The Effect of Heat Treatment on the Microstructure and Mechanical Properties of Plasma-Cladded CoCrFeNiMn Coatings on Compacted Graphite Iron
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the HEA Coatings
2.2. Heat Treatment Processes
2.3. Characterization of the HEA Coatings
2.4. Wear Test
3. Results and Discussion
3.1. Microstructure
3.2. Phases
3.3. Microhardness
3.4. Wear Resistance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Yeh, J.W. Physical metallurgy of high-entropy alloys. J. Miner. Met. Mater. Soc. 2015, 67, 2254–2261. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Q.; Jiang, B.B.; Li, C.L.; Hao, J.M.; Li, X.N.; Dong, C.; Nieh, T.G. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni, Co, Fe, Cr)14 compositions. Acta Mater. 2018, 147, 213–225. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Tong, Z.P.; Liu, H.L.; Jiao, J.F.; Zhou, W.F.; Yang, Y.; Ren, X.D. Improving the strength and ductility of laser directed energy deposited CrMnFeCoNi high-entropy alloy by laser shock peening. Addit. Manuf. 2020, 35, 101417. [Google Scholar] [CrossRef]
- Fu, Z.; Jiang, L.; Wardini, J.L.; MacDonald, B.E.; Xiong, H.W.; Zhang, D.; Zhou, Y.; Rupert, T.J.; Chen, W.; Lavernia, E.J. A high-entropy alloy with hierarchical nano-precipitates and ultrahigh strength. Sci. Adv. 2018, 4, 8712. [Google Scholar] [CrossRef]
- Zou, Y.; Ma, H.; Spolenak, R. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 2015, 6, 7748. [Google Scholar] [CrossRef]
- Yao, Y.; Huang, Z.; Xie, P.; Lacey, S.D.; Jacob, R.J.; Xie, H.; Chen, F.; Nie, A.; Pu, T.; Rehwoldt, M.; et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494. [Google Scholar] [CrossRef]
- El-Atwani, O.; Li, N.; Li, M.; Devaraj, A.; Baldwin, J.K.S.; Schneider, M.M.; Sobieraj, D.; Wróbel, J.S.; Nguyen-Manh, D.; Maloy, S.A.; et al. Outstanding radiation resistance of tungsten-based high-entropy alloys. Sci. Adv. 2019, 5, 2002. [Google Scholar] [CrossRef]
- Qiu, Y.; Thomas, S.; Gibson, M.A.; Fraser, H.L.; Birbilis, N. Corrosion of high entropy alloys. Npj Mater. Degrad. 2017, 1, 15. [Google Scholar] [CrossRef]
- Chuang, M.; Tsai, M.; Wang, W.; Lin, S.; Yeh, J. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011, 59, 6308–6317. [Google Scholar] [CrossRef]
- Kumar, S. Comprehensive review on high entropy alloy-based coating. Surf. Coat. Technol. 2024, 477, 130327. [Google Scholar] [CrossRef]
- Arif, Z.U.; Khalid, M.Y.; ur Rehman, E.; Ullah, S.; Atif, M.; Tariq, A. A review on laser cladding of high-entropy alloys, their recent trends and potential applications. J. Manuf. Process. 2021, 68, 225–273. [Google Scholar] [CrossRef]
- Cui, Y.; Shen, J.Q.; Geng, K.P.; Hu, S.S. Fabrication of FeCoCrNiMnAl0.5-FeCoCrNiMnAl gradient HEA coating by laser cladding technique. Surf. Coat. Technol. 2021, 412, 127077. [Google Scholar] [CrossRef]
- Chen, B.Y.; Gao, P.H.; Zhang, B.; Zhao, D.M.; Wang, W.; Jin, C.; Yang, Z.; Guo, Y.C.; Liang, M.X.; Li, J.P.; et al. Wear properties of iron-based alloy coatings prepared by plasma transfer arc cladding. Coatings 2022, 12, 243. [Google Scholar] [CrossRef]
