Study of the Adsorption of Anionic Surfactants on Carbonate Rocks: Characterizations, Experimental Design, and Parameter Implementation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Correlation between Surfactant Concentration and Surface Tension
2.2.2. Finite Bath Adsorption Tests
2.2.3. Experimental Design—Evaluation of Systems with Higher Adsorption Capacity
2.2.4. Rock Characterization
X-Ray Fluorescence (XRF)
X-Ray Diffraction
Differential Thermal Analysis and Thermogravimetric Analysis (DTA/TGA)
Fourier Transform Infrared Spectroscopy (FTIR)
Zeta Potential
Scanning Electron Microscopy (SEM)
2.2.5. Static Adsorption Test
- -
- qe is the adsorption capacity (mg of surfactant/g of rock);
- -
- KL is the Langmuir constant, the theoretical adsorption capacity on the monolayer (L.mg−1);
- -
- Ce is the adsorbate concentration at equilibrium (mg.mL−1);
- -
- KF is the Freundlich constant (L.mg−1);
- -
- 1/n is the empirical parameter that quantifies the heterogeneity of adsorption; the higher the value of n, the more heterogeneous the adsorption process;
- -
- q∞ is the maximum constant of adsorbate that can be adsorbed, i.e., it is the saturation value of qe (mg.g−1);
- -
- Ks is the Sips constant;
- -
- β is the exponent of the Sips model.
3. Results
3.1. Correlation between Surfactant Concentration and Surface Tension
3.2. Experimental Design—Evaluation of Systems with Higher Adsorption Capacity
3.3. Characterization of Adsorbents
3.3.1. X-Ray Fluorescence and X-Ray Diffraction
3.3.2. Differential Thermal Analysis and Thermogravimetric Analysis (DTA/TGA)
3.3.3. Fourier Transform Infrared Spectroscopy (FTIR)
3.3.4. Zeta Potential
3.3.5. Scanning Electron Microscopy (SEM)
3.4. Adsorption Isotherms
Influence of Temperature on SCO Adsorption Isotherms on Limestone
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheng, J.J. Status of surfactant EOR technology. Petroleum 2015, 1, 97–105. [Google Scholar] [CrossRef]
- Zhang, R.; Somasundaran, P. Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv. Colloid Interface Sci. 2006, 123–126, 213–229. [Google Scholar] [CrossRef]
- Zhang, R.; Somasundaran, P. Aggregate formation of binary nonionic surfactant mixtures on hydrophilic surfaces. Langmuir 2005, 21, 4868–4873. [Google Scholar] [CrossRef] [PubMed]
- Coutinho de Araújo, J.D.; de Oliveira, G.V.B.; Lourenço, M.C.d.M.; da Silva, D.C.; de Castro Dantas, T.N.; Rodrigues, M.A.F.; Wanderley Neto, A.d.O. Adsorption study of non-ionic ethoxylated nonylphenol surfactant for sandstone reservoirs: Batch and continuous flow systems. J. Mol. Liq. 2022, 366, 120313. [Google Scholar] [CrossRef]
- Gogoi, S.B. Adsorption-Desorption of Surfactant for Enhanced Oil Recovery. Transp. Porous Media 2011, 90, 589–604. [Google Scholar] [CrossRef]
- Druetta, P.; Picchioni, F. Surfactant flooding: The influence of the physical properties on the recovery efficiency. Petroleum 2020, 6, 149–162. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Gang, H.Z.; Liu, J.F.; Mu, B.Z.; Yang, S.Z. A thermal-stable and salt-tolerant biobased zwitterionic surfactant with ultralow interfacial tension between crude oil and formation brine. J. Pet. Sci. Eng. 2019, 181, 106181. [Google Scholar] [CrossRef]
