Experimental Study on Microalloyed Steel with Layers Subjected to Diesel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Dehydrated Paste Pack Boriding
2.3. Microalloyed Boriding Steel Immersed in Diesel
2.4. Tensile Testing and Characterization
3. Results and Discussion
3.1. Surface Microstructure of PB60ID and PB70ID
3.2. XRD of PB60ID and PB70ID
3.3. Tensile Test Results (Ultimate Tensile Strength, Yield Strength, and Elongation)
3.4. Fractography on PB60ID and PB70ID
4. Conclusions
- Dehydrated boron paste on specimens PB60ID and PB70ID allowed the formation of an FeB/Fe2B bilayer with saw-tooth morphology. The EDS analysis on PB60ID and PB70ID supports that the alloying elements were pushed in the FeB/Fe2B bilayer, and the XRD shows the predominant phase to be FeB iron boride in both specimens due to the chemical composition of each specimen.
- Immersion in diesel did not alter the phase structure but showed a significant increase in the intensity of the FeB peaks for PB60ID and PB70ID; also, no deformation of the iron boride formed on the microalloyed surfaces.
- The mechanical properties showed an increase in the PB70ID specimen compared to the PB60ID specimen. No boride layers failed after one year subjected to diesel. However, the mechanical properties decreased by more than 50% in commercial API X70 and API X60 due to the presence of brittle borided layers and immersion in diesel.
- At the fracture surface of PB60ID and PB70ID, in the microalloyed steels, the fracture was ductile and the transition areas in the boride layer were brittle fractures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uczak de Goes, W.; Markocsan, N.; Gupta, M.; Vaßen, R.; Matsushita, T.; Illkova, K. Thermal Barrier Coatings with Novel Architectures for Diesel Engine Applications. Surf. Coatings Technol. 2020, 396, 125950. [Google Scholar] [CrossRef]
- Sathish, M.; Radhika, N.; Saleh, B. Current Status, Challenges, and Future Prospects of Thin Film Coating Techniques and Coating Structures. J. Bio- Tribo-Corros. 2023, 9, 35. [Google Scholar] [CrossRef]
- Paparao, J.; Kumar Pandey, K.; Murugan, S. Experimental Studies on the Effect of TBC Piston in a Dual-Fueled Diesel Engine. Fuel 2021, 306, 121700. [Google Scholar] [CrossRef]
- Shu, Z.; Deng, J.; Qian, Z.; Fei, C.; Zhu, S.; Du, Y.; Zhou, K. Thermal Analysis of Mullite Coated Piston Used in a Diesel Engine. Coatings 2022, 12, 1302. [Google Scholar] [CrossRef]
- Fei, C.; Qian, Z.; Yang, Z.; Ren, J.; Zhu, S.; Yan, Y.; Shu, Z. Combustion and Emission Performance of Isopropanol-Butanol-Ethanol (IBE) Mixed with Diesel Fuel on Marine Diesel Engine with Nano YSZ Thermal Barrier Coating. Energy 2022, 256, 124683. [Google Scholar] [CrossRef]
- Karikalan, L.; Srinath, R. Combined Impact and Coating on Diesel Engine Using Diesel-Biodiesel Blends. Mater. Today Proc. 2023. Available online: https://www.sciencedirect.com/science/article/pii/S2214785323000615 (accessed on 1 May 2024). [CrossRef]
- Godiganur, V.S.; Nayaka, S.; Kumar, G.N. Thermal Barrier Coating for Diesel Engine Application—A Review. Mater. Today Proc. 2021, 45, 133–137. [Google Scholar] [CrossRef]
- Elkelawy, M.; El Shenawy, E.A.; Alm-Eldin Bastawissi, H.; Shams, M.M.; Panchal, H. A Comprehensive Review on the Effects of Diesel/Biofuel Blends with Nanofluid Additives on Compression Ignition Engine by Response Surface Methodology. Energy Convers. Manag. X 2022, 14, 100177. [Google Scholar] [CrossRef]
