Excitation-Wavelength- and Time-Dependent Fluorescent Ink Based on RGB Building Blocks for Advanced Anti-Counterfeiting
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample Preparation
2.2. Preparation of the Anti-Counterfeit Logo
2.3. Characterization Method
3. Results and Discussion
3.1. Structural Characterization
3.2. Photoluminescence and Persistent Luminescence of the Monochromatic Phosphors and Tricolor Mixed Phosphors
3.3. Application to Anti-Counterfeiting
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Si, T.; Zhu, Q.; Sun, X.D.; Li, J.G. Co-doping Mn2+/Cr3+ in ZnGa2O4 to fabricate chameleon-like phosphors for multi-mode dynamic anti-counterfeiting. Chem. Eng. J. 2021, 426, 131744. [Google Scholar] [CrossRef]
- Fan, X.F.; Gu, L.Q.; Hu, Y.L.; Zhu, Q. Wearing an organic “coat” on nanocrystals of LaF3:Eu3+ to generate dynamic luminescence for optical anti-counterfeit. Adv. Powder Technol. 2021, 32, 2645–2653. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.; Chu, J.G.; Xi, P.; Wang, C.H.; Liu, R.; Wang, X.Q.; Cheng, B.W. Dual-mode luminescent multilayer core-shell UCNPs@SiO2@TEuTbB nanospheres for high-level anti-counterfeiting and recognition of latent fingerprints. Appl. Surf. Sci. 2022, 581, 152395. [Google Scholar] [CrossRef]
- Zhang, J.W.; Wang, Z.J.; Liu, P.X.; Huo, X.X.; Wang, Y.; Suo, H.; Li, L.P.; Li, P.L. Dual-mode luminous and afterglow Ca3Al2Ge3O12:Yb3+, Er3+ phosphors for anti-counterfeiting and fingerprint verification. Ceram. Int. 2024, 50, 2436–2442. [Google Scholar] [CrossRef]
- Li, Y.X.; Chen, C.H.; Jin, M.K.; Xiang, J.M.; Tang, J.J.; Zhao, X.Q.; Zheng, J.M.; Guo, C.F. Multi-mode excited Cs2NaBiCl6 Based Double Perovskite Phosphor for Anti-counterfeiting. J. Lumin. 2022, 247, 118915. [Google Scholar] [CrossRef]
- Wu, Y.P.; Wu, M.; Yu, J.J.; Wang, Y.R.; Wang, J.L.; Xu, Y.W.; Zhang, Y.J. Trap engineering in ZnGa2O4:Tb3+ through Bi3+ doping for multi-modal luminescence and advanced anti-counterfeiting strategy. Ceram. Int. 2023, 49, 31607–31617. [Google Scholar] [CrossRef]
- Shi, Y.; Cui, R.; Gong, X.; Deng, C. A novel red phosphor Ca2YNbO6:Eu3+ for WLEDs. J. Biol. Chem. Lumin. 2022, 37, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Matsuzawa, T. Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+. J. Lumin. 1997, 72–74, 287–289. [Google Scholar] [CrossRef]
- Du, H.Y.; Li, G.S.; Su, J.Y. Preparation of Non-Grinding Long Afterglow SrAl2O4: Eu2+, Dy3+ Material by Microwave Combustion Method. J. Rare Earths 2007, 25, 19–22. [Google Scholar] [CrossRef]
- Feng, W.L. Preparation and luminescent properties of green SrAl2O4: Eu2+ and blue SrAl2O4: Eu2+, Gd3+ phosphors. Mater. Lett. 2013, 110, 91–93. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.; Xu, C.Y.; Li, Y.D.; Seo, H.J. Photoluminescence and abnormal reduction of Eu3+ ions in CaAl2O4:EU nanophosphors calcined in air atmosphere. Phys. B Condens. Matter 2015, 472, 6–10. [Google Scholar] [CrossRef]
- Zhang, M.X.; Li, F.F.; Lin, Y.C.; Li, Y.; Shen, Y. Enhanced afterglow performance of CaAl2O4:Eu2+, Nd3+ phosphors by co-doping Gd3+. J. Rare Earths 2021, 39, 930–937. [Google Scholar] [CrossRef]