- Massarweh, O.; Abushaikha, A.S. The use of surfactants in enhanced oil recovery: A review of recent advances. Energy Rep. 2020, 6, 3150–3178. [Google Scholar] [CrossRef]
- Negin, C.; Ali, S.; Xie, Q. Most common surfactants employed in chemical enhanced oil recovery. Petroleum 2017, 3, 197–211. [Google Scholar] [CrossRef]
- De Araújo, C.R.B.; Da Silva, D.C.; Arruda, G.M.; Rodrigues, M.A.F.; Wanderley Neto, A.D.O. Removal of oil from sandstone rocks by solid-liquid extraction using oil phase-free microemulsion systems. J. Environ. Chem. Eng. 2021, 9, 104868. [Google Scholar] [CrossRef]
- Chen, Y.; Ubaidah, A.; Elakneswaran, Y.; Niasar, V.J.; Xie, Q. Detecting pH and Ca2+ increase during low salinity waterflooding in carbonate reservoirs: Implications for wettability alteration process. J. Mol. Liq. 2020, 317, 114003. [Google Scholar] [CrossRef]
- Alghamdi, A.O.; Abu-Al-Saud, M.O.; Al-Otaibi, M.B.; Ayirala, S.C.; Alyousef, A. Electro-kinetic induced wettability alteration in carbonates: Tailored water chemistry and alkali effects. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123887. [Google Scholar] [CrossRef]
- Nowrouzi, I.; Mohammadi, A.H.; Khaksar Manshad, A. Double-Chain Single-Head modification of extracted saponin from Anabasis Setifera plant and its effects on chemical enhanced oil recovery process by surfactant-alkali slug injection into carbonate oil reservoirs. J. Pet. Sci. Eng. 2021, 201, 108438. [Google Scholar] [CrossRef]
- Ahmadi, M.A.; Shadizadeh, S.R. Implementation of a high-performance surfactant for enhanced oil recovery from carbonate reservoirs. J. Pet. Sci. Eng. 2013, 110, 66–73. [Google Scholar] [CrossRef]
- Saxena, N.; Goswami, A.; Dhodapkar, P.K.; Nihalani, M.C.; Mandal, A. Bio-based surfactant for enhanced oil recovery: Interfacial properties, emulsification and rock-fluid interactions. J. Pet. Sci. Eng. 2019, 176, 299–311. [Google Scholar] [CrossRef]
- Lu, J.; Liyanage, P.J.; Solairaj, S.; Adkins, S.; Arachchilage, G.P.; Kim, D.H.; Britton, C.; Weerasooriya, U.; Pope, G.A. New surfactant developments for chemical enhanced oil recovery. J. Pet. Sci. Eng. 2014, 120, 94–101. [Google Scholar] [CrossRef]
- Das, S.; Katiyar, A.; Rohilla, N.; Nguyen, Q.; Bonnecaze, R.T. Universal scaling of adsorption of nonionic surfactants on carbonates using cloud point temperatures. J. Colloid Interface Sci. 2020, 577, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Belhaj, A.F.; Elraies, K.A.; Mahmood, S.M.; Zulkifli, N.N.; Akbari, S.; Hussien, O.S.E. The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: A review. J. Pet. Explor. Prod. Technol. 2020, 10, 125–137. [Google Scholar] [CrossRef]
- Bera, A.; Kumar, T.; Ojha, K.; Mandal, A. Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies. Appl. Surf. Sci. 2013, 284, 87–99. [Google Scholar] [CrossRef]
