Thermoelectric Methylene Blue Degradation by SnSe-Doped Low-Content Copper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. UV Absorption Spectrum Test
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Gao, M.R.; Xu, Y.F.; Jiang, J.; Yu, S.H. ChemInform Abstract: Nanostructured Metal Chalcogenides: Synthesis, Modification, and Applications in Energy Conversion and Storage Devices. ChemInform 2013, 44. [Google Scholar] [CrossRef]
- Kershaw, S.; Susha, A.; Rogach, A. Narrow bandgap colloidal metal chalcogenide quantum dots: Synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. Chem. Soc. Rev. 2013, 42, 3033–3087. [Google Scholar] [CrossRef] [PubMed]
- Das, L.; Guleria, A.; Neogy, S.; Adhikari, S. Porous nanostructures of SnSe: Role of ionic liquid, tuning of nanomorphology and mechanistic studies. RSC Adv. 2016, 6, 92934–92942. [Google Scholar] [CrossRef]
- Boscher, N.D.; Carmalt, C.J.; Palgrave, R.G.; Parkin, I.P. Atmospheric pressure chemical vapour deposition of SnSe and SnSe2 thin films on glass. Thin Solid Film. 2008, 516, 4750–4757. [Google Scholar] [CrossRef]
- Yu, J.G.; Yue, A.S.; Stafsudd, O.M. Growth and electronic properties of the SnSe semiconductor. J. Cryst. Growth 1981, 54, 248–252. [Google Scholar] [CrossRef]
- Zhao, L.D.; Lo, S.H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377. [Google Scholar] [CrossRef]
- Li, L.; Chen, Z.; Hu, Y.; Wang, X.; Zhang, T.; Chen, W.; Wang, Q. Single-Layer Single-Crystalline SnSe Nanosheets. J. Am. Chem. Soc. 2013, 135, 1213–1216. [Google Scholar] [CrossRef]
- Subramanian, B.; Mahalingam, T.; Sanjeeviraja, C.; Jayachandran, M.; Chockalingam, M.J. Electrodeposition of Sn, Se, SnSe and the material properties of SnSe films. Thin Solid Film. 1999, 357, 119–124. [Google Scholar] [CrossRef]
- Sootsman, J.R.; He, J.; Dravid, V.P.; Ballikaya, S.; Vermeulen, D.; Uher, C.; Kanatzidis, M.G. Microstructure and thermoelectric properties of mechanically robust PbTe-Si eutectic composites. Chem. Mater. 2010, 22, 869–875. [Google Scholar] [CrossRef]
- Chang, C.; Tan, G.; He, J.; Kanatzidis, M.G.; Zhao, L.D. The Thermoelectric Properties of SnSe Continue to Surprise: Extraordinary Electron and Phonon Transport. Chem. Mater. 2018, 30, 7355–7367. [Google Scholar] [CrossRef]
- Jamali-Sheini, F.; Cheraghizade, M.; Yousefi, R. Electrochemically synthesis and optoelectronic properties of Pb- and Zn-doped nanostructured SnSe films. Appl. Surf. Sci. A J. Devoted Prop. Interfaces Relat. Synth. Behav. Mater. 2018, 443, 345–353. [Google Scholar] [CrossRef]
- Wang, X.; Liu, B.; Xiang, Q.; Wang, Q.; Shen, G. Spray-Painted Binder-Free SnSe Electrodes for High-Performance Energy-Storage Devices. ChemSusChem 2014, 7, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, V.P.; Gireesan, K.; Desai, C.F. Electrooptic properties of polycrystalline SnSe thin films. Cryst. Res. Technol. 2010, 24, 187–192. [Google Scholar] [CrossRef]
- Han, Y.M.; Zhao, J.; Zhou, M.; Jiang, X.X.; Li, L.F. Thermoelectric performance of SnS and SnS–SnSe solid solution. J. Mater. Chem. A 2015, 3, 4555–4559. [Google Scholar] [CrossRef]
- Shi, G.; Kioupakis, E. Quasiparticle band structures and thermoelectric transport properties of p-type SnSe. J. Appl. Phys. 2015, 117, 065103. [Google Scholar] [CrossRef]
- Kutorasinski, K.; Wiendlocha, B.; Kaprzyk, S.; Tobola, J. Electronic structure and thermoelectric properties of n- and p-type SnSe from first principles calculations. Phys. Rev. B 2015, 91, 205201. [Google Scholar] [CrossRef]
- Tan, G.; Zhao, L.D.; Shi, F.; Doak, J.W.; Lo, S.H.; Sun, H.; Wolverton, C.; Dravid, V.P.; Uher, C.; Kanatzidis, M.G. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. J. Am. Chem. Soc. 2014, 136, 7006–7017. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, J.; Liu, G.; Fu, Y.; Jiang, J. Optimization of thermoelectric properties in n-type SnSe doped with BiCl3. Appl. Phys. Lett. 2016, 108, 105. [Google Scholar] [CrossRef]
- Lin, C.L.; Chang, W.H.; Wang, C.H.; Lee, C.H.; Chen, T.Y.; Jan, F.J.; Lee, G.B. A microfluidic system integrated with buried optical fibers for detection of Phalaenopsis orchid pathogens. Biosens. Bioelectron. 2015, 63, 572–579. [Google Scholar] [CrossRef]
- Leng, H.; Zhou, M.; Zhao, J.; Han, Y.; Li, L. Optimization of Thermoelectric Performance of Anisotropic AgxSn1−xSe Compounds. J. Electron. Mater. 2016, 45, 527–534. [Google Scholar] [CrossRef]
