Effect of Acrylic Resin on the Protection Performance of Epoxy Coating for Magnesium Alloy
Abstract
:1. Introduction
2. Experimental
2.1. Experimental Materials
2.2. Synthesis of Acrylic Resin
2.3. Preparation of Coatings
2.4. Characterization and Performance Testing
3. Results and Discussion
3.1. FT-IR Analysis of the Resin
3.2. SEM Images of Coating Section
3.3. Physical properties of coatings
3.4. Adhesion Strength of Coatings
3.5. Analysis of Coating Protection Performance
3.6. Analysis of Coating Protection Mechanism
- 1.
- Protection effect of the coating
- 2.
- Protection mechanism of coatings
4. Conclusions
- (1)
- The flexibility and adhesion strength of the EP coatings modified by acrylic resin increased, and hardness decreased.
- (2)
- The EIS results showed that the addition of acrylic resin into the EP coating could improve the corrosion protection properties of magnesium alloys.
- (3)
- The epoxy coating with 2.5 wt.% acrylic resin had the best corrosion resistance among the tested samples. The effects of the type and proportion of acrylic resin monomer, method of mixing, and type of additives on the coating performance will be discussed in future work.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Guo, H. A review of SLMed magnesium alloys: Processing, properties, alloying elements and postprocessing. Metals 2020, 10, 1073. [Google Scholar] [CrossRef]
- Liu, L.; Chen, X.; Pan, F. A review on electromagnetic shielding magnesium alloys. J. Magnes. Alloy 2021, 9, 1906–1921. [Google Scholar] [CrossRef]
- Singh, R.; Venkatesh, V.; Kumar, V. Corrosion: Critical challenge in wider use of magnesium alloys. Metals 2018, 8, 127. [Google Scholar] [CrossRef]
- Tan, J.; Ramakrishna, S. Applications of magnesium and its alloys: A review. Appl. Sci. 2021, 11, 6861. [Google Scholar] [CrossRef]
- Liang, J.; Srinivasan, P.B.; Blawert, C.; Dietzel, W. Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation. Corros. Sci. 2009, 51, 2483–2492. [Google Scholar] [CrossRef]
- Yang, W.; Ke, P.; Fang, Y.; Zheng, H.; Wang, A. Microstructure and properties of duplex (Ti: N)-DLC/MAO coating on magnesium alloy. App. Surf. Sci. 2013, 270, 519–525. [Google Scholar] [CrossRef]
- Nadaraia, K.V.; Suchkov, S.N.; Imshinetskiy, I.M.; Mashtalyar, D.V.; Kosianov, D.Y.; Belov, E.A.; Sinebryukhov, S.L.; Gnedenkov, S.V. New superhydrophobic composite coatings on Mg-Mn-Ce magnesium alloy. J. Magnes. Alloys 2023, 11, 1721–1739. [Google Scholar] [CrossRef]
- Jin, F.L.; Li, X.; Park, S.J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Xie, H.F.; Li, C.X.; Wang, Q.J. A critical review on performance and phase separation of thermosetting epoxy asphalt binders and bond coats. Constr. Build. Mater. 2022, 326, 126792. [Google Scholar] [CrossRef]
- Gu, H.; Ma, C.; Gu, J.; Guo, J.; Yan, X.; Huang, J.; Zhang, Q.; Guo, Z. An overview of multifunctional epoxy nanocomposites. J. Mater. Chem. C 2016, 4, 5890–5906. [Google Scholar] [CrossRef]
