In Situ Study on the Structural Evolution of Flexible Ionic Gel Sensors
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Ionic Gel Materials
2.3. Characterization of Samples
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Q.; Chen, H.; Zhu, L.; Zheng, J. Engineering of Tough Double Network Hydrogels. Macromol. Chem. Phys. 2016, 217, 1022–1036. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Liu, W. Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog. Polym. Ence 2017, 71, 1–25. [Google Scholar] [CrossRef]
- Creton, C. 50th Anniversary Perspective: Networks and Gels: Soft but Dynamic and Tough. Macromolecules 2017, 50, 8297–8316. [Google Scholar] [CrossRef]
- Bayliss, N.; Schmidt, B.V.K.J. Hydrophilic polymers: Current trends and visions for the future. Prog. Polym. Sci. 2023, 147, 101753. [Google Scholar] [CrossRef]
- Lei, Z.; Wang, Q.; Sun, S.; Zhu, W.; Wu, P. A Bioinspired Mineral Hydrogel as a Self-Healable, Mechanically Adaptable Ionic Skin for Highly Sensitive Pressure Sensing. Adv. Mater. 2017, 29, 1700321. [Google Scholar] [CrossRef] [PubMed]
- Keplinger, C.; Sun, J.Y.; Foo, C.C.; Rothemund, P.; Whitesides, G.M.; Suo, Z. Stretchable, Transparent Ionic Conductors. Science 2013, 341, 984–987. [Google Scholar] [CrossRef]
- Xu, C.; Li, B.; Xu, C.; Zheng, J. A novel dielectric elastomer actuator based on compliant polyvinyl alcohol hydrogel electrodes. J. Mater. Sci. Mater. Electron. 2015, 26, 9213–9218. [Google Scholar] [CrossRef]
- Lei, Z.; Wu, P. A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities. Nat. Commun. 2018, 9, 1134. [Google Scholar] [CrossRef]
- Dechnarong, N.; Kamitani, K.; Cheng, C.H.; Masuda, S.; Takahara, A. In Situ Synchrotron Radiation X-ray Scattering Investigation of a Microphase-Separated Structure of Thermoplastic Elastomers under Uniaxial and Equi-Biaxial Deformation Modes. Macromolecules 2020, 53, 8901–8909. [Google Scholar] [CrossRef]
- Dechnarong, N.; Kamitani, K.; Cheng, C.H.; Masuda, S.; Takahara, A. Microdomain structure change and macroscopic mechanical response of styrenic triblock copolymer under cyclic uniaxial and biaxial stretching modes. Polym. J. 2021, 53, 703–712. [Google Scholar] [CrossRef]
- Heck, M.; Schneider, L.; Müller, M.; Wilhelm, M. Diblock Copolymers with Similar Glass Transition Temperatures in Both Blocks for Comparing Shear Orientation Processes with DPD Computer Simulations. Macromol. Chem. Phys. 2018, 219, 1700559. [Google Scholar] [CrossRef]
- Florez, S.; Muñoz, M.A.E.; Santamaría, A. Basic rheological features of block polyurethane solutions: Entanglements, crystallization, and gelation. J. Rheol. 2005, 49, 313–325. [Google Scholar] [CrossRef]
- Meuler, A.J.; Hillmyer, M.A.; Bates, F.S. Ordered Network Mesostructures in Block Polymer Materials. Am. Chem. Soc. 2009, 42, 7221–7250. [Google Scholar] [CrossRef]
- Meins, T.; Hyun, K.; Dingenouts, N.; Fotouhi Ardakani, M.; Struth, B.; Wilhelm, M. New Insight to the Mechanism of the Shear-Induced Macroscopic Alignment of Diblock Copolymer Melts by a Unique and Newly Developed Rheo–SAXS Combination. Macromolecules 2012, 45, 455–472. [Google Scholar] [CrossRef]
- Abuzaina, F.M.; Patel, A.J.; Mochrie, S.; Narayanan, S.; Sandy, A.; Garetz, B.A.; Balsara, N.P. Structure and Phase Behavior of Block Copolymer Melts near the SphereCylinder Boundary. Macromolecules 2015, 38, 7090–7097. [Google Scholar] [CrossRef]