- Gao, P.H.; Fu, R.T.; Chen, B.Y.; Zeng, S.C.; Zhang, B.; Yang, Z.; Guo, Y.C.; Liang, M.X.; Li, J.P.; Lu, Y.Q.; et al. Corrosion Resistance of CoCrFeNiMn High Entropy Alloy Coating Prepared through Plasma Transfer Arc Claddings. Metals 2021, 11, 1876. [Google Scholar] [CrossRef]
- Cheng, J.B.; Murakami, H.; Yeh, J.W.; Yeh, A.C. Kazuya Shimoda, On the study of thermal-sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA overlay coating. Surf. Coat. Technol. 2017, 316, 71–74. [Google Scholar]
- Nikbakht, R.; Saadati, M.; Kim, T.S.; Jahazi, M.; Kim, H.S.; Jodoin, B. Cold spray deposition characteristic and bonding of CrMnCoFeNi high entropy alloy. Surf. Coat. Technol. 2021, 425, 127748. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Zhang, X.M.; Quan, H.; Chena, Y.J.; Wang, S.; Zhang, S. Effect of Mo addition on structures and properties of FeCoNiCrMn high entropy alloy film by direct current magnetron sputtering. J. Alloys Compd. 2022, 895, 162790. [Google Scholar] [CrossRef]
- Zhao, Z.Z.; Meng, H.M.; Ren, P.W. CoNiWReP high entropy alloy coatings prepared by pulse current electrodeposition from aqueous solution. Colloid Surf. A 2022, 648, 129404. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, F.; Wang, L.; Yan, S.; Yin, F. Effects of Post-Annealing on Microstructure and Mechanical Properties of Plasma Sprayed Ti-Si-C Com-posite Coatings with Al Addition. Surf. Coat. Technol. 2021, 416, 127164. [Google Scholar] [CrossRef]
- Hong, D.; Huang, L.; Yuan, J.; Li, C. Influence of Annealing Temperature on Microstructure Evolution of TiAlSiN Coating and Its Tribological Behavior Against Ti6Al4V Alloys. Ceram. Int. 2021, 47, 3789–3796. [Google Scholar] [CrossRef]
- Sha, M.; Li, F.; Zhang, J.; Na, L.; Ning, W. Effects of Annealing on the Microstructure and Wear Resistance of AlCoCrFeNiTi0.5 High-Entropy Alloy Coating Prepared by Laser Cladding. Rare Met. Mater. Eng. 2017, 46, 1237–1240. [Google Scholar]
- Hao, E.; An, Y.; Liu, X.; Wang, Y.; Zhou, H.; Yan, F. Effect of Annealing Treatment on Microstructures, Mechanical Properties and Cavitation Erosion Performance of High Velocity Oxy-Fuel Sprayed NiCoCrAlYTa Coating. J. Mater. Sci. Technol. 2020, 53, 19–31. [Google Scholar] [CrossRef]
- Lin, D.Y.; Zhang, N.N.; He, B.; Jin, B.Q.; Zhang, Y.; Li, D.Y.; Dong, F.Y. Influence of laser remelting and vacuum heat treatment on plasma-sprayed FeCoCrNiAl alloycoatings. J. Iron Steel Res. Int. 2017, 24, 1199–1205. [Google Scholar] [CrossRef]
- Munitz, A.; Salhov, S.; Hayun, S.; Frage, N. Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi highentropy alloy. J. Alloys Compd. 2016, 683, 221–230. [Google Scholar] [CrossRef]
- Li, J.; Hui, J.; Lu, Y.P.; Wang, T.; Cao, Z.; Li, T. Mechanical properties improvement of AlCrFeNi2Ti0.5 high entropy alloy through annealing design andits relationship with its particle-reinforced microstructures. J. Mater. Sci. Technol. 2015, 31, 397–402. [Google Scholar]
- He, F.; Wang, Z.J.; Niu, S.Z.; Wu, Q.F.; Li, J.J.; Wang, J.C.; Liu, C.T.; Dang, Y.Y. Strengthening the CoCrFeNiNb0.25 high entropy alloy by FCC precipitate. J. Alloys Compd. 2016, 667, 53–57. [Google Scholar] [CrossRef]
