A Deep Learning Image Corrosion Classification Method for Marine Vessels Using an Eigen Tree Hierarchy Module
Abstract
:1. Introduction
2. Methodology
2.1. Data
2.2. YOLOv8 Trained (Large) Model
2.3. Proposed Eigen Module (YOLO-Eigen)
3. Research Findings
3.1. Performance Metrics
3.2. Segmentation Performance
3.3. Results Analysis
BNN (SpotRust) | UNet (SEResNet) | YOLO-Eigen | YOLO-SAM | ||||
---|---|---|---|---|---|---|---|
Variational | Drop Out | SE-18 | SE-34 | ||||
Accuracy (%) | 14.70 | 10.58 | 45.68 | 51.57 | 68.74 | 67.42 | 61.82 |
Sensitivity (%) | 83.28 | 86.06 | 50.76 | 56.04 | 28.09 | 25.39 | 16.35 |
Specificity (%) | 85.31 | 89.43 | 44.29 | 51.29 | 25.27 | 25.71 | 17.83 |
Precision (%) | 11.25 | 11.21 | 34.02 | 41.12 | 77.28 | 73.97 | 64.89 |
mAP (precision) | 0.42 | 0.26 | 0.44 | 0.53 | 0.52 | 0.53 | 0.41 |
f-score (precision) | 0.19 | 0.19 | 0.41 | 0.47 | 0.41 | 0.39 | 0.25 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thompson, N.G.; Yunovich, M.; Dunmire, D. Cost of corrosion and corrosion maintenance strategies. Corros. Rev. 2007, 25, 247–262. [Google Scholar] [CrossRef]
- Imran, M.M.H.; Jamaludin, S.; Mohamad Ayob, A.F. A critical review of machine learning algorithms in maritime, offshore, and oil & gas corrosion research: A comprehensive analysis of ANN and RF models. Ocean. Eng. 2024, 295, 116796. [Google Scholar] [CrossRef]
- Melchers, R.E. Corrosion uncertainty modelling for steel structures. J. Constr. Steel Res. 1999, 52, 3–19. [Google Scholar] [CrossRef]
- Jones, R.; Singh Raman, R.; McMillan, A. Crack growth: Does microstructure play a role? Eng. Fract. Mech. 2018, 187, 190–210. [Google Scholar] [CrossRef]
- Rodopoulos, C.; Chliveros, G. Fatigue damage in polycrystals—Part 1: The numbers two and three. Theor. Appl. Fract. Mech. 2008, 49, 61–76. [Google Scholar] [CrossRef]
- Rodopoulos, C.; Chliveros, G. Fatigue damage in polycrystals—Part 2: Intrinsic scatter of fatigue life. Theor. Appl. Fract. Mech. 2008, 49, 77–97. [Google Scholar] [CrossRef]
- International Maritime Organization. International Convention for the Safety of Life at Sea. Available online: https://www.refworld.org/docid/46920bf32.html (accessed on 12 May 2023).
- Momber, A.W.; Langenkämper, D.; Möller, T.; Nattkemper, T.W. The exploration and annotation of large amounts of visual inspection data for protective coating systems on stationary marine steel structures. Ocean. Eng. 2023, 278, 114337. [Google Scholar] [CrossRef]
- Zhang, J.; Cho, Y.; Kim, J.; Malikov, A.K.u.; Kim, Y.H.; Yi, J.H.; Li, W. Non-destructive evaluation of coating thickness using water immersion ultrasonic testing. Coatings 2021, 11, 1421. [Google Scholar] [CrossRef]
- Bonnin-Pascual, F.; Ortiz, A. On the use of robots and vision technologies for the inspection of vessels: A survey on recent advances. Ocean. Eng. 2019, 190, 106420. [Google Scholar] [CrossRef]
- Nash, W.; Zheng, L.; Birbilis, N. Deep learning corrosion detection with confidence. NPJ Mater. Degrad. 2022, 6, 26. [Google Scholar] [CrossRef]
- Ali, A.A.I.M.; Jamaludin, S.; Imran, M.M.H.; Ayob, A.F.M.; Ahmad, S.Z.A.S.; Akhbar, M.F.A.; Suhrab, M.I.R.; Ramli, M.R. Computer Vision and Image Processing Approaches for Corrosion Detection. J. Mar. Sci. Eng. 2023, 11, 1954. [Google Scholar] [CrossRef]
- Alboul, L.; Chliveros, G. A system for reconstruction from point clouds in 3D: Simplification and mesh representation. In Proceedings of the 11th International Conference on Control Automation Robotics & Vision, Singapore, 7–10 December 2010; pp. 2301–2306. [Google Scholar] [CrossRef]
- Chliveros, G.; Pateraki, M.; Trahanias, P. Robust Multi-hypothesis 3D Object Pose Tracking. In Proceedings of the Lecture Notes in Computer Science, Vol. 7963: Computer Vision Systems; Chen, M., Leibe, B., Neumann, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 234–243. [Google Scholar] [CrossRef]
- Atha, D.J.; Jahanshahi, M.R. Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection. Struct. Health Monit. 2018, 17, 1110–1128. [Google Scholar] [CrossRef]
- Coelho, L.B.; Zhang, D.; Van Ingelgem, Y.; Steckelmacher, D.; Nowé, A.; Terryn, H. Reviewing machine learning of corrosion prediction in a data-oriented perspective. NPJ Mater. Degrad. 2022, 6, 8. [Google Scholar] [CrossRef]