- Zhang, Q.; Chere, E.K.; Sun, J.; Cao, F.; Dahal, K.; Chen, S.; Chen, G.; Ren, Z. Studies on Thermoelectric Properties of n-type Polycrystalline SnSe1−xSx by Iodine Doping. Adv. Energy Mater. 2015, 5, 1500360. [Google Scholar] [CrossRef]
- Wei, T.R.; Wu, C.F.; Zhang, X.; Tan, Q.; Sun, L.; Pan, Y.; Li, J.F. Thermoelectric transport properties of pristine and Na-doped SnSe1-xTex polycrystals. Phys. Chem. Chem. Phys. 2015, 17, 30102–30109. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.R.; Tan, G.; Zhang, X.; Wu, C.F.; Li, J.F.; Dravid, V.P.; Snyder, G.J.; Kanatzidis, M.G. Distinct Impact of Alkali-Ion Doping on Electrical Transport Properties of Thermoelectric p -Type Polycrystalline SnSe. J. Am. Chem. Soc. 2016, 138, 8875–8882. [Google Scholar] [CrossRef] [PubMed]
- Gharsallah, M.; Serrano-Sánchez, F.; Nemes, N.M.; Mompeán, F.J.; Martínez, J.L.; Fernández-Díaz, M.T.; Elhalouani, F.; Alonso, J.A. Giant Seebeck effect in Ge-doped SnSe. Sci. Rep. 2016, 6, 26774. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.X.; Ge, Z.H.; Yin, M.; Feng, D.; Huang, X.Q.; Zhao, W.; He, J. Understanding of the Extremely Low Thermal Conductivity in High-Performance Polycrystalline SnSe through Potassium Doping. Adv. Funct. Mater. 2016, 26, 6836–6845. [Google Scholar] [CrossRef]
- González-Romero, R.L.; Meléndez, J.J. Variation of the zT factor of SnSe with doping: A first-principles study. J. Alloys Compd. Interdiscip. J. Mater. Sci. Solid-State Chem. Phys. 2018, 732, 536–546. [Google Scholar]
- Singh, N.K.; Bathula, S.; Gahtori, B.; Tyagi, K.; Haranath, D.; Dhar, A. The effect of doping on thermoelectric performance of p-type SnSe: Promising thermoelectric material. J. Alloys Compd. 2016, 668, 152–158. [Google Scholar] [CrossRef]
- Gong, Y.; Chang, C.; Wei, W.; Liu, J.; Xiong, W.; Chai, S.; Li, D.; Zhang, J.; Tang, G. Extremely low thermal conductivity and enhanced thermoelectric performance of polycrystalline SnSe by Cu doping. Scr. Mater. 2018, 147, 74–78. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Wang, H.; Liu, G.-Q.; Tan, X.; Shao, H.; Hu, H.; Jiang, J. Enhanced thermoelectric performance in p-type polycrystalline SnSe by Cu doping. J. Mater. Sci. Mater. Electron. 2018, 29, 18727–18732. [Google Scholar] [CrossRef]
- Ahmed, G.S.; Al-Maiyaly, B.K. Cu doping effect on characterization of nano crystalline SnSe thin films. AIP Conf. Proc. 2019, 2190, 020019. [Google Scholar]
- Liu, D.; Wang, D.; Hong, T.; Wang, Z.; Wang, Y.; Qin, Y.; Su, L.; Yang, T.; Gao, X.; Ge, Z.; et al. Lattice plainification advances highly effective SnSe crystalline thermoelectrics. Science 2023, 380, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.H.; Wei, K.; Lewis, H.; Martin, J.; Nolas, G.S. Bottom-up processing and low temperature transport properties of polycrystalline SnSe. J. Solid State Chem. 2015, 225, 354–358. [Google Scholar] [CrossRef]
- Guo, H.; Xin, H.; Qin, X.; Zhang, J.; Li, D.; Li, Y.; Song, C.; Li, C. Enhanced thermoelectric performance of highly oriented polycrystalline SnSe based composites incorporated with SnTe nanoinclusions. J. Alloys Compd. 2016, 689, 87–93. [Google Scholar] [CrossRef]
- Denton, A.R.; Ashcroft, N.W. Vegard’s law. Phys. Rev. A At. Mol. Opt. Phys. 1991, 43, 3161. [Google Scholar] [CrossRef] [PubMed]
wt% | a (Å) | b (Å) | c (Å) |
---|---|---|---|
0 | 11.48467 | 4.14859 | 4.44 |
0.05 | 11.4976 | 4.1533 | 4.43976 |
0.1 | 11.50171 | 4.15472 | 4.43963 |
0.15 | 11.50255 | 4.15343 | 4.43935 |
0.2 | 11.50305 | 4.1538 | 4.43827 |
0.25 | 11.50376 | 4.15423 | 4.43175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Fan, L.; Zhu, H.; Liu, H.; Wang, Y.; Yan, S. Thermoelectric Methylene Blue Degradation by SnSe-Doped Low-Content Copper. Coatings 2024, 14, 431. https://doi.org/10.3390/coatings14040431
Wang K, Fan L, Zhu H, Liu H, Wang Y, Yan S. Thermoelectric Methylene Blue Degradation by SnSe-Doped Low-Content Copper. Coatings. 2024; 14(4):431. https://doi.org/10.3390/coatings14040431
Chicago/Turabian StyleWang, Kaili, Li Fan, Hongliang Zhu, Hao Liu, Yuxuan Wang, and Shancheng Yan. 2024. "Thermoelectric Methylene Blue Degradation by SnSe-Doped Low-Content Copper" Coatings 14, no. 4: 431. https://doi.org/10.3390/coatings14040431
APA StyleWang, K., Fan, L., Zhu, H., Liu, H., Wang, Y., & Yan, S. (2024). Thermoelectric Methylene Blue Degradation by SnSe-Doped Low-Content Copper. Coatings, 14(4), 431. https://doi.org/10.3390/coatings14040431