Investigating the Ancient Craftsmanship: Comprehensive Analysis of Composition and Sintering Techniques in Jiangzhai Painted Pottery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Source
2.2. Analytical Methods
- (1)
- X-ray Fluorescence Spectrometry (XRF-1800, Shimadzu, Kyoto, Japan):
- (2)
- X-ray Photoelectron Spectroscopy (XPS, Thermo Fisher Scientific, Shanghai, China):
- (3)
- Polarizing Optical Microscopy (Leica Microsystems, Wetzlar, Germany):
- (4)
- X-ray Diffractometry (XRD, Bruker, Germany):
- (5)
- Thermal Expansion Analysis (DIL 402 Expedis Supreme, Netzsch Instruments, Munich, Germany):
2.3. Sample Selection
3. Result and Discussion
3.1. Pottery Body Composition Analysis
3.2. Iron Oxidation State Analysis
3.3. Analysis of Black Speckles on Painted Pottery
3.4. Pigment Structural Analysis
3.5. Pottery Firing Temperature Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yanping, Z. The Early Neolithic in the central Yellow River valley, c. 7000–4000 BC. In A Companion to Chinese Archaeology; Wiley: Hoboken, NJ, USA, 2013; pp. 169–193. [Google Scholar]
- Habu, J.; Hall, M.E. Jomon pottery production in central Japan. Asian Perspect. 1999, 38, 90–110. [Google Scholar]
- Craig, O.E.; Saul, H.; Lucquin, A.; Nishida, Y.; Taché, K.; Clarke, L.; Thompson, A.; Altoft, D.T.; Uchiyama, J.; Ajimoto, M. Earliest evidence for the use of pottery. Nature 2013, 496, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, K. Pottery invention and innovation in East Asia and the Near East. Camb. Archaeol. J. 2015, 25, 339–351. [Google Scholar] [CrossRef]
- Guo, F. The East-West Exchange in the Neolithic Period: The Painted Pottery Culture Belt. Collection World 2003, 51–52. [Google Scholar]
- Wang, R. Review of Yangshao Culture’s Population and Society; Sanqin Publishing House: Xi’an China, 2004; pp. 204–212. [Google Scholar]
- Zhang, Z. The Journey of Neolithic Archaeology in China in the 20th Century. Palace Mus. J. 2004, 36–98. [Google Scholar]
- Wang, W. Painted Pottery and Cultural Integration in Prehistoric China. Cult. Relics Museol. 2020, 26–36. [Google Scholar]
- Chi, Z. The discovery of early pottery in China. Doc. Praehist. 2002, 29, 29–35. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, M.; Hu, S.; Wang, W. Discoveries and Studies in Shaanxi’s Prehistoric Archaeology. Archaeol. Cult. Relics 2008, 17–65. [Google Scholar]
- Wang, W.; Yang, L. The Discovery of Shaanxi Painted Pottery and Its Cultural Significance. World Cult. Relics 2021, 61–68. [Google Scholar]
- Gong, Y.; Li, Q. Research on the Application of Modern Science and Technology in Ancient Ceramics. China Ceram. 2021, 57, 49–55. [Google Scholar]
- Hobson, R.L. Chinese Pottery and Porcelain: An Account of the Potter’s Art in China from Primitive Times to the Present Day; Cassell, Limited: London, UK, 1915; Volume 2. [Google Scholar]
- Jones, D.L.; Oburger, E. Solubilization of phosphorus by soil microorganisms. In Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling; Springer: Berlin/Heidelberg, Germany, 2011; pp. 169–198. [Google Scholar]
- Grammatikakis, I.E.; Kyriakidis, E.; Demadis, K.D.; Cabeza Diaz, A.; Leon-Reina, L. Mineralogical Characterization and Firing Temperature Delineation on Minoan Pottery, Focusing on the Application of Micro-Raman Spectroscopy. Heritage 2019, 2, 2652–2664. [Google Scholar] [CrossRef]
- Biesinger, M. X-Ray Photoelectron Spectroscopy (XPS) Reference Pages. Surface Science Western, University of Western Ontario, Ontario. 2015. Available online: https://www.xpsfitting.com/ (accessed on 29 December 2023).