- Yonushonis, T.M. Overview of Thermal Barrier Coatings in Diesel Engines. J. Therm. Spray Technol. 1997, 6, 50–56. [Google Scholar] [CrossRef]
- Sandaka, B.P.; Kumar, J. Alternative Vehicular Fuels for Environmental Decarbonization: A Critical Review of Challenges in Using Electricity, Hydrogen, and Biofuels as a Sustainable Vehicular Fuel. Chem. Eng. J. Adv. 2023, 14, 100442. [Google Scholar] [CrossRef]
- Ershov, M.A.; Savelenko, V.D.; Burov, N.O.; Makhova, U.A.; Mukhina, D.Y.; Aleksanyan, D.R.; Kapustin, V.M.; Lobashova, M.M.; Sereda, A.V.; Abdellatief, T.M.M.; et al. An Incorporating Innovation and New Interactive Technology into Obtaining Sustainable Aviation Fuels. Energy 2023, 280, 128156. [Google Scholar] [CrossRef]
- Komariah, L.N.; Arita, S.; Prianda, B.E.; Dewi, T.K. Technical Assessment of Biodiesel Storage Tank; A Corrosion Case Study. J. King Saud Univ.-Eng. Sci. 2023, 35, 232–237. [Google Scholar] [CrossRef]
- Chandran, D.; Raviadaran, R.; Lau, H.L.N.; Numan, A.; Elumalai, P.V.; Samuel, O.D. Corrosion Characteristic of Stainless Steel and Galvanized Steel in Water Emulsified Diesel, Diesel and Palm Biodiesel. Eng. Fail. Anal. 2023, 147, 107129. [Google Scholar] [CrossRef]
- Medvedovski, E.; Leal Mendoza, G.; Vargas, G. Influence of Boronizing on Steel Performance under Erosion-Abrasion-Corrosion Conditions Simulating Downhole Oil Production. Corros. Mater. Degrad. 2021, 2, 293–324. [Google Scholar] [CrossRef]
- Viswanathan, K.; Wu, W.; Taipabu, M.I.; Chandra-Ambhorn, W. Effects of Antioxidant and Ceramic Coating on Performance Enhancement and Emission Reduction of a Diesel Engine Fueled by Annona Oil Biodiesel. J. Taiwan Inst. Chem. Eng. 2021, 125, 243–256. [Google Scholar] [CrossRef]
- Ramasamy, N.; Kalam, M.A.; Varman, M.; Teoh, Y.H. Effect of Thermal Barrier Coating on the Performance and Emissions of Diesel Engine Operated with Conventional Diesel and Palm Oil Biodiesel. Coatings 2021, 11, 692. [Google Scholar] [CrossRef]
- Musthafa, M.M. Thermal Barrier Coated Diesel Engine Running on Biodiesel: A Review. Int. J. Sustain. Eng. 2018, 11, 159–166. [Google Scholar] [CrossRef]
- Ruiz, M.A.D.; Perrusquia, N.L.; Huerta, D.S.; San Miguel, C.R.T.; Suárez, V.J.C. Characterization and Fracture Toughness on AISI 8620 with Hard Coatings; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2016; Volume 369, ISBN 9783035710540. [Google Scholar]
- Perrusquia, N.L.; Ruiz, M.A.D.; Miguel, C.R.T.S.; Mendoza, G.J.P.; Suarez, J.V.C.; Loran, A.J. Evaluation of Properties in Steel with Boride Coatings under Hydrogen. Surf. Coat. Technol. 2019, 377, 124880. [Google Scholar] [CrossRef]
- López-Perrusquia, N.; Doñu-Ruiz, M.A.; Cortés-Suarez, V.J.; Rosado-Cruz, L.D.; Sánchez Huitron, D. Study of Surface Hardening to Injectors of Gasoline; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2012; Volumes 538–541, ISBN 9783037854471. [Google Scholar]
- Doñu Ruiz, M.A.; Carranza Florida, S.C.; López Perrusquia, N.; Cortes Suarez, V.J.; Vargas Caballero, J.C.; Torres San Miguel, C.R. Effect of Hydrogen on the Mechanical Behavior on AISI 4140 with Borided Coatings; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2016; Volume 371. [Google Scholar]
- Kulka, M. Current Trends in Boriding; Engineering Materials; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-06781-6. [Google Scholar]
- Doñu Ruiz, M.A.; López Perrusquia, N.; Sánchez Huerta, D.; Torres San Miguel, C.R.; Urriolagoitia Calderón, G.M.; Cerillo Moreno, E.A.; Cortes Suarez, J.V. Growth Kinetics of Boride Coatings Formed at the Surface AISI M2 during Dehydrated Paste Pack Boriding. Thin Solid Film. 2015, 596, 147–154. [Google Scholar] [CrossRef]