- Mao, J.; Wang, D.; Yang, X.; Zhang, Z.; Yang, B.; Zhang, C. Adsorption of surfactant on stratum rocks: Exploration of low adsorption surfactants for reservoir stimulation. J. Taiwan Inst. Chem. Eng. 2019, 95, 424–431. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Tang, X.; Mao, G.; Wang, P. Study on wellbore temperature of riserless mud recovery system by CFD approach and numerical calculation. Petroleum 2020, 6, 163–169. [Google Scholar] [CrossRef]
- Saha, R.; Uppaluri, R.V.S.; Tiwari, P. Effect of mineralogy on the adsorption characteristics of surfactant—Reservoir rock system. Colloids Surf. A Physicochem. Eng. Asp. 2017, 531, 121–132. [Google Scholar] [CrossRef]
- Kalam, S.; Abu-Khamsin, S.A.; Kamal, M.S.; Hussain, S.M.S.; Norrman, K.; Mahmoud, M.; Patil, S. Adsorption Mechanisms of a Novel Cationic Gemini Surfactant onto Different Rocks. Energy Fuels 2022, 36, 5737–5748. [Google Scholar] [CrossRef]
- Kalam, S.; Abu-Khamsin, S.A.; Kamal, M.S.; Patil, S. Surfactant Adsorption Isotherms: A Review. ACS Omega 2021, 6, 32342–32348. [Google Scholar] [CrossRef] [PubMed]
- ShamsiJazeyi, H.; Hirasaki, G.J.; Verduzco, R. Sacrificial agent for reducing adsorption of anionic surfactants. Proc. SPE Int. Symp. Oilf. Chem. 2013, 1, 214–229. [Google Scholar] [CrossRef]
- Wang, J.; Han, M.; Fuseni, A.B.; Cao, D. Surfactant adsorption in Surfactant-Polymer flooding for carbonate reservoirs. SPE Middle East Oil Gas Show Conf. MEOS Proc. 2015, 2015, 1736–1746. [Google Scholar] [CrossRef]
- Lu, J.; Goudarzi, A.; Chen, P.; Kim, D.H.; Delshad, M.; Mohanty, K.K.; Sepehrnoori, K.; Weerasooriya, U.P.; Pope, G.A. Enhanced oil recovery from high-temperature, high-salinity naturally fractured carbonate reservoirs by surfactant flood. J. Pet. Sci. Eng. 2014, 124, 122–131. [Google Scholar] [CrossRef]
- Ma, K.; Cui, L.; Dong, Y.; Wang, T.; Da, C.; Hirasaki, G.J.; Biswal, S.L. Adsorption of cationic and anionic surfactants on natural and synthetic carbonate materials. J. Colloid Interface Sci. 2013, 408, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Somasundaran, P.; Zhang, L. Adsorption of surfactants on minerals for wettability control in improved oil recovery processes. J. Pet. Sci. Eng. 2006, 52, 198–212. [Google Scholar] [CrossRef]
- Somasundaran, P.; Hanna, H.S. Adsorption of Sulfonates on Reservoir Rocks. J. Polym. Sci. Part A-2 Polym. Phys. 1979, 19, 221–232. [Google Scholar] [CrossRef]
- Jarrahian, K.; Seiedi, O.; Sheykhan, M.; Sefti, M.V.; Ayatollahi, S. Wettability alteration of carbonate rocks by surfactants: A mechanistic study. Colloids Surf. A Physicochem. Eng. Asp. 2012, 410, 1–10. [Google Scholar] [CrossRef]
- Neves, A.M.; Santanna, V.C.; Barillas, J.L.M.; Castro Dantas, T.N.; Góis, A.G.B. Ionic surfactants applied in enhanced oil recovery: Adsorption, imbibition, and zeta potential approaches. Braz. J. Chem. Eng. 2020, 37, 263–269. [Google Scholar] [CrossRef]
- Paternina, C.A.; Londoño, A.K.; Rondon, M.; Mercado, R.; Botett, J. Influence of salinity and hardness on the static adsorption of an extended surfactant for an oil recovery purpose. J. Pet. Sci. Eng. 2020, 195, 107592. [Google Scholar] [CrossRef]
