Ferroelectric Thin Films and Composites Based on Polyvinylidene Fluoride and Graphene Layers: Molecular Dynamics Study
Abstract
:1. Introduction
2. Basic Models
2.1. Nanoscale Two-Dimensional and Polymer Ferroelectric Thin Films
2.2. Main Models of Polymer Ferroelectric Thin Films
3. Main Methods
3.1. Main Theoretical Approach
3.2. Main Computational Details pf MD Run Method for Thin Polymer Ferroelectric Films
3.3. Homogeneous Polarization Switching in Polymer Ferroelectrics by MD Run Method
4. Main Results
4.1. Polarization Switching of PVDF Chain
4.2. Polarization Switching in a Heterostructure Consisting of PVDF and Graphene Layers
4.2.1. Main Details
- (1)
- One-sided model of a PVDF chain and a graphene layer PVDF6 + Gr54H_H-C, where the PVDF chain (or layer) is oriented towards the graphene layer by hydrogen atoms H (Figure 3c).
- (2)
- A double-sided model (or sandwich model), consisting of a PVDF chain enclosed between two layers of graphene Gr54H + PVDF6 + Gr54H (Figure 3d).
4.2.2. Results
4.2.3. The Possible Reasons for the Graphene Layer Influence on Switching Times
4.3. Polarization Switching in PVDF-TrFE
4.3.1. Main Details
4.3.2. Results
4.4. Polarization Switching in a Heterostructure Consisting of PVDF-TrFE and Graphene Layers
4.4.1. Main Details
4.4.2. Results
- (1)
- In all cases, for all considered models of both the initial polymer ferroelectric PVDF and PVDF-TrFE copolymer, and for their heterostructures with graphene layers, the linear behavior of the square of the reciprocal switching time τ−2 from the magnitude of the applied electric field E is demonstrated, in good agreement with Equation (1) at field values greater than the coercive field E > Ec and in the immediate vicinity of Ec, which is quite consistent with expression (1) obtained from the Landau–Khalatnikov equation in works [50,51,52], and it fully corresponds to the LGD theory for such thin homogeneous layers of ferroelectrics [20,21].
- (2)
- The influence of graphene layers, in the case of a one-sided model, leads to an increase in τ−2 values depending on E and, accordingly, to a decrease in the switching time τS, both in the cases of pure PVDF and its PVDF-TrFE copolymer; in this case, the values of the coercive field are shifted: in the case of changes from PVDF to PVDF-Gr, the value of Ec1~0.001 a.u.~0.5 GV/m increases to Ec1*~0.002 a.u.~1 GV/m, whereas in the case of changing PVDF-TrFE to PVDF-TrFE-Gr, the coercive field decreases from Ec2~0.003 a.u.~1.54 GV/m to Ec2*~0.0018 a.u.~0.92 GV/m.
- (3)
- The influence of graphene layers in the case of a two-sided (sandwich) model is more complex: if initially, when pure PVDF is included between two layers of graphene, there is a further increase in τ−2 depending on E (and, accordingly, a decrease in switching time τS) with increasing coercive field to values of Ec3~0.004 a.u.~2.06 GV/m, then in the case of the PVPD-TrFE copolymer, these changes occur differently: after increasing the τ−2 values depending on E for the one-sided PVDF-TrFE-Gr model, for the sandwich model Gr-PVDF-TrFE-Gr, there is a noticeable decrease in this dependence so that the τ−2 values on E become even smaller than in the case of one PVDF-TrFE (that is, the switching times τS themselves increase) and the coercive field increases to values of Ec3* = 0.0032 = 1.65 GV/m.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohammadpourfazeli, S.; Arash, S.; Ansari, A.; Yang, S.; Mallick, K.; Bagherzaden, R. Future prospects and recent developments of polyvinylidene fluoride (PVDF) piezoelectric polymer; fabrication methods, structure, and electro-mechanical properties. RSC Adv. 2023, 13, 370–387. [Google Scholar] [CrossRef]
- Mai, M.; Ke, S.; Lin, P.; Zeng, X. Ferroelectric Polymer Thin Films for Organic Electronics. J. Nanomater. 2015, 2015, 812538. [Google Scholar] [CrossRef]