- Chastain, J.; King, R.C., Jr. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992; Volume 40, p. 221. [Google Scholar]
- Shi, M. An Overview of the Chronological Characteristics of Pigments on the Surfaces of Ancient Murals, Colored Sculptures, and Painted Pottery. World Cult. Relics 2014, 69–71. [Google Scholar]
- Xia, Y. Tracing the Faint Colors; Beijing Science Press: Beijing, China, 2017; pp. 24–50. [Google Scholar]
- Chen, X.; Ma, Q.; Zhao, G.; Hu, Z.; Li, Z. Study on the Composite Pigments of Black and Red Polychrome Pottery of the Banshan and Machang Types. J. Lanzhou Univ. 2000, 71–76. [Google Scholar]
- Institute of Geochemistry, Chinese Academy of Sciences. Manual for Mineral X-Ray Powder Identification; Beijing Science Press: Beijing, China, 1978; pp. 70–74. [Google Scholar]
- Zhu, X. Analysis of Pigments from Majiayao Culture Painted Pottery Unearthed at the Niumendong Site in Huining; Museum of the Mausoleum of the First Qin Emperor: Xi’an, China, 2018; pp. 207–212. [Google Scholar]
- Chen, X.; Ma, Q.; Song, D.; Hu, Z.; Li, Z. X-ray Diffraction Analysis of Black and White Pigments on Majiayao Type Painted Pottery. J. Lanzhou Univ. 2000, 54–58. [Google Scholar]
- Ma, Q.; Hu, Z.; Li, Z.; Liang, B. Analysis and Study on the Pigments and Lump Pigments of Painted Pottery (Painted Pottery) Unearthed from the Dadiwan Site in Qin’an, Gansu. Cult. Relics 2001, 84–92. [Google Scholar]
- Dong, J.; Feng, M.; Wang, C.; Wang, H.; Kan, X. Test Study on the Source of Pigments of Shuangdun Painted Pottery. Rock Miner. Test. 2007, 13–16. [Google Scholar]
- Ion, R.-M.; Diaconu, V.; Vasilievici, G.; Iancu, L.; Grigorescu, R.M.; Mîrț, L.-A.; Alexandrescu, E.; Gheboianu, A.I.; Slamnoiu-Teodorescu, S. Archaeometric Investigations of the Chalcolithic Pottery from Topolița—Neamț County, Romania. Coatings 2023, 13, 488. [Google Scholar] [CrossRef]
- Lindahl, A.; Stilborg, O.; Hulthén, B. The Aim of Laboratory Analyses of Ceramics in Archaeology, April 7–9, 1995 in Lund Sweden; Coronet Books Inc.: Philadelphia, PA, USA, 1995. [Google Scholar]
- Ravisankar, R.; Naseerutheen, A.; Rajalakshmi, A.; Annamalai, G.R.; Chandrasekaran, A. Application of thermogravimetry–differential thermal analysis (TG–DTA) technique to study the ancient potteries from Vellore dist, Tamilnadu, India. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 129, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Bensimon, Y.; Deroide, B.; Clavel, S.; Zanchetta, J.-V. Electron spin resonance and dilatometric studies of ancient ceramics applied to the determination of firing temperature. Jpn. J. Appl. Phys. 1998, 37, 4367. [Google Scholar] [CrossRef]
- Cano, N.F.; Ribeiro, R.B.; Munita, C.S.; Watanabe, S.; Neves, E.G.; Tamanaha, E.K. Dating and determination of firing temperature of ancient potteries from São Paulo II archaeological site, Brazil by TL and EPR techniques. J. Cult. Herit. 2015, 16, 361–364. [Google Scholar] [CrossRef]
- Venkatachalapathy, R.; Sridharan, T.; Dhanapandian, S.; Manoharan, C. Determination of firing temperature of ancient potteries by means of infrared and Mossbauer studies. Spectrosc. Lett. 2002, 35, 769–779. [Google Scholar] [CrossRef]
- Maniatis, Y.; Katsanos, A.; Caskey, M.E. Technological Examination of Low-Fired Terracotta Statues from Ayia Irini, Kea. Archaeometry 1982, 24, 191–198. [Google Scholar] [CrossRef]
- Eissa, N.; Sallam, H. Application of Mössbauer spectroscopy in investigating Egyptian archaeology. Hyperfine Interact. 1988, 41, 779–782. [Google Scholar] [CrossRef]
- Zheng, Y.; Hsia, Y. Studies of archaeological problems by Mössbauer spectroscopy. Hyperfine Interact. 1992, 68, 131–142. [Google Scholar] [CrossRef]