- Da Silva, D.C.; dos Santos Lucas, C.R.; de Moraes Juviniano, H.B.; de Alencar Moura, M.C.P.; Dantas Neto, A.A.; de Castro Dantas, T.N. Novel produced water treatment using microemulsion systems to remove oil contents. J. Water Process Eng. 2020, 33, 101006. [Google Scholar] [CrossRef]
- Fuguet, E.; Ràfols, C.; Rosés, M.; Bosch, E. Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems. Anal. Chim. Acta 2005, 548, 95–100. [Google Scholar] [CrossRef]
- Prosser, A.J.; Franses, E.I. Adsorption and surface tension of ionic surfactants at the air-water interface: Review and evaluation of equilibrium models. Colloids Surf. A Physicochem. Eng. Asp. 2001, 178, 1–40. [Google Scholar] [CrossRef]
- Warr, G.G. Surfactant adsorbed layer structure at solid/solution interfaces: Impact and implications of AFM imaging studies. Curr. Opin. Colloid Interface Sci. 2000, 5, 88–94. [Google Scholar] [CrossRef]
- Shahrabadi, A.; Daghbandan, A.; Arabiyoun, M. Experimental investigation of the adsorption process of the surfactant-nanoparticle combination onto the carbonate reservoir rock surface in the enhanced oil recovery (EOR) process. Chem. Thermodyn. Therm. Anal. 2022, 6, 100036. [Google Scholar] [CrossRef]
- Ahmadi, M.A.; Shadizadeh, S.R. Experimental investigation of adsorption of a new nonionic surfactant on carbonate minerals. Fuel 2013, 104, 462–467. [Google Scholar] [CrossRef]
- Kalam, S.; Abu-Khamsin, S.A.; Gbadamosi, A.O.; Patil, S.; Kamal, M.S.; Hussain, S.M.S.; Al-Shehri, D.; Al-Shalabi, E.W.; Mohanty, K.K. Static and dynamic adsorption of a gemini surfactant on a carbonate rock in the presence of low salinity water. Sci. Rep. 2023, 13, 11936. [Google Scholar] [CrossRef]
- Curbelo, F.D.S.; Santanna, V.C.; Neto, E.L.B.; Dutra, T.V.; Dantas, T.N.C.; Neto, A.A.D.; Garnica, A.I.C. Adsorption of nonionic surfactants in sandstones. Colloids Surf. A Physicochem. Eng. Asp. 2007, 293, 1–4. [Google Scholar] [CrossRef]
- Anderson, W.G. Wettability Literature Survey—Part 1: Rock-Oil-Brine Interactions and the Effects of Core Handlding on Wettability. J. Pet. Technol. 1986, 38, 1125–1144. [Google Scholar] [CrossRef]
- Da Silva, D.C.; de Oliveira Wanderley Neto, A.; Peres, A.E.C.; Neto, A.A.D.; Dantas, T.N.C. Removal of oil from produced water by ionic flocculation using saponified babassu coconut oil. J. Mater. Res. Technol. 2020, 9, 4476–4484. [Google Scholar] [CrossRef]
- Leyes, M.F.; Reyes, S.G.; Cuenca, E.; Morales, J.F.S.; Ritacco, H. Adsorption kinetics of a cationic surfactant bearing a two-charged head at the air-water interface. Coatings 2020, 10, 95. [Google Scholar] [CrossRef]
- Guzmán, E.; Fernández-Peña, L.; Akanno, A.; Llamas, S.; Ortega, F.G.; Rubio, R. Two different scenarios for the equilibration of polycation—Anionic solutions at water–vapor interfaces. Coatings 2019, 9, 438. [Google Scholar] [CrossRef]
- Filho, E.D.S.; Brito, E.L.; Nogueira, D.O.; Fonseca, J.L.C. Thermal degradation and drug sorption in hybrid interpolyelectrolyte particles. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125894. [Google Scholar] [CrossRef]
