Application Research of Ultrasonic-Guided Wave Technology in Pipeline Corrosion Defect Detection: A Review
Abstract
:1. Introduction
2. Ultrasonic-Guided Wave Fundamentals
2.1. Concept of Ultrasonic-Guided Waves
2.2. Group Velocity and Phase Velocity of Guided Waves
2.3. The Excitation and Attenuation of Guided Waves
2.4. Dispersion and Multimodal Characteristics of Guided Waves
2.5. Ultrasonic-Guided Wave Non-Destructive Testing Technology Principle and Technical Characteristics
- (1)
- Single-point excitation allows for extensive and long-distance structural inspections. By inducing vibrations in particles throughout the specimen, it achieves 100% full coverage inspection of the entire cross-section of the tested component. This technology can inspect the component’s inner and outer surfaces, revealing internal and external defects.
- (2)
- Ultrasonic-guided wave exhibits minimal energy attenuation during propagation. Low-frequency elastic waves can propagate over tens of meters within the component with minimal attenuation, enabling long-distance inspections.
- (3)
- Ultrasonic-guided wave possesses multimodal characteristics. Controlling the modes and frequencies can significantly enhance the precision of inspections, providing high redundancy and multidimensional inspection information.
- (4)
- It has high inspection efficiency with relatively low costs. It eliminates the need for probes, making it suitable for inspecting buried, pressurized, coated, and transmission pipelines, among other components. Installing a single transducer at an appropriate location can conveniently conduct inspections for complex structures.
3. Pipeline Structures Ultrasonic-Guided Wave Non-Destructive Testing Technology
3.1. Development and Application Status of Pipeline Ultrasonic-Guided Wave Non-Destructive Testing Technology
3.2. Key Components of Pipeline Ultrasonic-Guided Wave Detection Technology-Transducer
3.2.1. Piezoelectric Transducers
3.2.2. Electromagnetic Ultrasonic Transducer
3.3. Selection of Guided Wave Modes for Assessment of Pipeline Corrosion Defect Identification
4. Structural Health Monitoring Based on Pipeline Ultrasonic-Guided Wave
5. Prospects of Ultrasonic-Guided Wave Detection Technology
6. Conclusions
- It elaborates on the standard modal selections of Lamb waves and shear horizontal waves commonly used in corrosion detection using ultrasonic-guided wave non-destructive testing technology.
- The study focused on the research progress of non-destructive testing techniques for pipeline ultrasonic-guided waves. It highlighted the applications of ultrasonic-guided waves in coating research, relevant studies on transducers, and advancements in structural health monitoring. The paper elucidated the applications of ultrasonic-guided waves in conjunction with convolutional neural networks and machine learning for signal processing and visualizing the measurement results in related research areas.
- The paper also introduces relevant research advancements. The comprehensive literature survey indicates that ultrasonic-guided wave technology is considered an ideal technical approach for pipeline defect detection and safety assessment, providing convenience to ensure the safety and stability of pipeline operation and maintenance while also achieving cost savings.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Papadakis, G.A. Major Hazard Pipelines: A Comparative Study of Onshore Transmission Accidents. J. Loss Prev. Process Ind. 1999, 12, 91–107. [Google Scholar] [CrossRef]
- Papadakis, G.A.; Porter, S.; Wettig, J. EU Initiative on the Control of Major Accident Hazards Arising from Pipelines. J. Loss Prev. Process Ind. 1999, 12, 85–90. [Google Scholar] [CrossRef]
- Smith, L. Control of Corrosion in Oil and Gas Production Tubing. British Corrosion Journal 1999, 34, 247–253. [Google Scholar] [CrossRef]
- Cawley, P.; Cegla, F.; Stone, M. Corrosion Monitoring Strategies—Choice between Area and Point Measurements. J. Nondestruct. Eval. 2013, 32, 156–163. [Google Scholar] [CrossRef]