- Fukada, E.; Furukawa, T. Piezoelectricity and ferroelectricity in polyvinylidene fluoride. Ultrasonics 1981, 19, 31–39. [Google Scholar] [CrossRef]
- Nalwa, H.S. Ferroelectric Polymers: Chemistry: Physics, and Applications; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Asadi, K. (Ed.) Organic Ferroelectric Materials and Applications; Woodhead Publishing: Sawston, UK; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Kochervinskii, V.V.; Buryanskaya, E.L.; Osipkov, A.S.; Ryzhenko, D.S.; Kiselev, D.A.; Lokshin, B.V.; Zvyagina, A.I.; Kirakosyan, G.A. The Domain and Structural Characteristics of Ferroelectric Copolymers Based on Vinylidene Fluoride Copolymer with Tetrafluoroethylene Composition (94/6). Polymers 2024, 16, 233. [Google Scholar] [CrossRef]
- Yan, M.; Liu, S.; Liu, Y.; Xiao, Z.; Yuan, X.; Zhai, D.; Zhou, K.; Wang, Q.; Zhang, D.; Bowen, C.; et al. Flexible PVDF-TrFE Nanocomposites with Ag-decorated BCZT Heterostructures for Piezoelectric Nanogenerator Applications. ACS Appl. Mater. Interfaces 2022, 14, 53261–53273. [Google Scholar] [CrossRef]
- Huang, T.; Yang, S.; He, P.; Sun, J.; Zhang, S.; Li, D.; Meng, Y.; Zhou, J.; Tang, H.; Liang, J.; et al. Phase-Separation-Induced PVDF/Graphene Coating on Fabrics toward Flexible Piezoelectric Sensors. ACS Appl. Mater. Interfaces 2018, 10, 30732–30740. [Google Scholar] [CrossRef]
- Geim, A.; Novoselov, K. The rise of graphene. Nat. Mater 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Gao, Y. Graphene and Polymer Composites for Supercapacitor Applications: A Review. Nanoscale Res. Lett. 2017, 12, 387. [Google Scholar] [CrossRef]
- Rahman, M.A.; Lee, B.C.; Phan, D.T.; Chung, G.S. Fabrication and characterization of highly efficient flexible energy harvester using PVDF graphene nanocomposites. Smart Mater. Struct. 2013, 22, 085017. [Google Scholar] [CrossRef]
- Abolhasani, M.M.; Shirvanimoghaddam, K.; Naebe, M. PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators. Compos. Sci. Technol. 2017, 138, 49–56. [Google Scholar] [CrossRef]
- Shi, L.; Hu, Z.; Hong, Y. PVDF-supported graphene foam as a robust current collector for lithium metal anodes. RSC Adv. 2020, 10, 20915–20920. [Google Scholar] [CrossRef]
- Park, B.E. Non-volatile Ferroelectric Memory Transistors Using PVDF and P(VDF-TrFE) Thin Films. In Ferroelectric-Gate Field Effect Transistor Memories. Topics in Applied Physics; Park, B.E., Ishiwara, H., Okuyama, M., Sakai, S., Yoon, S.M., Eds.; Springer: Dordrecht, The Netherlands, 2016; Volume 131. [Google Scholar] [CrossRef]
- Kamberaj, H. Molecular Dynamics Simulations in Statistical Physics: Theory and Applications; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Hollingsworth, S.A.; Dror, R.O. Molecular dynamics Simulation for All. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef]
- Grigoriev, F.V.; Sulimov, V.B.; Tikhonravov, A.V. Molecular Dynamics Simulation of Laser Induced Heating of Silicon Dioxide Thin Films. Nanomaterials 2021, 11, 2986. [Google Scholar] [CrossRef]
- Bystrov, V.S. Molecular modeling and molecular dynamic simulation of the polarization switching phenomena in the ferroelectric polymers PVDF at the nanoscale. Phys. B Condens. Matter 2014, 432, 21–25. [Google Scholar] [CrossRef]
- Fridkin, V.M.; Ducharme, S. Ferroelectricity at the Nanoscale. Basic and Applications, 1st ed.; Springer: New York, NY, USA, 2014. [Google Scholar]
- Bystrov, V.S.; Fridkin, V.M. Two-dimensional ferroelectrics and homogeneous switching. To the 75th anniversary of the Landau—Ginzburg theory of ferroelectricity. Phys. Usp. 2020, 63, 417–439. [Google Scholar] [CrossRef]
- Paramonova, E.V.; Bystrov, V.S.; Meng, X.; Shen, H.; Wang, J.; Fridkin, V.M. Polarization Switching in 2D Nanoscale Ferroelectrics: Computer Simulation and Experimental Data Analysis. Nanomaterials 2020, 10, 1841. [Google Scholar] [CrossRef]