- Zhang, M.N.; Zhou, X.L.; Zhu, W.Z.; Li, J.H. Influence of annealing on microstructure and mechanical properties of refractory CoCrMoNbTi0.4 high-entropy alloy. Metall. Mater. Trans. A 2018, 49, 1313–1327. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, G.F.; Dai, P.Q. Phase transformation and aging behavior of Al0.5CoCrFeNiSi0.2 high-entropy alloy. J. Mater. Eng. Perform. 2015, 24, 1918–1925. [Google Scholar] [CrossRef]
- Niu, S.; Kou, H.; Tong, G.; Yu, Z.; Wang, J.; Li, J. Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy. Mater. Sci. Eng. A 2016, 671, 82–86. [Google Scholar] [CrossRef]
- Gao, P.H.; Fu, R.T.; Liu, J.L.; Chen, B.Y.; Zhang, B.; Zhao, D.M.; Yang, Z.; Guo, Y.C.; Liang, M.X.; Li, J.P.; et al. Influence of Plasma Arc Current on the Friction and Wear Properties of CoCrFeNiMn High Entropy Alloy Coatings Prepared on CGI through Plasma Transfer Arc Cladding. Coatings 2022, 12, 633. [Google Scholar] [CrossRef]
- Lin, D.Y.; Zhang, N.; He, B.; Gong, X.; Zhang, Y.; Li, D.; Dong, F. Structural Evolution and Performance Changes in FeCoCrNiAlNbx High-Entropy Alloy Coatings Cladded by Laser. J. Therm. Spray Technol. 2017, 26, 2005–2012. [Google Scholar] [CrossRef]
- Wang, C.; Gao, Y.; Wang, R.; Wei, D.; Fu, Y. Microstructure of laser-clad Ni60 cladding layers added with different amounts of rare-earth oxides on 6063 Al alloys. J. Alloys Compd. 2018, 740, 1099–1107. [Google Scholar] [CrossRef]
- Laplanche, G.; Berglund, S.; Reinhart, C.; Kostka, A.; Fox, F.; George, E. Phase stability and kinetics of sigma-phase precipitation in CrMnFeCoNi high-entropy alloys. Acta Mater. 2018, 161, 338–351. [Google Scholar] [CrossRef]
- Li, H.G.; Huang, Y.J.; Zhao, W.J.; Chen, T.; Sun, J.F.; Wei, D.Q.; Du, Q.; Zou, Y.C.; Lu, Y.Z.; Zhu, P.; et al. Overcoming the strength-ductility trade-off in an additively manufactured CoCrFeMnNi high entropy alloy via deep cryogenic treatment. Addit. Manuf. 2022, 50, 102546. [Google Scholar] [CrossRef]
- Wu, W.; Jiang, L.; Jiang, H.; Pan, X.; Cao, Z.; Deng, D.; Wang, T.; Li, T. Phase Evolution and Properties of Al2CrFeNiMox High-Entropy Alloys Coatings by Laser Cladding. J. Therm. Spray Technol. 2015, 24, 1333–1340. [Google Scholar] [CrossRef]
- Jiang, L.; Lu, Y.P.; Dong, Y.; Wang, T.M.; Cao, Z.Q.; Li, T.J. Annealing effects on the microstructure and properties of bulk high-entropy CoCrFeNiTi0.5 alloy casting ingot. Intermetallics 2014, 44, 37–43. [Google Scholar] [CrossRef]
- Sathiyamoorthi, P.; Basu, J.; Kashyap, S.; Pradeep, K.G.; Kottada, R.S. Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite. Mater. Des. 2017, 134, 426–433. [Google Scholar] [CrossRef]