- Wood, M.H.; Arellano, A.V.; Van Wijk, L. Corrosion Related Accidents in Petroleum Refineries. Eur. Comm. Jt. Res. Cent. Rep. No. EUR 2013, 26331. [Google Scholar] [CrossRef]
- El-Sherik, A.M. Trends in Oil and Gas Corrosion Research and Technologies: Production and Transmission; Woodhead Publishing: Cambridge, UK, 2017; ISBN 0-08-101219-5. [Google Scholar]
- Cirtautas, D.; Samaitis, V.; Mažeika, L.; Raišutis, R.; Žukauskas, E. Selection of Higher Order Lamb Wave Mode for Assessment of Pipeline Corrosion. Metals 2022, 12, 503. [Google Scholar] [CrossRef]
- Marcantonio, V.; Monarca, D.; Colantoni, A.; Cecchini, M. Ultrasonic Waves for Materials Evaluation in Fatigue, Thermal and Corrosion Damage: A Review. Mech. Syst. Signal Process. 2019, 120, 32–42. [Google Scholar] [CrossRef]
- Broda, D.; Staszewski, W.J.; Martowicz, A.; Uhl, T.; Silberschmidt, V.V. Modelling of Nonlinear Crack–Wave Interactions for Damage Detection Based on Ultrasound—A Review. J. Sound Vib. 2014, 333, 1097–1118. [Google Scholar] [CrossRef]
- Márquez, F.P.G.; Muñoz, J.M.C. A Pattern Recognition and Data Analysis Method for Maintenance Management. Int. J. Syst. Sci. 2012, 43, 1014–1028. [Google Scholar] [CrossRef]
- García, F.P.; Pedregal, D.J.; Roberts, C. Time Series Methods Applied to Failure Prediction and Detection. Reliab. Eng. Syst. Saf. 2010, 95, 698–703. [Google Scholar] [CrossRef]
- Pedregal, D.J.; García, F.P.; Roberts, C. An Algorithmic Approach for Maintenance Management Based on Advanced State Space Systems and Harmonic Regressions. Ann. Oper. Res. 2009, 166, 109–124. [Google Scholar] [CrossRef]
- Gupta, M.; Khan, M.A.; Butola, R.; Singari, R.M. Advances in Applications of Non-Destructive Testing (NDT): A Review. Adv. Mater. Process. Technol. 2022, 8, 2286–2307. [Google Scholar] [CrossRef]
- Wang, Z.D.; Gu, Y.; Wang, Y.S. A Review of Three Magnetic NDT Technologies. J. Magn. Magn. Mater. 2012, 324, 382–388. [Google Scholar] [CrossRef]
- Yun, H.; Zhang, W. Damage Detection Based on the Propagation of Longitudinal Guided Wave in a Bimetal Composite Pipe. Theor. Appl. Mech. Lett. 2011, 1, 021004. [Google Scholar] [CrossRef]
- Olisa, S.C.; Khan, M.A.; Starr, A. Review of Current Guided Wave Ultrasonic Testing (GWUT) Limitations and Future Directions. Sensors 2021, 21, 811. [Google Scholar] [CrossRef]
- Zhang, J.; Cho, Y.; Kim, J.; Malikov, A.K.U.; Kim, Y.H.; Yi, J.-H. Nondestructive Inspection of Underwater Coating Layers Using Ultrasonic Lamb Waves. Coatings 2023, 13, 728. [Google Scholar] [CrossRef]
- Alleyne, D.N. Rapid, Long Range Inspection of Chemical Plant Pipework Using Guided Waves. AIP Conf. Proc. 2001, 557, 180–187. [Google Scholar]
- Demma, A.; Cawley, P.; Lowe, M.; Roosenbrand, A.G. The Reflection of the Fundamental Torsional Mode from Cracks and Notches in Pipes. J. Acoust. Soc. Am. 2003, 114, 611–625. [Google Scholar] [CrossRef]
- Beard, M.D. Development of a Guided Wave Inspection Technique for Rock Bolts. AIP Conf. Proc. 2002, 615, 1318–1325. [Google Scholar]
- Monnier, T. Lamb Waves-Based Impact Damage Monitoring of a Stiffened Aircraft Panel Using Piezoelectric Transducers. J. Intell. Mater. Syst. Struct. 2006, 17, 411–421. [Google Scholar] [CrossRef]
- Dalton, R.P.; Cawley, P.; Lowe, M.J.S. The Potential of Guided Waves for Monitoring Large Areas of Metallic Aircraft Fuselage Structure. J. Nondestruct. Eval. 2001, 20, 29–46. [Google Scholar] [CrossRef]
- Thwaites, S.; Clark, N.H. Non-Destructive Testing of Honeycomb Sandwich Structures Using Elastic Waves. J. Sound Vib. 1995, 187, 253–269. [Google Scholar] [CrossRef]
- Castaings, M. The Propagation of Guided Waves in Composite, Sandwich-like Structures and Their Use for NDT. AIP Conf. Proc. 2001, 557, 999–1006. [Google Scholar]
- Khalili, P.; Cawley, P. The Choice of Ultrasonic Inspection Method for the Detection of Corrosion at Inaccessible Locations. NDT E Int. 2018, 99, 80–92. [Google Scholar] [CrossRef]