- Lines, M.E.; Glass, A.M. Principles and Applications of Ferroelectrics and Related Materials; Clarendon Press: Oxford, MS, USA, 1977. [Google Scholar]
- Palto, S.; Blinov, L.; Bune, A.; Dubovik, E.; Fridkin, V.; Petukhova, N.; Verkhovskaya, K.; Yudin, S. Ferroelectric Langmuir-Blodgett films. Ferroelectr. Lett. 1995, 19, 65–68. [Google Scholar] [CrossRef]
- Bune, A.V.; Fridkin, V.M.; Ducharme, S.; Blinov, L.M.; Palto, S.P.; Sorokin, A.V.; Yudin, S.G.; Zlatkin, A. Two-dimensional ferroelectric films. Nature 1998, 391, 874–877. [Google Scholar] [CrossRef]
- Blinov, L.M.; Fridkin, V.M.; Palto, S.P.; Bune, A.V.; Dowben, P.A.; Ducharme, S. Two-dimensional ferroelectrics. Phys. Usp. 2000, 43, 243–257. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef]
- Bystrov, V.S.; Bdikin, I.K.; Silibin, M.V.; Karpinsky, D.V.; Kopyl, S.; Goncalves, G.; Sapronova, A.V.; Kuznetsova, T.; Bystrova, V.V. Graphene/graphene oxide and polyvinylidene fluoride polymer ferroelectric composites for multifunctional applications. Ferroelectrics 2017, 509, 124–142. [Google Scholar] [CrossRef]
- Winsberg, E. Computer Simulations in Science. The Stanford Encyclopedia of Philosophy (Spring 2019 Edition); Edward, N.Z., Ed.; Stanford Encyclopedia of Philosophy Archive: Stanford, CA, USA, 2019; Available online: https://plato.stanford.edu/archives/spr2019/entries/simulations-science/ (accessed on 14 March 2024).
- Ramachandran, K.I.; Deepa, G.; Namboori, K. Computational Chemistry and Molecular Modeling: Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Szabo, A.; Ostlund, N. Modern Quantum Chemistry; Macmillan: New York, NY, USA, 1985. [Google Scholar]
- Clark, T.A. Handbook of Computational Chemistry; John Wiley and Sons: New York, NY, USA, 1985. [Google Scholar]
- Pople, J.A.; Beveridge, D.L. Approximate Molecular Orbital Theory; McGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods. I. Method. J. Comput. Chem. 1989, 10, 209–220. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of parameters for semiempirical methods II. Applications. J. Comput. Chem. 1989, 10, 221–264. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Mod. 2007, 13, 1173–1213. [Google Scholar] [CrossRef]
- Rezac, J.; Hobza, P. Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J. Chem. Theory Comput. 2012, 8, 141–151. [Google Scholar] [CrossRef]
- HyperChem, Versions 8.0/01, Tools for Molecular Modeling, Professional Edition For Windows AC Release 8.0 USB (on CD); Hypercube Inc.: Gainesville, FL, USA, 2011.
- Gevorkyan, V.E.; Paramonova, E.V.; Avakyan, L.A.; Bystrov, V.S. Computer modeling and molecular dynamics of polarization switching in the ferroelectric films PVDF and P(VDF-TrFE) on nanoscale. Math. Biol. Bioinform. 2015, 10, 131–153. [Google Scholar] [CrossRef]
- Paramonova, E.V.; Filippov, S.V.; Gevorkyan, V.E.; Avakyan, L.A.; Meng, X.J.; Tian, B.B.; Wang, J.L.; Bystrov, V.S. Polarization switching in ultrathin polyvinylidene fluoride homopolymer ferroelectric films. Ferroelectrics 2017, 509, 143–157. [Google Scholar] [CrossRef]
- Bystrov, V.S.; Bdikin, I.K.; Silibin, M.; Karpinsky, D.; Kopyl, S.; Paramonova, E.V.; Goncalves, G. Molecular modeling of the piezoelectric properties of ferroelectric composites containing polyvinylidene fluoride (PVDF) and either graphene or graphene oxide. J. Mol. Mod. 2017, 23, 128. [Google Scholar] [CrossRef]
- Bystrov, V.S.; Paramonova, E.V.; Meng, X.; Shen, H.; Wang, J.; Fridkin, V.M. Polarization switching in nanoscale ferroelectric composites containing PVDF polymer film and graphene layers. Ferroelectrics 2022, 590, 27–40. [Google Scholar] [CrossRef]
- Haghighi, S.; Ansari, R.; Ajori, S. A molecular dynamics study on the interfacial properties of carbone-functionalized graphene/polymer nanocomposites. Int. J. Mech. Mater. Des. 2020, 16, 387–400. [Google Scholar] [CrossRef]
- Safina, L.R.; Baimova, J.A.; Krylova, K.A.; Murzaev, R.T.; Mulyukov, R.R. Simulation of metal-graphene composites by molecular dynamics: A review. Lett. Mater. 2020, 10, 351–360. [Google Scholar] [CrossRef]