- French, R.O.; Wadsworth, M.E.; Cook, M.A.; Cutler, I.B. The quantitative application of infrared spectroscopy to studies in surface chemistry. J. Phys. Chem. 1954, 58, 805–811. [Google Scholar] [CrossRef]
Samples | SCO | SBCO | SMO | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R/S (mL) | T | T | ST | Ce | AE | ST | Ce | AE | ST | Ce | AE | |
(h) | (°C) | (Dyn/cm) | ×10−3 (%) | (%) | (Dyn/cm) | ×10−3 (%) | (%) | (Dyn/cm) | ×10−3 (%) | (%) | ||
1 | 1/40 | 2 | 30 | 54.23 | 1.3 | 55.78 | 61.3 | 1.1 | 62.38 | 42.03 | 2.0 | 34.36 |
2 | 1/80 | 2 | 30 | 51.00 | 1.8 | 40.14 | 59.31 | 1.4 | 53.25 | 41.4 | 2.1 | 28.63 |
3 | 1/40 | 4 | 30 | 66.30 | 0.4 | 85.74 | 66.13 | 0.6 | 77.80 | 43.4 | 1.6 | 45.30 |
4 | 1/80 | 4 | 30 | 48.26 | 2.3 | 22.60 | 60.46 | 1.2 | 58.77 | 41.79 | 2.0 | 32.24 |
5 | 1/40 | 2 | 60 | 65.21 | 0.5 | 84.20 | 61.72 | 1.1 | 64.07 | 42.04 | 2.0 | 34.45 |
6 | 1/80 | 2 | 60 | 47.86 | 2.4 | 19.65 | 55.93 | 2.0 | 32.40 | 41.05 | 2.2 | 25.23 |
7 | 1/40 | 4 | 60 | 63.77 | 0.5 | 81.92 | 63.22 | 0.9 | 69.50 | 41.53 | 2.1 | 29.85 |
8 | 1/80 | 4 | 60 | 47.99 | 2.4 | 20.62 | 54.96 | 2.2 | 24.84 | 40.48 | 2.4 | 19.34 |
9 | 1/60 | 3 | 45 | 48.39 | 2.3 | 23.54 | 68.32 | 0.5 | 82.52 | 43.18 | 1.7 | 43.67 |
10 | 1/60 | 3 | 45 | 48.39 | 2.3 | 23.54 | 68.25 | 0.5 | 82.38 | 42.91 | 1.7 | 41.61 |
11 | 1/60 | 3 | 45 | 48.36 | 2.3 | 23.33 | 68.25 | 0.5 | 82.35 | 42.78 | 1.8 | 40.60 |
Langmuir Model | Freundlich Model | |||||
---|---|---|---|---|---|---|
T (K) | KL (L mg−1) | R2 | KF (L mg−1) | 1/n | R2 | |
298 | 4.884 | 0.164 | 0.914 | 2.991 | 0.345 | 0.842 |
313 | 5.743 | 0.203 | 0.922 | 2.246 | 0.408 | 0.830 |
333 | 8.432 | 0.190 | 0.950 | 2.011 | 0.431 | 0.880 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borges, V.F.d.S.; Monteiro, M.K.S.; Filho, E.D.d.S.; Silva, D.C.d.; Fonseca, J.L.C.; Neto, A.O.W.; Braga, T.P. Study of the Adsorption of Anionic Surfactants on Carbonate Rocks: Characterizations, Experimental Design, and Parameter Implementation. Coatings 2024, 14, 856. https://doi.org/10.3390/coatings14070856
Borges VFdS, Monteiro MKS, Filho EDdS, Silva DCd, Fonseca JLC, Neto AOW, Braga TP. Study of the Adsorption of Anionic Surfactants on Carbonate Rocks: Characterizations, Experimental Design, and Parameter Implementation. Coatings. 2024; 14(7):856. https://doi.org/10.3390/coatings14070856
Chicago/Turabian StyleBorges, Valdivino Francisco dos Santos, Mayra Kerolly Sales Monteiro, Ernani Dias da Silva Filho, Dennys Correia da Silva, José Luís Cardozo Fonseca, Alcides O. Wanderley Neto, and Tiago Pinheiro Braga. 2024. "Study of the Adsorption of Anionic Surfactants on Carbonate Rocks: Characterizations, Experimental Design, and Parameter Implementation" Coatings 14, no. 7: 856. https://doi.org/10.3390/coatings14070856
APA StyleBorges, V. F. d. S., Monteiro, M. K. S., Filho, E. D. d. S., Silva, D. C. d., Fonseca, J. L. C., Neto, A. O. W., & Braga, T. P. (2024). Study of the Adsorption of Anionic Surfactants on Carbonate Rocks: Characterizations, Experimental Design, and Parameter Implementation. Coatings, 14(7), 856. https://doi.org/10.3390/coatings14070856