- Silva, J.; Andrade, R.; Huang, R.; Liu, J.; Cox, M.; Maia, J.M. Rheological behavior and structure development in thermoplastic polyurethanes under uniaxial extensional flow. J. Non Newton. Fluid Mech. 2015, 222, 96–103. [Google Scholar] [CrossRef]
- Mao, R.; Mccready, E.M.; Burghardt, W.R. Structural response of an ordered block copolymer melt to uniaxial extensional flow. Soft Matter 2014, 10, 6198–6207. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.R.; Rasmussen, H.K. The transition between undiluted and oligomer-diluted states of nearly monodisperse polystyrenes in extensional flow. Rheol. Acta Int. J. Rheol. 2017, 56, 719–727. [Google Scholar] [CrossRef]
- Ogura, K.; Wagner, M.H. Rheological characterization of cross-linked poly(methyl methacrylate). Rheol. Acta 2013, 52, 753–765. [Google Scholar] [CrossRef]
- Lu, W.; Goodwin, A.; Wang, Y.; Yin, P.; Wang, W.; Zhu, J.; Wu, T.; Lu, X.; Hu, B.; Hong, K.; et al. All-acrylic superelastomers: Facile synthesis and exceptional mechanical behavior. Polym. Chem. 2018, 9, 160–168. [Google Scholar] [CrossRef]
- Lv, C.; Wang, R.; Gao, J.; Ding, N.; Dong, S.; Nie, J.; Xu, J.; Du, B. PAA-b-PPO-b-PAA triblock copolymers with enhanced phase separation and inverse order-to-order phase transition upon increasing temperature. Polymer 2019, 185, 121982. [Google Scholar] [CrossRef]
- Gong, J.P. Materials both Tough and Soft. Science 2014, 344, 161–162. [Google Scholar] [CrossRef] [PubMed]
- López-Barrón, C.R.; Chen, R.; Wagner, N.J.; Beltramo, P.J. Self-Assembly of Pluronic F127 Diacrylate in Ethylammonium Nitrate: Structure, Rheology, and Ionic Conductivity before and after Photo-Cross-Linking. Macromolecules 2016, 49, 5179–5189. [Google Scholar] [CrossRef]
- Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks. Soft Matter 2014, 10, 672–687. [Google Scholar] [CrossRef] [PubMed]
- Vedadghavami, A.; Minooei, F.; Mohammadi, M.H.; Khetani, S.; Rezaei Kolahchi, A.; Mashayekhan, S.; Sanati-Nezhad, A. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater. 2017, 62, 42–63. [Google Scholar] [CrossRef] [PubMed]
- Beda, T. An approach for hyperelastic model-building and parameters estimation a review of constitutive models. Eur. Polym. J. 2014, 50, 97–108. [Google Scholar] [CrossRef]
- Meng, F.; Pritchard, R.H.; Terentjev, E.M. Stress relaxation, dynamics and plasticity of transient polymer networks. Macromolecules 2016, 49, 2843–2852. [Google Scholar] [CrossRef]
- Rose, S.; Dizeux, A.; Narita, T.; Hourdet, D.; Marcellan, A. Time dependence of dissipative and recovery processes in nanohybrid hydrogels. Macromolecules 2013, 46, 4095–4104. [Google Scholar] [CrossRef]
- Green, M.S.; Tobolsky, A.V. A New Approach to the Theory of Relaxing Polymeric Media. J. Chem. Phys. 2004, 14, 80–92. [Google Scholar] [CrossRef]
- Tamate, M.W.; Hashimoto, K.; Li, X.; Shibayama, M.; Watanabe, M. Effect of ionic liquid structure on viscoelastic behavior of hydrogen-bonded micellar ion gels. Polym. Int. J. Sci. Technol. Polym. 2019, 178, 121694. [Google Scholar]
- Walter, R.; Walkenhorst, R.; Smith, M.; Selser, J.C.; Bogoslovov, R. The role of polymer melt viscoelastic network behavior in lithium ion transport for PEO melt/LiClO 4 SPEs: The. J. Power Sources 2000, 89, 168–175. [Google Scholar] [CrossRef]