- Hussein Khalaf, A.; Xiao, Y.; Xu, N.; Wu, B.; Li, H.; Lin, B.; Nie, Z.; Tang, J. Emerging AI technologies for corrosion monitoring in oil and gas industry: A comprehensive review. Eng. Fail. Anal. 2024, 155, 107735. [Google Scholar] [CrossRef]
- Forkan, A.R.M.; Kang, Y.B.; Jayaraman, P.P.; Liao, K.; Kaul, R.; Morgan, G.; Ranjan, R.; Sinha, S. CorrDetector: A framework for structural corrosion detection from drone images using ensemble deep learning. Expert Syst. Appl. 2022, 193, 116461. [Google Scholar] [CrossRef]
- Guzmán-Torres, J.A.; Domínguez-Mota, F.J.; Martínez-Molina, W.; Naser, M.; Tinoco-Guerrero, G.; Tinoco-Ruíz, J.G. Damage Detection on Steel-Reinforced Concrete Produced by Corrosion via YOLOv3; A detailed guide. Front. Built Environ. 2023, 9, 41. [Google Scholar] [CrossRef]
- Brandoli, B.; de Geus, A.R.; Souza, J.R.; Spadon, G.; Soares, A.; Rodrigues, J.F.; Komorowski, J.; Matwin, S. Aircraft Fuselage Corrosion Detection Using Artificial Intelligence. Sensors 2021, 21, 4026. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Ichi, E.; Dorafshan, S. Image-Based Corrosion Detection in Ancillary Structures. Infrastructures 2023, 8, 66. [Google Scholar] [CrossRef]
- Chliveros, G.; Kontomaris, S.V.; Letsios, A. Automatic Identification of Corrosion in Marine Vessels Using Decision-Tree Imaging Hierarchies. Eng 2023, 4, 2090–2099. [Google Scholar] [CrossRef]
- Lin, B.; Dong, X. A multi-task segmentation and classification network for remote ship hull inspection. Ocean. Eng. 2024, 301, 117608. [Google Scholar] [CrossRef]
- Ortiz, A.; Bonnin-Pascual, F.; Garcia-Fidalgo, E.; Company-Corcoles, J. Vision-Based Corrosion Detection Assisted by a Micro-Aerial Vehicle in a Vessel Inspection Application. Sensors 2016, 16, 2118. [Google Scholar] [CrossRef]
- Nash, W.; Drummond, T.; Birbilis, N. Deep Learning AI for corrosion detection. In Proceedings of the NACE International CORROSION Conference Proceedings, NACE-2019-13267, Nashville, TN, USA, 24–28 March 2019. [Google Scholar]
- Yigit, K.; Adanur, M. Examination of the Potential Effect of Corrosion Current Density of Ship Hulls on the Sacrificial Anode Cathodic Protection. Bitlis Eren Üniversitesi Fen Bilim. Derg. 2023, 12, 292–298. [Google Scholar] [CrossRef]
- Lin, B.; Dong, X. Ship hull inspection: Survey. Ocean Eng. 2024, 289, 116281. [Google Scholar] [CrossRef]
- Orchard, M.T.; Bouman, C.A. Color Quantization of Images. IEEE Trans. Signal Process. 1991, 39, 2677–2690. [Google Scholar] [CrossRef]
- Manwani, N.; Sastry, P.S. Geometric Decision Tree. IEEE Trans. Syst. Man Cybern. 2012, 42, 181–192. [Google Scholar] [CrossRef]
- Sander, T.; Sander, J. Tree decomposition by eigenvectors. Linear Algebra Its Appl. 2009, 430, 133–144. [Google Scholar] [CrossRef]
- Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep High-Resolution Representation Learning for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3349–3364. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment Anything. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023; pp. 4015–4026. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chliveros, G.; Tzanetatos, I.; Kontomaris, S.V. A Deep Learning Image Corrosion Classification Method for Marine Vessels Using an Eigen Tree Hierarchy Module. Coatings 2024, 14, 768. https://doi.org/10.3390/coatings14060768
Chliveros G, Tzanetatos I, Kontomaris SV. A Deep Learning Image Corrosion Classification Method for Marine Vessels Using an Eigen Tree Hierarchy Module. Coatings. 2024; 14(6):768. https://doi.org/10.3390/coatings14060768
Chicago/Turabian StyleChliveros, Georgios, Iason Tzanetatos, and Stylianos V. Kontomaris. 2024. "A Deep Learning Image Corrosion Classification Method for Marine Vessels Using an Eigen Tree Hierarchy Module" Coatings 14, no. 6: 768. https://doi.org/10.3390/coatings14060768
APA StyleChliveros, G., Tzanetatos, I., & Kontomaris, S. V. (2024). A Deep Learning Image Corrosion Classification Method for Marine Vessels Using an Eigen Tree Hierarchy Module. Coatings, 14(6), 768. https://doi.org/10.3390/coatings14060768