; Wojtkowiak, J.; Szczepaniak, M. Laser Treatment of Surfaces for Pool Boiling Heat Transfer Enhancement. Materials 2023, 16, 1365. [Google Scholar] [CrossRef]
- Milewski, K.; Kudliński, J.; Madej, M.; Ozimina, D. The interaction between diamond like carbon (DLC) coatings and ionic liquids under boundary lubrication conditions. Metalurgija 2017, 1–2, 55–58. [Google Scholar]
- Madej, M.; Marczewska-Boczkowska, K.; Ozimina, D. Effect of tungsten on the durability of diamond-like carbon coatings in the chemical industry. Przemysł Chem. 2014, 93, 500–505. [Google Scholar]
- Madej, M.; Ozimina, D.; Kurzydłowski, K.; Płociński, T.; Wieciński, P.; Styp-Rekowski, M.; Matuszewski, M. Properties of diamond-like carbon coatings deposited on CoCrMo alloys. Trans. FAMENA 2015, 39, 79–88. [Google Scholar]
- Oviroh, P.O.; Akbarzadeh, R.; Pan, D.; Coetzee, R.A.M.; Jen, T.-C. New development of atomic layer deposition processes, methods and applications. Sci. Technol. Adv. Mater. 2019, 20, 465–496. [Google Scholar] [CrossRef]
- Robertson, J. Diamond like amorphous carbon. Mater. Sci. Eng. 2002, 37, 129–281. [Google Scholar] [CrossRef]
- Michalczewski, R.; Kalbarczyk, M.; Słomka, Z.; Sowa, S.; Łuszcz, M.; Osuch-Słomka, E.; Maldonado-Cortés, D.; Liu, L.; Antonov, M.; Hussainova, I. The wear of PVD coated elements in oscillation motion at high temperature. Proc. Estonian Acad. Sci. 2021, 70, 500–507. [Google Scholar] [CrossRef]
- Mozgovoy, S.; Hardell, J.; Prakash, B. High Temperature Friction and Wear Performance of PVD Coatings under Press Hardening Contact Conditions. Adv. Tribol. 2019, 2019, 4981246. [Google Scholar] [CrossRef]
- Kaneko, M.; Hiratsuka, M.; Alanazi, A.; Nakamori, H.; Namiki, K.; Hirakuri, K. Surface Reformation of Medical Devices with DLC Coating. Materials 2021, 14, 376. [Google Scholar] [CrossRef]
- Sulaiman, M.H.; Farahana, R.N.; Mustaffa, M.N.; Bienk, K. Tribological properties of DLC coating under lubricated and dry friction condition. IOP Conf. Ser. Mater. Sci. Eng. 2019, 670, 012052. [Google Scholar] [CrossRef]
- Kržan, B.; Kalin, M.; Jože, J. Tribological behaviour of tungsten-doped DLC coated gears. Metalurgija 2008, 47, 290–298. [Google Scholar]
- Antonowicz, M.; Kurpanik, R.; Walke, W.; Basiaga, M.; Sondor, J.; Paszenda, Z. Selected Physicochemical Properties of Diamond Like Carbon (DLC) Coating on Ti-13Nb-13Zr Alloy Used for Blood Contacting Implants. Materials 2020, 13, 5077. [Google Scholar] [CrossRef]
- Czyżniewski, A. Powłoki DLC w zastosowaniu do pokrywania elementów maszyn. Inżynieria Mater. 2003, 6, 435–438. [Google Scholar]
- Evaristo, M.; Fernandes, F.; Cavaleiro, A. Room and High Temperature Tribological Behaviour of W-DLC Coatings Produced by DCMS and Hybrid DCMS-HiPIMS Configuration. Coatings 2020, 10, 319. [Google Scholar] [CrossRef]
- Sánchez-López, J.C.; Fernández, A. Doping and alloying effects on DLC coatings. In Tribology of Diamond-like Carbon Films; Donnet, C., Erdemir, A., Eds.; Springer: Boston, MA, USA, 2008. [Google Scholar]
- Yetim, A.; Kovacı, H.; Kasapoğlu, A.; Bozkurt, Y.; Çelik, A. Influences of Ti, Al and V metal doping on the structural, mechanical and tribological properties of DLC films. Diam. Relat. Mater. 2021, 120, 108639. [Google Scholar] [CrossRef]
- Bai, M.; Yang, L.; Li, J.; Luo, L.; Sun, S.; Inkson, B. Mechanical and tribological properties of Si and W doped diamond like carbon (DLC) under dry reciprocating sliding conditions. Wear 2021, 484–485, 204046. [Google Scholar] [CrossRef]
- Piotrowska, K.; Madej, M.; Kowalczyk, J.; Radoń-Kobus, K. Surface Roughness Effects on the Properties of Silicon-Doped Diamond-like Carbon Coatings. Coatings 2023, 13, 1629. [Google Scholar] [CrossRef]