- Andruschak, N.; Saletes, I.; Filleter, T.; Sinclair, A. An NDT Guided Wave Technique for the Identification of Corrosion Defects at Support Locations. NDT E Int. 2015, 75, 72–79. [Google Scholar] [CrossRef]
- El Mountassir, M.; Yaacoubi, S.; Dahmene, F. Reducing False Alarms in Guided Waves Structural Health Monitoring of Pipelines: Review Synthesis and Debate. Int. J. Press. Vessel. Pip. 2020, 188, 104210. [Google Scholar] [CrossRef]
- He, J.; Zhou, C.; Yang, L.; Sun, X. Research on Pipeline Damage Imaging Technology Based on Ultrasonic Guided Waves. Shock Vib. 2019, 2019, 1470761. [Google Scholar] [CrossRef]
- Rose, J.L. Ultrasonic Waves in Solid Media; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Guan, R.; Lu, Y.; Duan, W.; Wang, X. Guided Waves for Damage Identification in Pipeline Structures: A Review. Struct Control Health Monit 2017, 24, e2007. [Google Scholar] [CrossRef]
- Ling, E.H.; Abdul Rahim, R.H. A Review on Ultrasonic Guided Wave Technology. Aust. J. Mech. Eng. 2020, 18, 32–44. [Google Scholar] [CrossRef]
- Rose, J.L. A Baseline and Vision of Ultrasonic Guided Wave Inspection Potential. J. Press. Vessel Technol. 2002, 124, 273–282. [Google Scholar] [CrossRef]
- Xu, Z.-D.; Liu, M.; Wu, Z.; Zeng, X. Energy Damage Detection Strategy Based on Strain Responses for Long-Span Bridge Structures. J. Bridge Eng. 2011, 16, 644–652. [Google Scholar] [CrossRef]
- Xu, Z.-D.; Wu, K.-Y. Damage Detection for Space Truss Structures Based on Strain Mode under Ambient Excitation. J. Eng. Mech. 2012, 138, 1215–1223. [Google Scholar] [CrossRef]
- Abbas, M.; Shafiee, M. Structural Health Monitoring (SHM) and Determination of Surface Defects in Large Metallic Structures Using Ultrasonic Guided Waves. Sensors 2018, 18, 3958. [Google Scholar] [CrossRef] [PubMed]
- Barshinger, J.N.; Rose, J.L. Guided Wave Propagation in an Elastic Hollow Cylinder Coated with a Viscoelastic Material. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 1547–1556. [Google Scholar] [CrossRef]
- Zang, X.; Xu, Z.-D.; Lu, H.; Zhu, C.; Zhang, Z. Ultrasonic Guided Wave Techniques and Applications in Pipeline Defect Detection: A Review. Int. J. Press. Vessel. Pip. 2023, 206, 105033. [Google Scholar] [CrossRef]
- Gazis, D.C. Exact Analysis of the Plane-Strain Vibrations of Thick-Walled Hollow Cylinders. J. Acoust. Soc. Am. 1958, 30, 786–794. [Google Scholar] [CrossRef]
- Gazis, D.C. Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation. J. Acoust. Soc. Am. 1959, 31, 568–573. [Google Scholar] [CrossRef]
- Meitzler, A.H. Mode Coupling Occurring in the Propagation of Elastic Pulses in Wires. J. Acoust. Soc. Am. 1961, 33, 435–445. [Google Scholar] [CrossRef]
- Rose, J.L. Ultrasonic Waves in Solid Media; Acoustical Society of America: Melville, NY, USA, 2000; ISBN 0521640431. [Google Scholar]
- Wilcox, P.; Lowe, M.; Cawley, P. The Effect of Dispersion on Long-Range Inspection Using Ultrasonic Guided Waves. NDT E Int. 2001, 34, 1–9. [Google Scholar] [CrossRef]
- Shin, H.J.; Rose, J.L. Guided Waves by Axisymmetric and Non-Axisymmetric Surface Loading on Hollow Cylinders. Ultrasonics 1999, 37, 355–363. [Google Scholar] [CrossRef]
- Koduru, J.P.; Momeni, S.; Rose, J.L. Phased Annular Array Transducers for Omnidirectional Guided Wave Mode Control in Isotropic Plate like Structures. Smart Mater. Struct. 2013, 22, 125022. [Google Scholar] [CrossRef]
- Niu, X.; Tee, K.F.; Marques, H.R. Enhancement of Unidirectional Excitation of Guided Torsional T (0, 1) Mode by Linear Superposition of Multiple Rings of Transducers. Appl. Acoust. 2020, 168, 107411. [Google Scholar] [CrossRef]
- Wang, X.; Gao, H.; Zhao, K.; Wang, C. Time-Frequency Characteristics of Longitudinal Modes in Symmetric Mode Conversion for Defect Characterization in Guided Waves-Based Pipeline Inspection. NDT E Int. 2021, 122, 102490. [Google Scholar] [CrossRef]
- Michaels, J.E.; Michaels, T.E. Guided Wave Signal Processing and Image Fusion for in Situ Damage Localization in Plates. Wave Motion 2007, 44, 482–492. [Google Scholar] [CrossRef]
- Alleyne, D.N.; Lowe, M.J.S.; Cawley, P. The Reflection of Guided Waves from Circumferential Notches in Pipes. J. Appl. Mech. 1998, 65, 635–641. [Google Scholar] [CrossRef]