- Kliem, H.; Tadros-Morgane, R. Extrinsic versus intrinsic ferroelectric switching: Experimental investigations using ultra-thin PVDF Langmuir–Blodgett films. J. Phys. D Appl. Phys. 2005, 38, 1860–1868. [Google Scholar] [CrossRef]
- Tagantsev, A.K.; Cross, L.E.; Fousek, J. Domains in Ferroelectric Crystals and Thin Films; Springer: New York, NY, USA, 2010. [Google Scholar]
- Ginzburg, V.L. On the dielectric properties of ferroelectric (seignetteelectric) crystals and barium titanate. Zh. Eksp. Teor. Fiz. 1945, 15, 739–750. [Google Scholar]
- Ginzburg, V.L. On polarization and piezoelectric effect of barium titanate near the point of ferroelectric transition. Zh. Eksp. Teor. Fiz. 1949, 19, 36–41. [Google Scholar]
- Landau, L.D. On the theory of phase transitions. Nature 1936, 138, 840–841. [Google Scholar] [CrossRef]
- Landau, L.D.; Khalatnikov, I.M. On the anomalous absorption of sound near a second-order phase transition point. Dokl. Akad. Nauk SSSR 1954, 96, 469. [Google Scholar]
- Vizdrik, G.; Ducharme, S.; Fridkin, V.M.; Yudin, S.G. Kinetic of ferroelectric switching in ultrathin films. Phys. Rev. B 2003, 68, 094113. [Google Scholar] [CrossRef]
- Ievlev, A.; Verkhovskaya, K.; Fridkin, V. Landau-Khalatnikov switching kinetics in the ferroelectric copolymers nanostructures. Ferroelectr. Lett. 2006, 33, 147–152. [Google Scholar] [CrossRef]
- Gaynutdinov, R.V.; Mitko, S.; Yudin, S.G.; Fridkin, V.M.; Ducharme, S. Polarization switching at the nanoscale in ferroelectric copolymer thin films. Appl. Phys. Lett. 2011, 99, 142904. [Google Scholar] [CrossRef]
- Wang, J.L.; Liu, B.L.; Zhao, X.L.; Tian, B.B.; Zou, Y.H.; Sun, S.; Shen, H.; Sun, J.L.; Meng, X.J.; Chu, J.H. Transition of the polarization switching from extrinsic to intrinsic in the ultrathin polyvinylidene fluoride homopolymer films. Appl. Phys. Lett. 2014, 104, 182907. [Google Scholar] [CrossRef]
- Yin, Z.; Tian, B.; Zhu, Q.; Duan, C. Characterization and Application of PVDF and Its Copolymer Films Prepared by Spin-Coating and Langmuir–Blodgett Method. Polymers 2019, 11, 2033. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, V.F.; Costa, C.M.; Minas, G.; Lanceros-Mendez, S. Improving the optical and electroactive response of poly(vinylidene fluoride-trifluoroethylene) spin-coated films for sensor and actuator applications. Smart Mater. Struct. 2012, 21, 085020. [Google Scholar] [CrossRef]
- Dawson, N.M.; Atencio, P.M.; Malloy, K.J. Facile deposition of high quality ferroelectric poly(vinylidene fluoride) thin films by thermally modulated spin coating. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 221–227. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bystrov, V.; Paramonova, E.; Meng, X.; Shen, H.; Wang, J.; Lin, T.; Fridkin, V. Ferroelectric Thin Films and Composites Based on Polyvinylidene Fluoride and Graphene Layers: Molecular Dynamics Study. Coatings 2024, 14, 356. https://doi.org/10.3390/coatings14030356
Bystrov V, Paramonova E, Meng X, Shen H, Wang J, Lin T, Fridkin V. Ferroelectric Thin Films and Composites Based on Polyvinylidene Fluoride and Graphene Layers: Molecular Dynamics Study. Coatings. 2024; 14(3):356. https://doi.org/10.3390/coatings14030356
Chicago/Turabian StyleBystrov, Vladimir, Ekaterina Paramonova, Xiangjian Meng, Hong Shen, Jianlu Wang, Tie Lin, and Vladimir Fridkin. 2024. "Ferroelectric Thin Films and Composites Based on Polyvinylidene Fluoride and Graphene Layers: Molecular Dynamics Study" Coatings 14, no. 3: 356. https://doi.org/10.3390/coatings14030356
APA StyleBystrov, V., Paramonova, E., Meng, X., Shen, H., Wang, J., Lin, T., & Fridkin, V. (2024). Ferroelectric Thin Films and Composites Based on Polyvinylidene Fluoride and Graphene Layers: Molecular Dynamics Study. Coatings, 14(3), 356. https://doi.org/10.3390/coatings14030356