- Xie, Y.; Du, X.; Tian, Q.; Dong, Y.; Zhou, Q. Investigation of hydroxyl-terminated polydimethylsiloxane-modified epoxy resin. Mater. Chem. Phys. 2024, 313, 1288822. [Google Scholar] [CrossRef]
- Li, G.; Li, C.; Li, P.; Sun, R.; Cao, L.; Zhu, P. Lignin-based silicone-modified epoxy resin with enhanced strength and toughness. Int. J. Adhes. Adhes. 2024, 128, 103564. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Tang, G.; Pang, Y. Progress in study on toughening modification of epoxy resin. Mater. Rev. 2010, 24, 85. [Google Scholar]
- Xu, M.T.; Ji, Y.; Zhong, Y.; Zhang, Y.; Wang, P.; Sui, J.; Li, Y. Review on toughening modification of carbon fiber/epoxy resin composites. J. Text. Res. 2022, 43, 203–210. [Google Scholar]
- Jing, Y.; Wang, P.; Yang, Q.; Wang, Q.; Bai, Y. MoS2 decorated with ZrO2 nanoparticles through mussel-inspired chemistry of dopamine for reinforcing anticorrosion of epoxy coatings. Colloids Surf. A 2021, 608, 125625. [Google Scholar] [CrossRef]
- Yu, J.; Chen, J.; He, K.; Liang, L.; Tian, Z.Q. Enhancement mechanism of epoxy resin by polyacrylic acid-modified 3D porous graphene: A microscopic and molecular dynamics perspective. Compos. Sci. Technol. 2024, 245, 110363. [Google Scholar] [CrossRef]
- Dong, Y.; Li, M.; Zhang, Y.; Xie, C.; Pan, Z. Cerium dioxide modified with fumaric acid as corrosion inhibitor for epoxy coatings on Q235. Anti-Corros. Methods Mater. 2023, 70, 59–68. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, W.; Wang, L.; Wang, J.; Wang, S.; Liu, G. A Mechanically and chemically stable superhydrophobic coating for preventing marine atmospheric corrosion. Surf. Interfaces 2021, 27, 101537. [Google Scholar] [CrossRef]
- Kim, R.; Ryu, U.; Jee, S.; Choi, K.M. Surface coating of MOF layers on the nanocrystals of other MOFs using nanoparticle mediated nucleation for the efficient removal of formaldehyde. Appl. Surf. Sci. 2019, 505, 144612. [Google Scholar] [CrossRef]
- Yan, H.; Li, J.; Zhang, M.; Zhao, Y.; Feng, Y.; Zhang, Y. Enhanced corrosion resistance and adhesion of epoxy coating by two-dimensional graphite-like g-C3N4 nanosheets. J. Colloid Sci. 2020, 579, 152–161. [Google Scholar] [CrossRef]
- Li, X.; Li, L.; Zhang, W.; Li, Y.; Ma, D.; Lei, Q.; Yu, S.; Wang, J.; Wang, Z.; Wei, G. Grafting of polyaniline onto polydopamine-wrapped carbon nanotubes to enhance corrosion protection properties of epoxy coating. Col. Surf. A 2023, 670, 131548. [Google Scholar] [CrossRef]
- Jiao, C.; Sun, L.; Shao, Q.; Song, J.; Hu, Q.; Naik, N.; Guo, Z. Advances in waterborne acrylic resins: Synthesis principle, modification strategies, and their applications. ACS Omega 2021, 6, 2443–2449. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Xu, W.; Fan, J.; Ren, F.; Xu, C. Synthesis and characterization of carboxyl group-containing acrylic resin for powder coatings. Prog. Org. Coat. 2008, 62, 179–182. [Google Scholar] [CrossRef]