- Ye, F.; Jiao, Z.; Zhao, L. Effect of Y2O3 addition on the microstructure and properties of Ni60 additives by micro-plasma cladding. Mater. Res. Express 2019, 6, 026562. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Cheng, Y.Q.; Lia, P.K. High-entropy alloys with high saturation magnetization, electrical resistivity and malleability. Sci. Rep. 2013, 3, 1455. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.H.; Pouraliakbar, H.; Minouei, H.; Rizi, M.S.; Fallah, V.; Na, Y.S.; Han, J.H.; Hong, S.I. Characterization of the microscale/nanoscale hierarchical microstructure of an as-cast CrMnFeNiCu high-entropy alloy with promising mechanical properties. J. Alloys Compd. 2023, 954, 170091. [Google Scholar] [CrossRef]
- Gao, P.H.; Chen, B.Y.; Zhang, B.; Yang, Z.; Guo, Y.C.; Li, J.P.; Liang, M.X.; Li, Q.P. Preparations of iron-based alloy coatings on grey cast iron through plasma transfer arc welding. J. Adhes. Sci. Technol. 2022, 36, 833–844. [Google Scholar] [CrossRef]
Elements | Co | Cr | Fe | Ni | Mn |
---|---|---|---|---|---|
Content/wt% | 20.58 | 18.35 | 19.98 | 20.49 | 20.48 |
Elements | C | Si | Mn | S | P | Fe |
---|---|---|---|---|---|---|
Content/wt% | 3.4–3.7 | 2.4–3.0 | ≤0.6 | ≤0.6 | ≤0.06 | Bal |
Temperature/°C | Time/min | ||
---|---|---|---|
660 | 30 | 60 | 90 |
780 | 30 | 60 | 90 |
860 | 30 | 60 | 90 |
1000 | 30 | 60 | 90 |
Weight Percent/wt.% | Region | Cr | Mn | Fe | Co | Ni | |
---|---|---|---|---|---|---|---|
Coatings | |||||||
As-cladded | 1-Dendritic | 3.230 | 5.255 | 77.150 | 6.675 | 7.690 | |
2-Interdendritic | 12.031 | 9.123 | 72.913 | 3.413 | 2.520 | ||
30 min heat-treated coatings | 3-Dendritic | 3.416 | 4.441 | 76.421 | 7.055 | 8.667 | |
4-Interdendritic | 12.147 | 9.255 | 69.357 | 4.695 | 4.546 | ||
60 min heat-treated coatings | 5-Dendritic | 3.731 | 5.687 | 73.883 | 7.211 | 9.488 | |
6-Interdendritic | 11.992 | 10.308 | 68.424 | 4.523 | 4.753 | ||
90 min heat-treated coatings | 7-Dendritic | 4.050 | 6.850 | 68.810 | 10.415 | 9.875 | |
8-Interdendritic | 16.815 | 12.730 | 64.300 | 3.435 | 2.720 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Fu, R.; Gao, P.; Chen, B.; Naumov, A.; Li, F.; Zhao, D.; Yang, Z.; Guo, Y.; Li, J.; et al. The Effect of Heat Treatment on the Microstructure and Mechanical Properties of Plasma-Cladded CoCrFeNiMn Coatings on Compacted Graphite Iron. Coatings 2024, 14, 374. https://doi.org/10.3390/coatings14040374
Zhang B, Fu R, Gao P, Chen B, Naumov A, Li F, Zhao D, Yang Z, Guo Y, Li J, et al. The Effect of Heat Treatment on the Microstructure and Mechanical Properties of Plasma-Cladded CoCrFeNiMn Coatings on Compacted Graphite Iron. Coatings. 2024; 14(4):374. https://doi.org/10.3390/coatings14040374
Chicago/Turabian StyleZhang, Bo, Ruitao Fu, Peihu Gao, Baiyang Chen, Anton Naumov, Fei Li, Daming Zhao, Zhong Yang, Yongchun Guo, Jianping Li, and et al. 2024. "The Effect of Heat Treatment on the Microstructure and Mechanical Properties of Plasma-Cladded CoCrFeNiMn Coatings on Compacted Graphite Iron" Coatings 14, no. 4: 374. https://doi.org/10.3390/coatings14040374
APA StyleZhang, B., Fu, R., Gao, P., Chen, B., Naumov, A., Li, F., Zhao, D., Yang, Z., Guo, Y., Li, J., Cheng, L., Gong, J., Liu, J., & Li, Y. (2024). The Effect of Heat Treatment on the Microstructure and Mechanical Properties of Plasma-Cladded CoCrFeNiMn Coatings on Compacted Graphite Iron. Coatings, 14(4), 374. https://doi.org/10.3390/coatings14040374