- Wang, X.; Peter, W.T.; Mechefske, C.K.; Hua, M. Experimental Investigation of Reflection in Guided Wave-Based Inspection for the Characterization of Pipeline Defects. NDT E Int. 2010, 43, 365–374. [Google Scholar] [CrossRef]
- Verma, B.; Mishra, T.K.; Balasubramaniam, K.; Rajagopal, P. Interaction of Low-Frequency Axisymmetric Ultrasonic Guided Waves with Bends in Pipes of Arbitrary Bend Angle and General Bend Radius. Ultrasonics 2014, 54, 801–808. [Google Scholar] [CrossRef]
- Lowe, M.J.; Alleyne, D.N.; Cawley, P. Defect Detection in Pipes Using Guided Waves. Ultrasonics 1998, 36, 147–154. [Google Scholar] [CrossRef]
- Carandente, R.; Lovstad, A.; Cawley, P. The Influence of Sharp Edges in Corrosion Profiles on the Reflection of Guided Waves. NDT E Int. 2012, 52, 57–68. [Google Scholar] [CrossRef]
- Løvstad, A.; Cawley, P. The Reflection of the Fundamental Torsional Guided Wave from Multiple Circular Holes in Pipes. NDT E Int. 2011, 44, 553–562. [Google Scholar] [CrossRef]
- Zhang, L.; Gavigan, B.J.; Rose, J.L. High Frequency Guided Wave Natural Focusing Pipe Inspection with Frequency and Angle Tuning. J. Pressure Vessel Technol. 2006, 128, 433–438. [Google Scholar] [CrossRef]
- Rose, J.L. Standing on the Shoulders of Giants: An Example of Guided Wave Inspection. Mater. Eval 2002, 60, 53–59. [Google Scholar]
- Cawley, P.; Chua, C. Crack Growth Monitoring Using Fundamental Shear Horizontal Guided Waves. Struct. Health Monit. 2020, 19, 1311–1322. [Google Scholar]
- Chen, S.; Yu, Q.; Xu, H.; Yang, Q.; Chen, Z. Investigation of Pipelines Defect Localization for Fusion Reactor by Using T (0, 1) Mode Ultrasonic Guided Waves. Fusion Eng. Des. 2023, 195, 113937. [Google Scholar] [CrossRef]
- Auld, B.A. Application of Microwave Concepts to the Theory of Acoustic Fields and Waves in Solids. IEEE Trans. Microw. Theory Tech. 1969, 17, 800–811. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Liang, W. Acoustic Detection Technology for Gas Pipeline Leakage. Process Saf. Environ. Prot. 2013, 91, 253–261. [Google Scholar] [CrossRef]
- Nienwenhui, J.H.; Neumann, J.J.; Greve, D.W.; Oppenheim, I.J. Generation and Detection of Guided Waves Using PZT Wafer Transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 2103–2111. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Zhou, S.; Ni, J.; Li, Y. Investigation on Ultrasonic Guided Waves Propagation in Elbow Pipe. Int. J. Press. Vessel. Pip. 2016, 139, 250–255. [Google Scholar] [CrossRef]
- Howard, R.; Cegla, F. Detectability of Corrosion Damage with Circumferential Guided Waves in Reflection and Transmission. NDT E Int. 2017, 91, 108–119. [Google Scholar] [CrossRef]
- Wong, B.; McCann, J.A. Failure Detection Methods for Pipeline Networks: From Acoustic Sensing to Cyber-Physical Systems. Sensors 2021, 21, 4959. [Google Scholar] [CrossRef]
- Kain, V.; Roychowdhury, S.; Ahmedabadi, P.; Barua, D.K. Flow Accelerated Corrosion: Experience from Examination of Components from Nuclear Power Plants. Eng. Fail. Anal. 2011, 18, 2028–2041. [Google Scholar] [CrossRef]
- Catton, P.; Mudge, P.; Balachandran, W. Advances in Defect Characterisation Using Long-Range Ultrasonic Testing of Pipes. Insight-Non-Destr. Test. Cond. Monit. 2008, 50, 480–484. [Google Scholar] [CrossRef]
- Ida, N.; Meyendorf, N. Handbook of Advanced Nondestructive Evaluation; Springer International Publishing: Cham, Switzerland, 2019; Volume 10. [Google Scholar]
- Yoo, B.; Na, S.-M.; Flatau, A.B.; Pines, D.J. Directional Magnetostrictive Patch Transducer Based on Galfenol’s Anisotropic Magnetostriction Feature. Smart Mater. Struct. 2014, 23, 095035. [Google Scholar] [CrossRef]
- Rayleigh, L. Lord on the Free Vibrations of an Infinite Plate of Homogeneous Isotropic Elastic Matter. Proc. Lond. Math. Soc. 1888, 1, 225–237. [Google Scholar] [CrossRef]
- Love, A.E.H. Mathematical Theory of Elasticity. Available online: https://hal.science/hal-01307751/document (accessed on 16 January 2024).