- Mao, Y.; Lin, S.; Zhao, X.; Anand, L. A large deformation viscoelastic model for double-network hydrogels. Pergamon 2017, 100, 103–130. [Google Scholar] [CrossRef]
- Cheng, J.; Jia, Z.; Li, T. A constitutive model of microfiber reinforced anisotropic hydrogels: With applications to wood-based hydrogels. J. Mech. Phys. Solids 2020, 138, 103893. [Google Scholar] [CrossRef]
- Liu, D.; Ma, S.; Yuan, H.; Markert, B. Computational modelling of poro-visco-hyperelastic effects on time-dependent fatigue crack growth of hydrogels. Int. J. Plast. 2022, 155, 103307. [Google Scholar] [CrossRef]
- Xing, Z.; Li, Z.; Lu, H.; Fu, Y.Q. Self-assembled topological transition via intra- and inter-chain coupled binding physical hydrogel towards mechanical toughening. Polym. Int. J. Sci. Technol. Polym. 2021, 235, 124268. [Google Scholar] [CrossRef]
- Javadi, M.H.; Darijani, H.; Niknafs, M. Constitutive modeling of visco-hyperelastic behavior of double-network hydrogels using long-term memory theory. J. Appl. Polym. Sci. 2020, 138, 49894. [Google Scholar] [CrossRef]
- Mau, B.; Erfkamp, J.; Guenther, M.; Wallmersperger, T. Determination of material parameters for a multiphasic modeling of hydrogels. PAMM 2019, 19, e201900216. [Google Scholar] [CrossRef]
- Kwon, J.H.; Kim, Y.M.; Moon, H.C. Porous Ion Gel: A Versatile Ionotronic Sensory Platform for High-Performance, Wearable Ionoskins with Electrical and Optical Dual Output. ACS Nano 2021, 15, 15132–15141. [Google Scholar] [CrossRef]
- Feng, D.; Niu, Z.; Yang, J.; Xu, W.; Liu, S.; Mao, X.; Li, X. Flexible artificial synapse with relearning function based on ion gel-graphene FET—ScienceDirect. Nano Energy 2021, 90, 106526. [Google Scholar] [CrossRef]
- Chae, K.; Cuong, N.D.; Ryu, S.; Yeom, D.I.; Ahn, Y.H.; Lee, S.; Park, J.Y. Electrical properties of ion gels based on PVDF-HFP applicable as gate stacks for flexible devices. Curr. Appl. Phys. Off. J. Korean Phys. Soc. 2018, 18, 500–504. [Google Scholar] [CrossRef]
- Liu, W.; Sun, J.; Qiu, W.; Chen, Y.; Yang, J. Sub-60 mV per decade switching in ion-gel-gated In–Sn–O transistors with a nano-thick charge trapping layer. Nanoscale 2019, 11, 21740–21747. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.; Rossella Delpiano, G.; Carucci, C.; Grosso, M.; Dessì, C.; Söderman, O.; Lindman, B.; Monduzzi, M.; Salis, A. Tuning Pluronic F127 phase transitions by adding physiological amounts of salts: A rheology, SAXS, and NMR investigation. Eur. Polym. J. 2024, 204, 112714. [Google Scholar] [CrossRef]
- Albano, J.M.R.; Grillo, D.; Facelli, J.C.; Ferraro, M.B.; Pickholz, M. Study of the Lamellar and Micellar Phases of Pluronic F127: A Molecular Dynamics Approach. Processes 2019, 7, 606. [Google Scholar] [CrossRef]
- Cellesi, F.; Tirelli, N.; Hubbell, J.A. Materials for cell encapsulation via a new tandem approach combining reverse thermal gelation and covalent crosslinking. Macromol. Chem. Phys. 2002, 203, 1466–1472. [Google Scholar] [CrossRef]
- Sentmanat, M.L. Miniature universal testing platform: From extensional melt rheology to solid-state deformation behavior. Rheol. Acta 2004, 43, 657–669. [Google Scholar] [CrossRef]
- Wang, Y.; Boukany, P.; Wang, S.Q.; Wang, X. Elastic Breakup in Uniaxial Extension of Entangled Polymer Melts. Phys. Rev. Lett. 2007, 99, 237801. [Google Scholar] [CrossRef] [PubMed]
- McCready, E.M.; Burghardt, W.R. In Situ SAXS Studies of Structural Relaxation of an Ordered Block Copolymer Melt Following Cessation of Uniaxial Extensional Flow. Macromolecules 2015, 48, 264–271. [Google Scholar] [CrossRef]