- Tominaga, T.; Takeda, M.; Mabuchi, H.; Emoto, Y. Characterization of ancient Japanese roofing tiles by 57Fe Mössbauer spectroscopy. Archaeometry 1978, 20, 135–146. [Google Scholar] [CrossRef]
- Tyagi, V.D.G.a.S.K. Determination of firing temperatures of chalcolithic of potteries by studying variation of Fes+/Fez+ ratio at different temperatures. Bull. Deccan Coll. Res. Inst. 1983, 42, 83–86. [Google Scholar]
- Rasmussen, K.L.; Guillermo, A.; Bond, A.D.; Mathiesen, K.K.; Vera, S.D. Pottery firing temperatures: A new method for determining the firing temperature of ceramics and burnt clay. J. Archaeol. Sci. 2012, 39, 1705–1716. [Google Scholar] [CrossRef]
- Tite, M. Determination of the firing temperature of ancient ceramics by measurement of thermal expansion: A reassessment. Archaeometry 1969, 11, 131–143. [Google Scholar] [CrossRef]
- Lei, Y.; Xia, Y. Methods for Determining the Firing Temperature of Terracotta Warriors and Horses: A Review of Methods for Testing the Firing Temperature of Ancient Ceramics. Collect. Pap. Qin Cult. 2001, 695–705. [Google Scholar]
- Wang, C.; Tong, Y. Study on Simulated Experiments for Measuring the Firing Temperature of Ceramics by Thermal Expansion Method. Sci. Technol. Eng. 2018, 18, 86–91. [Google Scholar]
Element | Maximum | Minimum | Median | Standard Deviation | Mean | Red Pottery Mean | Gray Pottery Mean |
---|---|---|---|---|---|---|---|
Si | 62.64 | 45.48 | 53.57 | 4.67 | 53.96 | 54.62 | 53.39 |
Al | 25.63 | 13.70 | 17.74 | 2.67 | 18.24 | 18.07 | 18.42 |
Fe | 21.29 | 11.91 | 15.62 | 2.23 | 15.53 | 15.09 | 15.93 |
Ca | 5.74 | 2.72 | 3.95 | 0.58 | 4.00 | 3.98 | 3.97 |
K | 3.25 | 1.42 | 2.14 | 0.44 | 2.22 | 2.18 | 2.22 |
Mg | 2.45 | 1.20 | 2.03 | 0.32 | 1.98 | 2.01 | 1.93 |
Ti | 1.78 | 0.91 | 1.23 | 0.21 | 1.24 | 1.27 | 1.22 |
Cr | 1.19 | 0.46 | 0.69 | 0.15 | 0.68 | 0.66 | 0.69 |
Mn | 0.48 | 0.24 | 0.31 | 0.07 | 0.33 | 0.32 | 0.33 |
P | 0.51 | 0.16 | 0.30 | 0.08 | 0.31 | 0.29 | 0.32 |
Red Pigment | Element | Fe | Si | Ca | K | Mn | Mg | Ti |
Content | 54.32 | 31.34 | 5.23 | 2.62 | 2.43 | 1.95 | 0.56 | |
Black Pigment | Element | Mn | Fe | Si | Ca | Ba | Al | Mg |
Content | 37.34 | 27.43 | 13.13 | 9.42 | 5.42 | 4.35 | 1.35 | |
White Pigment | Element | Ca | Si | Fe | K | Mg | Mn | Ba |
Content | 44.34 | 31.69 | 9.24 | 6.42 | 3.15 | 2.52 | 1.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, X.; Peng, Z.; Tan, T.; Han, K.; Li, Y.; Liu, H.; Xing, H.; Li, Y.; Chao, X. Investigating the Ancient Craftsmanship: Comprehensive Analysis of Composition and Sintering Techniques in Jiangzhai Painted Pottery. Coatings 2024, 14, 397. https://doi.org/10.3390/coatings14040397
Su X, Peng Z, Tan T, Han K, Li Y, Liu H, Xing H, Li Y, Chao X. Investigating the Ancient Craftsmanship: Comprehensive Analysis of Composition and Sintering Techniques in Jiangzhai Painted Pottery. Coatings. 2024; 14(4):397. https://doi.org/10.3390/coatings14040397
Chicago/Turabian StyleSu, Xinyuan, Zhanhui Peng, Tao Tan, Kezhu Han, Yanli Li, Huifang Liu, Huiping Xing, Yuhu Li, and Xiaolian Chao. 2024. "Investigating the Ancient Craftsmanship: Comprehensive Analysis of Composition and Sintering Techniques in Jiangzhai Painted Pottery" Coatings 14, no. 4: 397. https://doi.org/10.3390/coatings14040397
APA StyleSu, X., Peng, Z., Tan, T., Han, K., Li, Y., Liu, H., Xing, H., Li, Y., & Chao, X. (2024). Investigating the Ancient Craftsmanship: Comprehensive Analysis of Composition and Sintering Techniques in Jiangzhai Painted Pottery. Coatings, 14(4), 397. https://doi.org/10.3390/coatings14040397