- Gazis, D.C. Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. II. Numerical Results. J. Acoust. Soc. Am. 1959, 31, 573–578. [Google Scholar] [CrossRef]
- Armenàkas, A.E.; Gazis, D.C.; Herrmann, G. Free Vibrations of Circular Cylindrical Shells; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 1-4831-5861-6. [Google Scholar]
- Silk, M.G.; Bainton, K.F. The Propagation in Metal Tubing of Ultrasonic Wave Modes Equivalent to Lamb Waves. Ultrasonics 1979, 17, 11–19. [Google Scholar] [CrossRef]
- Lowe, M.J.S.; Alleyne, D.N.; Cawley, P. The Mode Conversion of a Guided Wave by a Part-Circumferential Notch in a Pipe. J. Appl. Mech. 1998, 65, 649–656. [Google Scholar] [CrossRef]
- Zheng, M.; Lu, C.; Chen, G.; Men, P. Modeling Three-Dimensional Ultrasonic Guided Wave Propagation and Scattering in Circular Cylindrical Structures Using Finite Element Approach. Phys. Procedia 2011, 22, 112–118. [Google Scholar] [CrossRef]
- Carandente, R.; Ma, J.; Cawley, P. The Scattering of the Fundamental Torsional Mode from Axi-Symmetric Defects with Varying Depth Profile in Pipes. J. Acoust. Soc. Am. 2010, 127, 3440–3448. [Google Scholar] [CrossRef]
- Brook, M.V.; Ngoc, T.D.; Eder, J.E. Ultrasonic Inspection of Steam Generator Tubing by Cylindrical Guided Waves. In Review of Progress in Quantitative Nondestructive Evaluation; Springer: Berlin/Heidelberg, Germany, 1990; pp. 243–249. [Google Scholar]
- Demma, A.; Cawley, P.; Lowe, M.; Roosenbrand, A.G.; Pavlakovic, B. The Reflection of Guided Waves from Notches in Pipes: A Guide for Interpreting Corrosion Measurements. NDT E Int. 2004, 37, 167–180. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, S.; Sharma, S.; Mukherjee, A. Monitoring Invisible Corrosion in Concrete Using a Combination of Wave Propagation Techniques. Cem. Concr. Compos. 2018, 90, 89–99. [Google Scholar] [CrossRef]
- Farhidzadeh, A.; Salamone, S. Reference-Free Corrosion Damage Diagnosis in Steel Strands Using Guided Ultrasonic Waves. Ultrasonics 2015, 57, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Pan, E.; Rogers, J.; Datta, S.K.; Shah, A.H. Mode Selection of Guided Waves for Ultrasonic Inspection of Gas Pipelines with Thick Coating. Mech. Mater. 1999, 31, 165–174. [Google Scholar] [CrossRef]
- Ostiguy, P.-C.; Quaegebeur, N.; Masson, P. Non-Destructive Evaluation of Coating Thickness Using Guided Waves. NDT E Int. 2015, 76, 17–25. [Google Scholar] [CrossRef]
- Duan, F.; Liao, Y.; Zeng, Z.; Jin, H.; Zhou, L.; Zhang, Z.; Su, Z. Graphene-Based Nanocomposite Strain Sensor Response to Ultrasonic Guided Waves. Compos. Sci. Technol. 2019, 174, 42–49. [Google Scholar] [CrossRef]
- Pinilla, C.A.G.; Quiroga, J.E.; Ballesteros, D.Y.P.; Cañas, C.A.T.; Minoli, C.A.A. Effect of Viscoelastic Coating on Lamb Wave Propagation in Plates. Procedia Struct. Integr. 2024, 52, 20–27. [Google Scholar] [CrossRef]
- Schmitz, M.; Kim, J.-Y.; Jacobs, L.J. Machine and Deep Learning for Coating Thickness Prediction Using Lamb Waves. Wave Motion 2023, 120, 103137. [Google Scholar] [CrossRef]
- Ghavamian, A.; Mustapha, F.; Baharudin, B.H.T.; Yidris, N. Detection, Localisation and Assessment of Defects in Pipes Using Guided Wave Techniques: A Review. Sensors 2018, 18, 4470. [Google Scholar] [CrossRef]
- Zhu, W. An FEM Simulation for Guided Elastic Wave Generation and Reflection in Hollow Cylinders with Corrosion Defects. J. Press. Vessel Technol. 2002, 124, 108–117. [Google Scholar] [CrossRef]
- Shivaraj, K.; Balasubramaniam, K.; Krishnamurthy, C.V.; Wadhwan, R. Ultrasonic Circumferential Guided Wave for Pitting-Type Corrosion Imaging at Inaccessible Pipe-Support Locations. J. Pressure Vessel Technol. 2008, 130, 021502. [Google Scholar] [CrossRef]
- Moustafa, A.; Niri, E.D.; Farhidzadeh, A.; Salamone, S. Corrosion Monitoring of Post-tensioned Concrete Structures Using Fractal Analysis of Guided Ultrasonic Waves. Struct. Control Health Monit. 2014, 21, 438–448. [Google Scholar] [CrossRef]
- Løvstad, A. Detection of Localised Corrosion in Pipes Using Guided Waves; Norwegian University of Science and Technology: Trondheim, Norway, 2012. [Google Scholar]
- Cawley, P.; Lowe, M.J.S.; Alleyne, D.N.; Pavlakovic, B.; Wilcox, P. Practical Long Range Guided Wave Inspection-Applications to Pipes and Rail. Mater. Eval. 2003, 61, 66–74. [Google Scholar]
- Cobb, A.C.; Kwun, H.; Caseres, L.; Janega, G. Torsional Guided Wave Attenuation in Piping from Coating, Temperature, and Large-Area Corrosion. NDT E Int. 2012, 47, 163–170. [Google Scholar] [CrossRef]