- López-Barrón, C.R.; Chen, R.; Wagner, N.J. Ultrastretchable Iono-Elastomers with Mechanoelectrical Response. ACS Macro Lett. 2016, 5, 1332–1338. [Google Scholar] [CrossRef]
- Lopez-Barron, C.R.; Porcar, L.; Eberle, A.P.R.; Wagner, N.J. Dynamics of Melting and Recrystallization in a Polymeric Micellar Crystal Subjected to Large Amplitude Oscillatory Shear Flow. Phys. Rev. Lett. 2012, 108, 258301. [Google Scholar] [CrossRef]
- Jiang, J.; Malal, R.; Li, C.; Lin, M.Y.; Cohn, D. Rheology of Thermoreversible Hydrogels from Multiblock Associating Copolymers. Macromolecules 2008, 41, 3646–3652. [Google Scholar] [CrossRef]
- Jiang, J.; Li, C.; Lombardi, J.; Colby, R.H.; Rigas, B.; Rafailovich, M.H.; Sokolov, J.C. The effect of physiologically relevant additives on the rheological properties of concentrated Pluronic copolymer gels. Polymer 2008, 49, 3561–3567. [Google Scholar] [CrossRef]
- McMullan, J.M.; Wagner, N.J. Directed self-assembly of suspensions by large amplitude oscillatory shear flow. J. Rheol. 2009, 53, 575–588. [Google Scholar] [CrossRef]
- Lee, C.W.; Porcar, L.; Rogers, S.A. Unveiling Temporal Nonlinear Structure-Rheology Relationships under Dynamic Shearing. Polymers 2019, 11, 1189. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Derks, D.; Van Blaaderen, A.; Imhof, A. Melting and crystallization of colloidal hard-sphere suspensions under shear. Proc. Natl. Acad. Sci. USA 2009, 106, 10564–10569. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Barron, C.R.; Li, D.; Wagner, N.J.; Caplan, J.L. Triblock Copolymer Self-Assembly in Ionic Liquids: Effect of PEO Block Length on the Self-Assembly of PEO–PPO–PEO in Ethylammonium Nitrate. Macromolecules 2014, 47, 7484–7495. [Google Scholar] [CrossRef]
- Burger, C.; Hsiao, B.S.; Chu, B. Preferred Orientation in Polymer Fiber Scattering. Polym. Rev. 2010, 50, 91–111. [Google Scholar] [CrossRef]
Material | Specifications | Manufacturer |
---|---|---|
PEO106-PPO70-PEO106 (F127) | Mw = 12,600 | Sigma-Aldrich (St. Louis, MO, USA) |
CH2Cl2 (MC) | AR | Sinopharm (Beijing, China) |
C6H15N (TEA) | AR | Sinopharm (Beijing, China) |
C3H3ClO (AC) | 96% | Aladdin (Shanghai, China) |
C2H5NH3NO3 (EAN) | 96% | Shanghai Chengjie Chemical (Shanghai, China) |
C5HC6HC7H (PE) | 30–60 OC | Sinopharm (Beijing, China) |
HOC6H10COC6H5 (UV-184) | AR | Aladdin (Shanghai, China) |
MgSO4 | AR | Sinopharm (Beijing, China) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, S.; Tang, J.; Zhang, A.; Zhao, N.; Wang, F.; Sun, S. In Situ Study on the Structural Evolution of Flexible Ionic Gel Sensors. Coatings 2024, 14, 562. https://doi.org/10.3390/coatings14050562
Yan S, Tang J, Zhang A, Zhao N, Wang F, Sun S. In Situ Study on the Structural Evolution of Flexible Ionic Gel Sensors. Coatings. 2024; 14(5):562. https://doi.org/10.3390/coatings14050562
Chicago/Turabian StyleYan, Shujun, Jun Tang, Angui Zhang, Nie Zhao, Fu Wang, and Shaowei Sun. 2024. "In Situ Study on the Structural Evolution of Flexible Ionic Gel Sensors" Coatings 14, no. 5: 562. https://doi.org/10.3390/coatings14050562
APA StyleYan, S., Tang, J., Zhang, A., Zhao, N., Wang, F., & Sun, S. (2024). In Situ Study on the Structural Evolution of Flexible Ionic Gel Sensors. Coatings, 14(5), 562. https://doi.org/10.3390/coatings14050562