- Topçuoğlu, Ö.; Altinkaya, S.A.; Balköse, D. Characterization of waterborne acrylic based paint films and measurement of their water vapor permeabilities. Prog. Org. Coat. 2006, 56, 269–278. [Google Scholar] [CrossRef]
- Castelvetro, V.; Francini, G.; Ciardelli, G.; Ceccato, M. Evaluating fluorinated acrylic latices as textile water and oil repellent finishes. Text. Res. J. 2001, 71, 399–406. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, T.; Jiang, Y.; Yang, D.; Qiu, F.; Chen, Q.; Yu, Z. Preparation of self@healing acrylic copolymer composite coatings for application in protection of paper cultural relics. Polym. Eng. Sci. 2020, 60, 288–296. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Yang, J.; Zhang, J.; Ding, H. Large CeO2 nanoflakes modified by graphene as barriers in waterborne acrylic coatings and the improved anticorrosion performance. Prog. Org. Coat. 2020, 143, 105607. [Google Scholar] [CrossRef]
- Wan, K.; Li, J.; Xu, W.; Yu, L.; Hou, B.; Liu, M. Enhanced interphase adhesion and anticorrosion properties in epoxy coating modified via acrylic resin. Int. J. Electrochem. Sci. 2016, 11, 8914–8926. [Google Scholar] [CrossRef]
- Nakamura, Y.; Yamaguchi, M.; Iko, K.; Okubo, M.; Matsumoto, T. Internal stress of epoxy resin modified with acrylic polymers containing functional groups produced by in situ u.v. radiation polymerization. Polymer 1990, 31, 2066–2070. [Google Scholar] [CrossRef]
- Meyer, Y.A.; Menezes, I.; Bonatti, R.S.; Bortolozo, A.D.; Osório, W.R. EIS investigation of the corrosion behavior of steel bars embedded into modified concretes with eggshell contentes. Metals 2022, 12, 417. [Google Scholar] [CrossRef]
- Thomas, J.; Singh, V.; Jain, R. Synthesis and characterization of solvent free acrylic copolymer for polyurethane coatings. Prog. Org. Coat. 2020, 145, 105677. [Google Scholar] [CrossRef]
- Pu, Z.; Chen, Y.; Zhang, L.; Wang, L.; Zhang, Q. Preparation of water soluble acrylic resin adhesive for fluorescent lamps and its modification. Rare Met. 2011, 30, 657–660. [Google Scholar] [CrossRef]
- Ding, K.; Liu, J.; Chen, H.; Wang, H. Hyper-branched acrylic resin with high solid contents. J. Thermoplast. Compos. Mater. 2017, 31, 1149–1160. [Google Scholar] [CrossRef]
- Cui, Y.; Tan, Z.; An, C. Research and application of multi-functional acrylic resin grouting material. Constr. Build. Mater. 2022, 359, 129381. [Google Scholar] [CrossRef]
- Raj, M.; Maheta, J.; Raj, L. Synthesis characterization and application of hexafunctional epoxy resin and comparison against commercial epoxy resin. Polym. Polym. Compos. 2022, 30, 1–10. [Google Scholar] [CrossRef]
- Guo, X.K.; Ge, S.S.; Wang, J.X. Waterborne acrylic resin modified with glycidyl methacrylate (GMA): Formula optimization and property analysis. Polymer 2018, 143, 155–163. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.F.; Wang, J.Y. Acrylic-based epoxy resin damping systems: Synthesis, characterization, and properties. J. Appl. Polym. Sci. 2016, 133, 43654. [Google Scholar] [CrossRef]