- Instanes, G.; Toppe, M.; Lakshminarayan, B.; Nagy, P.B. Corrosion and Erosion Monitoring of Pipes by an Ultrasonic Guided Wave Method. In Advanced Ultrasonic Methods for Material and Structure Inspection; Wiley: Hoboken, NJ, USA, 2007; pp. 115–157. [Google Scholar] [CrossRef]
- Yuan, X.; Li, W.; Deng, M. Quantitative Assessment of Corrosion-Induced Wall Thinning in L-Shaped Bends Using Ultrasonic Feature Guided Waves. Thin-Walled Struct. 2023, 196, 111493. [Google Scholar] [CrossRef]
- Zhu, W.; Rose, J.L.; Barshinger, J.N.; Agarwala, V.S. Ultrasonic Guided Wave NDT for Hidden Corrosion Detection. J. Res. Nondestruct. Eval. 1998, 10, 205–225. [Google Scholar] [CrossRef]
- Sargent, J.P. Corrosion Detection in Welds and Heat-Affected Zones Using Ultrasonic Lamb Waves. Insight-Non-Destr. Test. Cond. Monit. 2006, 48, 160–167. [Google Scholar] [CrossRef]
- Xu, L.; Yuan, S.; Chen, J.; Ren, Y. Guided Wave-Convolutional Neural Network Based Fatigue Crack Diagnosis of Aircraft Structures. Sensors 2019, 19, 3567. [Google Scholar] [CrossRef]
- Song, H.; Yang, Y. Noncontact Super-Resolution Guided Wave Array Imaging of Subwavelength Defects Using a Multiscale Deep Learning Approach. Struct. Health Monit. 2021, 20, 1904–1923. [Google Scholar] [CrossRef]
- Wang, X.; Lin, M.; Li, J.; Tong, J.; Huang, X.; Liang, L.; Fan, Z.; Liu, Y. Ultrasonic Guided Wave Imaging with Deep Learning: Applications in Corrosion Mapping. Mech. Syst. Signal Process. 2022, 169, 108761. [Google Scholar] [CrossRef]
- Yu, H.; Quan, Q.; Tian, X.; Li, H. Optimization and Analysis of a U-Shaped Linear Piezoelectric Ultrasonic Motor Using Longitudinal Transducers. Sensors 2018, 18, 809. [Google Scholar] [CrossRef]
- Miao, H.; Li, F. Shear Horizontal Wave Transducers for Structural Health Monitoring and Nondestructive Testing: A Review. Ultrasonics 2021, 114, 106355. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Rocha, B.; Wu, K.-T.; Mrad, N. A Methodological Review of Piezoelectric Based Acoustic Wave Generation and Detection Techniques for Structural Health Monitoring. Int. J. Aerosp. Eng. 2013, 2013, 928627. [Google Scholar] [CrossRef]
- Hay, T.R.; Rose, J.L. Flexible PVDF Comb Transducers for Excitation of Axisymmetric Guided Waves in Pipe. Sens. Actuators A Phys. 2002, 100, 18–23. [Google Scholar] [CrossRef]
- Raghavan, A. Guided-Wave Structural Health Monitoring. Ph.D. Thesis, University Avenue, Ann Arbor, MI, USA, 2007. [Google Scholar]
- Sinding, K.; Searfass, C.; Malarich, N.; Reinhardt, B.; Tittmann, B.R. High Temperature Ultrasonic Transducers for the Generation of Guided Waves for Non-Destructive Evaluation of Pipes. AIP Conf. Proc. 2014, 1581, 302–307. [Google Scholar]
- Hirao, M.; Ogi, H. EMATs for Science and Industry: Noncontacting Ultrasonic Measurements; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003; ISBN 1-4020-7494-8. [Google Scholar]
- Ribichini, R. Modelling of Electromagnetic Acoustic Transducers, Department of Mechanical Engineering; Imperial College: London, UK, 2011. [Google Scholar]
- Dixon, S.; Petcher, P.A.; Fan, Y.; Maisey, D.; Nickolds, P. Ultrasonic Metal Sheet Thickness Measurement without Prior Wave Speed Calibration. J. Phys. D Appl. Phys. 2013, 46, 445502. [Google Scholar] [CrossRef]
- Mirkhani, K. Characterization of Interfacial Degradation in Adhesive Joints Using EMAT’s; Library and Archives Canada= Bibliothèque et Archives: Ottawa, Canada, 2005; ISBN 0-612-94432-8. [Google Scholar]
- Thompson, R.B. Physical Principles of Measurements with EMAT Transducers. Phys. Acoust. 1990, 19, 157–200. [Google Scholar]
- Na, W.-B.; Kundu, T. A Combination of PZT and EMAT Transducers for Interface Inspection. J. Acoust. Soc. Am. 2002, 111, 2128–2139. [Google Scholar] [CrossRef]
- Mirkhani, K.; Chaggares, C.; Masterson, C.; Jastrzebski, M.; Dusatko, T.; Sinclair, A.; Shapoorabadi, R.J.; Konrad, A.; Papini, M. Optimal Design of EMAT Transmitters. NDT E Int. 2004, 37, 181–193. [Google Scholar] [CrossRef]
- Alers, G.A. Electromagnetic Induction of Ultrasonic Waves: EMAT, EMUS, EMAR. In Proceedings of the 16th World Conference on NDT, Montreal, QC, Canada, 30 August–3 September 2004. [Google Scholar]
- Satyarnarayan, L.; Chandrasekaran, J.; Maxfield, B.; Balasubramaniam, K. Circumferential Higher Order Guided Wave Modes for the Detection and Sizing of Cracks and Pinholes in Pipe Support Regions. NDT E Int. 2008, 41, 32–43. [Google Scholar] [CrossRef]