- Yuan, G.F.; Cui, R.R.; Zhang, J.; Qi, X.S.; Deng, C.Y. A novel composite perovskite Ba3ZnNb2O9: Eu3+ orange red-emitting phosphor: Crystal structure, luminescence properties and high thermal stability. Optik 2021, 232, 166513. [Google Scholar] [CrossRef]
- Ha, M.G.; Jeong, J.S.; Han, K.R.; Kim, Y.; Yang, H.S.; Jeong, E.D.; Hong, K.S. Characterizations and optical properties of Sm3+-doped Sr2SiO4 phosphors. Ceram. Int. 2012, 38, 5521–5526. [Google Scholar] [CrossRef]
- Gencel, O.; Danish, A.; Yilmaz, M.; Erdogmus, E.; Sutcu, M.; Ozbakkaloglu, T.; Gholampour, A. Experimental evaluation of the luminescence performance of fired clay brick coated with SrAl2O4: Eu/Dy phosphor. Ceram. Int. 2022, 48, 33167–33176. [Google Scholar] [CrossRef]
- Matsuzawa, T.; Aoki, Y.; Takeuchi, N.; Murayama, Y. A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+. J. Electrochem. Soc. 1996, 143, 2670. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, J.; Wang, J.D.; Li, J.; Zhu, Y.N.; Li, X.Q.; Song, X.; Ge, M. Structural characterization and optical properties of long-lasting CaAl2O4: Eu2+, Dy3+ phosphors synthesized by microwave-assisted chemical co-precipitation. J. Rare Earths 2017, 35, 652–657. [Google Scholar] [CrossRef]
- Li, Y.; Wan, Y.P.; Huang, Y.L.; Wang, X.G.; Cheng, H.; Seo, H.J. Efficient blue luminescence of Mg3(BO3)F3:Eu2+ phosphor with peculiar 4f65d1→4f7(8S7/2) transition. Mater. Lett. 2016, 172, 23–26. [Google Scholar] [CrossRef]
- Lu, X.D.; Shu, W.G.; Fang, Q.; Yu, Q.M.; Xiong, X.Q. Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, RE3+ phosphors. J. Mater. Sci. 2007, 42, 6240–6245. [Google Scholar] [CrossRef]
- Qu, B.Y.; Zhang, B.; Wang, L.; Zhou, R.L.; Zeng, X.C. Mechanistic Study of the Persistent Luminescence of CaAl2O4:Eu, Nd. Chem. Mater. 2015, 27, 2195–2202. [Google Scholar] [CrossRef]
- Zhu, Y.N.; Ge, M.Q. Effect of y/x ratio on luminescence properties of xSrO·yAl2O3: Eu2+, Dy3+ luminous fiber. J. Rare Earths 2014, 32, 598–602. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.; Kang, C.; He, X.; Yi, J.; Zhu, Q. Excitation-Wavelength- and Time-Dependent Fluorescent Ink Based on RGB Building Blocks for Advanced Anti-Counterfeiting. Coatings 2024, 14, 506. https://doi.org/10.3390/coatings14040506
Lin C, Kang C, He X, Yi J, Zhu Q. Excitation-Wavelength- and Time-Dependent Fluorescent Ink Based on RGB Building Blocks for Advanced Anti-Counterfeiting. Coatings. 2024; 14(4):506. https://doi.org/10.3390/coatings14040506
Chicago/Turabian StyleLin, Chengxin, Chenxi Kang, Xinxin He, Jiaci Yi, and Qi Zhu. 2024. "Excitation-Wavelength- and Time-Dependent Fluorescent Ink Based on RGB Building Blocks for Advanced Anti-Counterfeiting" Coatings 14, no. 4: 506. https://doi.org/10.3390/coatings14040506
APA StyleLin, C., Kang, C., He, X., Yi, J., & Zhu, Q. (2024). Excitation-Wavelength- and Time-Dependent Fluorescent Ink Based on RGB Building Blocks for Advanced Anti-Counterfeiting. Coatings, 14(4), 506. https://doi.org/10.3390/coatings14040506