- Chen, M.; Jabeen, F.; Rasulev, B.; Ossowski, M.; Boudjouk, P. A computational structure-property relationship study of glass transition temperatures for a diverse set of polymers. J. Polym. Sci. Part B Polym. Phys. 2018, 56, 877–885. [Google Scholar] [CrossRef]
- Lu, L.; Pan, J.; Li, G.Q. Recyclable high-performance epoxy based on transesterification reaction. J. Mater. Chem. A 2017, 5, 21505–21513. [Google Scholar] [CrossRef]
- Caraguay, S.J.; Pereira, T.S.; Cunha, A.; Pereira, M.; Xavier, F.A. The effect of laser surface textures on the adhesion strength and corrosion protection of organic coatings-experimental assessment using the pull-off test and the shaft load blister test. Prog. Org. Coat. 2023, 180, 107558. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.H.; Li, J.; Lu, J.L.; Wang, F.S. Long-term anticorrosion behaviour of polyaniline on mild steel. Corros. Sci. 2007, 49, 3052–3063. [Google Scholar] [CrossRef]
- Gray, L.G.S.; Appleman, B.R. EIS: Electrochemical impedance spectroscopy-A tool to predict remaining coating life. J. Prot. Coat. Linings 2003, 20, 66–74. [Google Scholar]
- Park, J.H.; Lee, G.D.; Nishikata, A.; Tsuru, T. Anticorrosive behavior of hydroxyapatite as an environmentally friendly pigment. Corros. Sci. 2002, 44, 1087–1095. [Google Scholar] [CrossRef]
- Liu, X.; Xiong, J.; Lv, Y.; Zuo, Y. Study on corrosion electrochemical behavior of several different coating systems by EIS. Prog. Org. Coat. 2009, 64, 497–503. [Google Scholar] [CrossRef]
Description | Standard | Instrument | |
---|---|---|---|
Test Property | |||
Film hardness | ISO 15184:2020(E) | PPH-1 pencil hardness tester | |
Flexibility | GB/T 1731-2020 | QTX film flexibility tester | |
Adhesion | ISO 4624:2016(E) | Pull-off adhesion tester | |
Coating wettability | ASTM D5946-2004 | SDC-350 contact angle measuring device |
Property | Pencil Hardness | Contact Angle | Flexibility | |
---|---|---|---|---|
Coating | ||||
EP | 5B | 83.8 ± 1.3° | Diameter Φ 4 mm | |
1AEP | 6B | 91.4 ± 1.7° | Radius of curvature 1.0 ± 0.1 mm | |
2.5AEP | 6B | 94.8 ± 1.8° | Radius of curvature 0.5 ± 0.1 mm | |
5AEP | 6B | 80.2 ± 1.5° | Radius of curvature 1.5 ± 0.1 mm |
Coating | Immersion Time (h) | Qdl (F·cm−2) | Rel. Std. Error (%) | Rcoating (Ω·cm2) | Rel. Std. Error (%) | Rt (Ω·cm2) | Rel. Std. Error (%) |
---|---|---|---|---|---|---|---|
EP | 1 | 1.13 × 10−9 | 113.2 | 2.42 × 103 | 13.05 | 4.61 × 106 | 1.39 |
4 | 7.53 × 10−8 | 9.02 | 1.66 × 106 | 7.624 | 4.04 × 105 | 69.61 | |
8 | 7.08 × 10−8 | 7.21 | 2.29 × 106 | 6.411 | 6.52 × 105 | 66.77 | |
24 | 1.19 × 10−9 | 105.40 | 2.00 × 103 | 12.38 | 2.25 × 105 | 0.54 | |
50 | 5.28 × 10−7 | 10.08 | 6.80 × 103 | 22.82 | 1.83 × 105 | 2.95 | |
100 | 1.57 × 10−7 | 6.75 | 4.89 × 103 | 11.65 | 1.83 × 105 | 1.03 | |
200 | 1.69 × 10−7 | 10.79 | 5.77 × 103 | 18.03 | 5.49 × 104 | 2.14 | |