- Mu, J.; Zhang, L.; Rose, J.L. Defect Circumferential Sizing by Using Long Range Ultrasonic Guided Wave Focusing Techniques in Pipe. Nondestruct. Test. Eval. 2007, 22, 239–253. [Google Scholar] [CrossRef]
- Lamb, H. On Waves in an Elastic Plate. Proc. R. Soc. Lond. A 1917, 93, 114–128. [Google Scholar] [CrossRef]
- Tian, Z.; Yu, L. Lamb Wave Frequency–Wavenumber Analysis and Decomposition. J. Intell. Mater. Syst. Struct. 2014, 25, 1107–1123. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, H.; Tian, T.; Deng, D.; Hu, M.; Ma, J.; Gao, D.; Zhang, J.; Ma, S.; Yang, L.; et al. A Review on Guided-Ultrasonic-Wave-Based Structural Health Monitoring: From Fundamental Theory to Machine Learning Techniques. Ultrasonics 2023, 133, 107014. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Giurgiutiu, V. Advanced Signal Processing for Enhanced Damage Detection with Piezoelectric Wafer Active Sensors. Smart Struct. Syst. 2005, 1, 185–215. [Google Scholar] [CrossRef]
- Auyeung, Y.; Balaguru, P.; Chung, L. Bond Behavior of Corroded Reinforcement Bars. Mater. J. 2000, 97, 214–220. [Google Scholar]
- Lee, H.-S.; Noguchi, T.; Tomosawa, F. Evaluation of the Bond Properties between Concrete and Reinforcement as a Function of the Degree of Reinforcement Corrosion. Cem. Concr. Res. 2002, 32, 1313–1318. [Google Scholar] [CrossRef]
- Khalili, P.; Cawley, P. Excitation of Single-Mode Lamb Waves at High-Frequency-Thickness Products. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 63, 303–312. [Google Scholar] [CrossRef]
- Khalili, P.; Cegla, F. Excitation of Single-Mode Shear-Horizontal Guided Waves and Evaluation of Their Sensitivity to Very Shallow Crack-like Defects. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 68, 818–828. [Google Scholar] [CrossRef]
- Balasubramaniam, K.; Annamalai, S.; Venkataraman, K.S. Higher Order Modes Cluster (HOMC) Guided Waves Technique for Corrosion Detection. In Proceedings of the 18th World World Conference on Non-Destructive Testing, Durban, South Africa, 16–20 April 2012. [Google Scholar]
- Jayaraman, C.; Krishnamurthy, C.V.; Balasubramaniam, K. Higher Order Modes Cluster (Homc) Guided Waves—A New Technique for Ndt Inspection. AIP Conf. Proc. 2014, 1096, 121–128. [Google Scholar]
- Howard, R.; Cegla, F. On the Probability of Detecting Wall Thinning Defects with Dispersive Circumferential Guided Waves. NDT E Int. 2017, 86, 73–82. [Google Scholar] [CrossRef]
- Jankauskas, A.; Mazeika, L. Ultrasonic Guided Wave Propagation through Welded Lap Joints. Metals 2016, 6, 315. [Google Scholar] [CrossRef]
- Mažeika, L.; Raišutis, R.; Maciulevičius, A.; Žukauskas, E.; Kažys, R.; Seniūnas, G.; Vladišauskas, A. Comparison of Several Techniques of Ultrasonic Lamb Waves Velocities Measurements. Ultragarsas/Ultrasound 2009, 64, 11–17. [Google Scholar]
- Raišutis, R.; Tumšys, O.; Žukauskas, E.; Samaitis, V.; Draudvilienė, L.; Jankauskas, A. An Inspection Technique for Steel Pipes Wall Condition Using Ultrasonic Guided Helical Waves and a Limited Number of Transducers. Materials 2023, 16, 5410. [Google Scholar] [CrossRef] [PubMed]
- Lenkov, S.V.; Zverev, N.N.; Muravieva, O.V.; Myshkin, Y.V. Hardware and Software System of the Guided Wave Pipe Testing Using Electromagnetic-Acoustic Transformation. In Proceedings of the 2016 International Siberian Conference on Control and Communications (SIBCON), Moscow, Russia, 12–14 May 2016; pp. 1–4. [Google Scholar]
- Qing, X.P.; Beard, S.; Shen, S.B.; Banerjee, S.; Bradley, I.; Salama, M.M.; Chang, F.-K. Development of a Real-Time Active Pipeline Integrity Detection System. Smart Mater. Struct. 2009, 18, 115010. [Google Scholar] [CrossRef]
- Farrar, C.R.; Worden, K. An Introduction to Structural Health Monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 303–315. [Google Scholar] [CrossRef]
- Ostachowicz, W.; Soman, R.; Malinowski, P. Optimization of Sensor Placement for Structural Health Monitoring: A Review. Struct. Health Monit. 2019, 18, 963–988. [Google Scholar] [CrossRef]
- Sohn, H. Effects of Environmental and Operational Variability on Structural Health Monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 539–560. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Guers, M.J.; Rose, J.L. Flexible Ultrasonic Guided Wave Sensor Development for Structural Health Monitoring. In Proceedings of the Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure V, San Diego, CA, USA, 28 February–2 March 2006; Volume 6176, pp. 325–336. [Google Scholar]