- Pérez Mendoza, G.J.; Doñu Ruiz, M.A.; López Perrusquia, N.; Torres San Miguel, C.R. A Microstructure Obtained on AISI 1018 and AISI M2 Steel by Powder Paste Pack Boriding Process. Microsc. Microanal. 2019, 25, 2398–2399. [Google Scholar] [CrossRef]
- Gómez-Vargas, O.A.; Ortiz-Domínguez, M.; Solis-Romero, J.; Arenas-Flores, A.; Morgado-Gonzalez, I.; Zuno-Silva, J.; Barrientos-Hernández, F.R.; Medina-Marín, J. Duplex Surface Treatment of an ARMCO Pure Iron by Dehydrated Paste-Pack Boriding and Powder-Pack Nitriding. Microsc. Microanal. 2019, 25, 796–797. [Google Scholar] [CrossRef]
- Prince, M.; Raj, G.S.; Kumar, D.Y.; Gopalakrishnan, P. BORIDING OF STEELS: IMPROVEMENT OF MECHANICAL PROPERTIES—A REVIEW. High Temp. Mater. Process. Int. Q. High-Technol. Plasma Process. 2022, 26, 43–89. [Google Scholar] [CrossRef]
- Kulka, M. Trends in Thermochemical Techniques of Boriding; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Campos-Silva, I.E.; Rodríguez-Castro, G.A. Boriding to Improve the Mechanical Properties and Corrosion Resistance of Steels; Woodhead Publishing Limited: Sawston, UK, 2015; ISBN 9780857095923. [Google Scholar]
- Gómez-Vargas, O.A.; Keddam, M.; Ortiz-Domínguez, M. Kinetics and Tribological Characterization of Pack-Borided AISI 1025 Steel. High Temp. Mater. Process. 2017, 36, 197–208. [Google Scholar] [CrossRef]
- Alcantar-Martínez, L.M.; Ruiz-Trabolsi, P.A.; Tadeo-Rosas, R.; Miranda-Hernández, J.G.; Terán-Méndez, G.; Velázquez, J.C.; Hernández-Sánchez, E. Improving the Surface Properties of an API 5L Grade B Pipeline Steel by Applying the Boriding Process. Part I: Kinetics and Layer Characterization. Coatings 2023, 13, 298. [Google Scholar] [CrossRef]
- López Perrusquia, N.; Doñu Ruiz, M.A.; García Bustos, E.D.; lores Martínez, M.; Urriolagoitia Calderón, G.M.; Torres San Miguel, C.R. Duplex Surface Treatment on Microalloy Steels by Dehydrated Paste Pack Boriding and Pack Carburizing. Mater. Lett. 2020, 280, 128573. [Google Scholar] [CrossRef]
- Martini, C.; Palombarini, G.; Carbucicchio, M. Mechanism of Thermochemical Growth of Iron Borides on Iron. J. Mater. Sci. 2004, 39, 933–937. [Google Scholar] [CrossRef]
- Litoria, A.K.; Figueroa, C.A.; Bim, L.T.; Pruncu, C.I.; Joshi, A.A.; Hosmani, S.S. Pack-Boriding of Low Alloy Steel: Microstructure Evolution and Migration Behaviour of Alloying Elements. Philos. Mag. 2020, 100, 353–378. [Google Scholar] [CrossRef]
- Campos, I.; Palomar, M.; Amador, A.; Ganem, R.; Martinez, J. Evaluation of the Corrosion Resistance of Iron Boride Coatings Obtained by Paste Boriding Process. Surf. Coat. Technol. 2006, 201, 2438–2442. [Google Scholar] [CrossRef]
- Feng, Z.; Duan, Y.; Cao, Y.; Qi, H.; Peng, M.; Wang, X. Corrosion Properties of Ceramic Coating on Pure Titanium by Pack Boronizing with Nd2O3. Ceram. Int. 2023, 49, 15101–15113. [Google Scholar] [CrossRef]
- Kariofillis, G.K.; Kiourtsidis, G.E.; Tsipas, D.N. Corrosion Behavior of Borided AISI H13 Hot Work Steel. Surf. Coat. Technol. 2006, 201, 19–24. [Google Scholar] [CrossRef]
- Xu, L.; Qiao, G.; Lu, X.; Gu, Y.; Xu, K.; Chen, X.; Xiao, F. Study on the Relationship between Microstructure and Properties of Heavy-Wall X70 Pipeline Steel with Different Processing Directions. Mater. Chem. Phys. 2024, 314, 128850. [Google Scholar] [CrossRef]
- Zandinava, B.; Bakhtiari, R.; Vukelic, G. Failure Analysis of a Gas Transport Pipe Made of API 5L X60 Steel. Eng. Fail. Anal. 2022, 131, 105881. [Google Scholar] [CrossRef]