350 | 1.10 × 10−6 | 99.19 | 9.31 × 103 | 35.21 | 1.02 × 104 | 28.45 | |
600 | 1.44 × 10−6 | 20.10 | 9.73 × 103 | 2.90 | 1.70 × 103 | 34.93 | |
1AEP | 1 | 2.39 × 10−9 | 3.34 | 2.38 × 107 | 3.45 | 1.65 × 107 | 6.47 |
4 | 1.39 × 10−9 | 2.64 | 2.09 × 106 | 8.63 | 7.38 × 106 | 4.24 | |
8 | 3.52 × 10−9 | 5.76 | 7.53 × 106 | 5.56 | 9.04 × 106 | 5.96 | |
24 | 4.86 × 10−9 | 6.19 | 7.32 × 106 | 6.32 | 7.82 × 106 | 7.28 | |
50 | 2.01 × 10−9 | 58.41 | 9.62 × 104 | 211.30 | 1.42 × 107 | 2.30 | |
100 | 1.64 × 10−9 | 21.50 | 1.71 × 105 | 39.65 | 4.57 × 107 | 2.36 | |
200 | 1.29 × 10−9 | 1.48 | 2.23 × 105 | 10.49 | 5.72 × 107 | 2.65 | |
350 | 1.95 × 10−9 | 9.74 | 4.56 × 105 | 13.60 | 8.76 × 107 | 3.19 | |
600 | 1.67 × 10−9 | 5.62 | 6.82 × 105 | 9.68 | 6.11 × 106 | 7.36 | |
2.5AEP | 1 | 8.91 × 10−10 | 2.915 | 2.98 × 109 | 4.75 | / | / |
4 | 1.41 × 10−9 | 3.172 | 8.45 × 108 | 3.89 | / | / | |
8 | 1.56 × 10−9 | 3.284 | 7.68 × 108 | 4.20 | / | / | |
24 | 1.06 × 10−9 | 5.375 | 1.85 × 107 | 64.16 | 1.13 × 109 | 4.80 | |
50 | 1.12 × 10−9 | 6.416 | 1.52 × 107 | 55.91 | 8.13 × 108 | 4.82 | |
100 | 1.55 × 10−9 | 3.369 | 2.50 × 108 | 9.65 | 3.95 × 108 | 7.35 | |
200 | 1.13 × 10−9 | 27.43 | 1.24 × 106 | 178.40 | 8.44 × 108 | 4.98 | |
350 | 8.88 × 10−10 | 4.258 | 3.29 × 106 | 22.94 | 3.30 × 108 | 6.08 | |
600 | 1.33 × 10−9 | 11.28 | 8.59 × 105 | 23.30 | 1.05 × 108 | 2.98 | |
5AEP | 1 | 1.16 × 10−9 | 3.21 | 1.39 × 107 | 31.85 | 6.36 × 107 | 10.06 |
4 | 1.24 × 10−9 | 3.62 | 6.04 × 106 | 88.17 | 1.08 × 108 | 11.60 | |
8 | 1.47 × 10−9 | 3.29 | 7.29 × 106 | 62.42 | 1.03 × 108 | 10.43 | |
24 | 9.24 × 10−10 | 3.42 | 1.57 × 107 | 10.77 | 6.96 × 107 | 6.50 | |
50 | 4.27 × 10−9 | 3.70 | 4.26 × 107 | 3.95 | 4.06 × 107 | 8.08 | |
100 | 8.74 × 10−10 | 5.45 | 5.49 × 105 | 13.62 | 5.19 × 107 | 6.06 | |
200 | 8.09 × 10−10 | 1.66 | 1.64 × 105 | 6.38 | 5.58 × 107 | 3.07 | |
350 | 8.28 × 10−10 | 1.42 | 1.63 × 105 | 4.24 | 1.64 × 107 | 2.25 | |
600 | 9.35 × 10−10 | 2.66 | 5.02 × 104 | 3.28 | 1.64 × 106 | 3.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhang, Y.; Jiang, Y.; Li, M.; Bai, J.; Zhou, X. Effect of Acrylic Resin on the Protection Performance of Epoxy Coating for Magnesium Alloy. Coatings 2024, 14, 577. https://doi.org/10.3390/coatings14050577
Liu X, Zhang Y, Jiang Y, Li M, Bai J, Zhou X. Effect of Acrylic Resin on the Protection Performance of Epoxy Coating for Magnesium Alloy. Coatings. 2024; 14(5):577. https://doi.org/10.3390/coatings14050577
Chicago/Turabian StyleLiu, Xinyu, Yingjun Zhang, Yong Jiang, Mengyang Li, Jianjun Bai, and Xiaorong Zhou. 2024. "Effect of Acrylic Resin on the Protection Performance of Epoxy Coating for Magnesium Alloy" Coatings 14, no. 5: 577. https://doi.org/10.3390/coatings14050577
APA StyleLiu, X., Zhang, Y., Jiang, Y., Li, M., Bai, J., & Zhou, X. (2024). Effect of Acrylic Resin on the Protection Performance of Epoxy Coating for Magnesium Alloy. Coatings, 14(5), 577. https://doi.org/10.3390/coatings14050577