- Humphrey, E.; Elisaus, V.; Rahmani, R.; Mohammadpour, M.; Theodossiades, S.; Morris, N. Diamond like-carbon coatings for electric vehicle transmission efficiency. Tribol. Int. 2023, 189, 108916. [Google Scholar] [CrossRef]
- Kadam, N.R.; Karthikeyan, G. Wear Evaluation of AISI 4140 Alloy Steel with WC/C Lamellar Coatings Sliding Against EN 8 Using Taguchi Method. J. Inst. Eng. (India) Ser. C 2016, 97, 547–550. [Google Scholar] [CrossRef]
- Al-Samarai, R.A.; Al-Douri, Y. Tribological properties of DLC and GLC coating for automotive engine components application under lubrication. Int. J. Appl. Mech. Eng. 2023, 28, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Podgornik, B. Tribological behavior of DLC films in various lubrication regimes. In Tribology od Diamond-like Carbon Films; Springer: Berlin/Heidelberg, Germany, 2009; pp. 410–453. [Google Scholar]
- Kržan, B.; Novotny-Farkas, F.; Vižintin, J. Tribological behavior of tungsten-doped DLC coating under oil lubrication. Tribol. Int. 2009, 42, 229–235. [Google Scholar] [CrossRef]
- 100CR6, W.NR 1.3505, EN ISO 683-17 Wysokowęglowa stal Łożyskowa. Available online: https://steeltrans.com.pl/stale-stopowe/10-stale-lozyskowe/51-100cr6-lh15-wnr-13505-en-iso-683-17 (accessed on 28 July 2023).
- Technical Data Sheet SWISSCOOL 3000. Available online: https://www.etlfluidexperts.com/Files/Datasheet/MOTOREX/ETL_Fluid_Experts_SWISSCOOL_3000_EN.pdf (accessed on 28 July 2023).
100Cr6, % Content | ||||||||
---|---|---|---|---|---|---|---|---|
Fe | C | Mn | Si | P | S | Cr | Ni | Cu |
95.8–96.7 | 0.95–1.1 | 0.25–0.45 | 0.15–0.35 | max. 0.025 | 0.025 | 1.3–1.65 | max. 0.3 | max. 0.3 |
Parameter | Value |
---|---|
color | light yellow |
density at 20 °C | 9.5 g/cm3 |
viscosity at 20 °C | 25 mm2/s |
mineral oil content | 13% |
Sample—discs | Ø 42 mm—100Cr6 steel with a-C:H:W coating |
Counter sample—ball | Ø 6 mm—steel 100Cr6 |
Type of friction | rotation |
Lubricant | cutting fluid Swisscool 3000 |
Load | 10 N, 50 N |
Sliding speed | 0.1 m/s |
Sliding distance | 1000 m |
Ambient temperature | 25 ± 1 °C |
Spectrum | C | Cr | Fe | Ni | W | Total |
---|---|---|---|---|---|---|
Area, % Content | 24.13 | 0.95 | 0.49 | 6.09 | 68.36 | 100.00 |
Parameter | Mean | |
---|---|---|
100Cr6 | a-C:H:W | |
Instrumental hardness—HIT [GPa] | 4 ± 0.1 | 11 ± 1 |
Young’s modulus—EIT [GPa] | 263 ± 5 | 143 ± 26 |
Maximum penetration depth—hm [nm] | 457 ± 6 | 318 ± 16 |
Plastic work—Wplast [%] | 89 | 39 |
Elastic work—Welast [%] | 11 | 61 |
Ball in Contact with: | Wear Volume, µm3 | |
---|---|---|
10 N | 50 N | |
steel 100Cr6 | 1.06 × 105 | 7.79 × 105 |
a-C:H:W coating | 1.22 × 106 | 3.52 × 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radoń-Kobus, K.; Madej, M.; Kowalczyk, J.; Piotrowska, K. Properties of Diamond-like Tungsten-Doped Carbon Coatings Lubricated with Cutting Fluid. Coatings 2024, 14, 342. https://doi.org/10.3390/coatings14030342
Radoń-Kobus K, Madej M, Kowalczyk J, Piotrowska K. Properties of Diamond-like Tungsten-Doped Carbon Coatings Lubricated with Cutting Fluid. Coatings. 2024; 14(3):342. https://doi.org/10.3390/coatings14030342
Chicago/Turabian StyleRadoń-Kobus, Krystyna, Monika Madej, Joanna Kowalczyk, and Katarzyna Piotrowska. 2024. "Properties of Diamond-like Tungsten-Doped Carbon Coatings Lubricated with Cutting Fluid" Coatings 14, no. 3: 342. https://doi.org/10.3390/coatings14030342
APA StyleRadoń-Kobus, K., Madej, M., Kowalczyk, J., & Piotrowska, K. (2024). Properties of Diamond-like Tungsten-Doped Carbon Coatings Lubricated with Cutting Fluid. Coatings, 14(3), 342. https://doi.org/10.3390/coatings14030342