- Gresil, M.; Poohsai, A.; Chandarana, N. Guided Wave Propagation and Damage Detection in Composite Pipes Using Piezoelectric Sensors. Procedia Eng. 2017, 188, 148–155. [Google Scholar] [CrossRef]
- Leong, W.H.; Staszewski, W.J.; Lee, B.C.; Scarpa, F. Structural Health Monitoring Using Scanning Laser Vibrometry: III. Lamb Waves for Fatigue Crack Detection. Smart Mater. Struct. 2005, 14, 1387. [Google Scholar] [CrossRef]
- Dürager, C.; Heinzelmann, A.; Riederer, D. A Wireless Sensor System for Structural Health Monitoring with Guided Ultrasonic Waves and Piezoelectric Transducers. Struct. Infrastruct. Eng. 2013, 9, 1177–1186. [Google Scholar] [CrossRef]
- Pallarés, F.J.; Betti, M.; Bartoli, G.; Pallarés, L. Structural Health Monitoring (SHM) and Nondestructive Testing (NDT) of Slender Masonry Structures: A Practical Review. Constr. Build. Mater. 2021, 297, 123768. [Google Scholar] [CrossRef]
- Zhang, P.; Venketeswaran, A.; Wright, R.F.; Lalam, N.; Sarcinelli, E.; Ohodnicki, P.R. Quasi-Distributed Fiber Sensor-Based Approach for Pipeline Health Monitoring: Generating and Analyzing Physics-Based Simulation Datasets for Classification. Sensors 2023, 23, 5410. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Wan, X.; Tang, B.; Qin, Y.; Xu, C. Physics-Informed Deep Filtering of Ultrasonic Guided Waves for Incipient Defect Inspection of Large-Scale Square Tube Structures. J. Sound Vib. 2023, 567, 118066. [Google Scholar] [CrossRef]
Different Types of GW Transducers | Guided Wave Mode and Type | A Brief Introduction of the Research Content | Defect Type |
---|---|---|---|
Piezoelectric transducers (PZT) | L (0, 1) and L (0, 2) F (1, 1), F (1, 2), and F (1, 3) |
| Corrosion and notch-type defects |
Higher-order circumferential | The 2D FE model using ABAQUS® verified that the system can detect defects as small as 1.5 mm in diameter and 25% of the penetrating wall thickness [87]. |
| |
Phased array transducers (PA) | Circumferential GWs |
|
|
L (0, 1) and L (0, 2) | Three-dimensional and two-dimensional finite-element simulation analysis was employed to study the reflection of guided waves (GWs) from non-axisymmetric and axisymmetric corrosion defects [86]. | Non-axisymmetric and axisymmetric corrosion defects | |
T (m, 1) and L (m, 2) |
|
|
Phase Velocity Dispersion Curves of Guided Waves in Steel Plate | Frequency-Thickness | Key Information | Partial Scope of Application | Defect Type | See for Details | |
---|---|---|---|---|---|---|
Lamb modes | S0 | 1 MHZ-mm 1.5 MHZ-mm |
|
|
| Khalili et al. [25] |
A1 | 20 MHZ-mm |
|
| severe, sharp, pitting-type defects | Balasubramaniam et al. [123,124] and Khalili et al. [121] | |
Shear horizontal (SH) modes | SH0 | 2.5 MHz-mm | Not affected by non-viscous liquid loads on the structure. Non-dispersive inspection can be conducted in the fundamental SH0 mode. | For pipes with relatively thin walls (<15 mm), EMATs are employed to excite SH0 and SH1 modes. |
| Cawley et al. [33,34,35,36,37] |
SH1 | 3 MHz-mm | The mode exhibits dispersion characteristics around 3 MHz·mm and demonstrates a mode shape with high surface energy. | Advantageous for short-range detection and very shallow crack-like defects. | SH1 mode to very shallow (<10% thickness loss) crack-like defects | Howard et al. [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, F.; Zhou, X.; Ding, Z.; Qiao, X.; Song, D. Application Research of Ultrasonic-Guided Wave Technology in Pipeline Corrosion Defect Detection: A Review. Coatings 2024, 14, 358. https://doi.org/10.3390/coatings14030358
Lyu F, Zhou X, Ding Z, Qiao X, Song D. Application Research of Ultrasonic-Guided Wave Technology in Pipeline Corrosion Defect Detection: A Review. Coatings. 2024; 14(3):358. https://doi.org/10.3390/coatings14030358
Chicago/Turabian StyleLyu, Feng, Xinyue Zhou, Zheng Ding, Xinglong Qiao, and Dan Song. 2024. "Application Research of Ultrasonic-Guided Wave Technology in Pipeline Corrosion Defect Detection: A Review" Coatings 14, no. 3: 358. https://doi.org/10.3390/coatings14030358
APA StyleLyu, F., Zhou, X., Ding, Z., Qiao, X., & Song, D. (2024). Application Research of Ultrasonic-Guided Wave Technology in Pipeline Corrosion Defect Detection: A Review. Coatings, 14(3), 358. https://doi.org/10.3390/coatings14030358