- Alcantar-Martínez, L.M.; Ruiz-Trabolsi, P.A.; Tadeo-Rosas, R.; Miranda-Hernández, J.G.; Cabrera-Sierra, R.; Velázquez, J.C.; Hernández-Sánchez, E. Improving the Surface Properties of an API 5L Grade B Pipeline Steel by Applying the Boriding Process—Part II: On the Changes in the Mechanical Properties. Coatings 2023, 13, 470. [Google Scholar] [CrossRef]
- Calik, A.; Ucar, N.; Delikanli, K.; Carkci, M.; Karakas, S. Boriding Kinetics and Mechanical Properties of Borided Commercial-Purity Nickel. Indian J. Eng. Mater. Sci. 2017, 24, 362–368. [Google Scholar]
- American Petroleum Institute. API 5L Specifications for Line Pipe; American Petroleum Institute: Houston, TX, USA, 2007. [Google Scholar]
- Fichtl, W. Boronizing and Its Practical Applications. Mater. Des. 1981, 2, 276–286. [Google Scholar] [CrossRef]
- Cakir, M.; Akcay, İ.H. Effects of Borided Cylinder Liner on Engine Performance in a Firing Diesel Engine. Arab. J. Sci. Eng. 2015, 40, 3329–3335. [Google Scholar] [CrossRef]
- Sliman, G.; SAMI, Z.; Abdelkader, R.; Tassi, H. Comparative Study on Electrochemical Corrosion Behavior of Boronized X52 Steel in 1 M HCl and H2SO4 Solutions. Metall. Mater. Eng. 2022, 28, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Kartal Sireli, G.; Bora, A.S.; Timur, S. Evaluating the Mechanical Behavior of Electrochemically Borided Low-Carbon Steel. Surf. Coat. Technol. 2020, 381, 125177. [Google Scholar] [CrossRef]
- Su, Z.G.; Tian, X.; An, J.; Lu, Y.; Yang, Y.L.; Sun, S.J. Investigation on Boronizing of N80 Tube Steel. ISIJ Int. 2009, 49, 1776–1783. [Google Scholar] [CrossRef]
- Kulka, M. Trends in Physical Techniques of Boriding; Springer: Cham, Switzerland, 2019; pp. 99–253. [Google Scholar]
- Calik, A.; Sahin, O.; Ucar, N. Specimen Geometry Effect on the Mechanical Properties of AISI 1040 Steel. Z. Naturforschung A 2008, 63, 448–452. [Google Scholar] [CrossRef]
- Sultan, N.M.; Jauhari, I.; Sabri, M.F.M. Mechanical Properties of Superplastic Thin Boronised Duplex Stainless Steel (DSS). Mater. Res. Express 2019, 6, 1165f7. [Google Scholar] [CrossRef]
- Günen, A.; Kurt, B.; Somunkιran, İ.; Kanca, E.; Orhan, N. The Effect of Process Conditions in Heat-Assisted Boronizing Treatment on the Tensile and Bending Strength Characteristics of the AISI-304 Austenitic Stainless Steel. Phys. Met. Metallogr. 2015, 116, 896–907. [Google Scholar] [CrossRef]
Materials | C | Mn | Si | P | S | Al | Cu | Cr | Ni | Mo | V | Nb | Ti | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
API-X60 | 0.12 | 1.05 | 0.17 | 0.02 | 0.004 | 0.022 | 0.25 | 0.09 | 0.13 | 0.043 | 0.047 | 0.026 | 0.002 | Bal. |
API-X70 | 0.125 | 1.68 | 0.27 | 0.014 | 0.002 | 0.035 | 0.018 | 0.03 | 0.02 | 0.021 | 0.068 | 0.093 | 0.003 | Bal. |
Codes | Specimen | Treatment and Exhibition Conditions |
---|---|---|
PB60ID | API-X60 | Exposed to dehydrated paste at 1273 K for 6 h and immersed in diesel for one year |
PB70ID | API-X70 | Exposed to dehydrated paste at 1273 K for 6 h and immersed in diesel for one year |
Specimen | 2θ Peak [°] | Plans | |
---|---|---|---|
FeB | Fe2B | ||
PB60ID | 32.52 | (020) | - |
37.74 | (101) | - | |
39.58 | (120) | - | |
41.23 | (111) | - | |
45.12 | (021) | (211) | |
47.81 | (210) | - | |
54.97 | (130) | - | |
57.58 | (211) | (310) | |
63.00 | (002) max. | - | |
PB70ID | 31.17 | - | - |
32.52 | (020) | - | |
35.33 | - | (200) | |
37.74 | (101) | - | |
39.59 | (120) | - | |
41.23 | (111) | - | |
45.10 | (021) max. | (211) | |
47.71 | (210) | - | |
54.97 | (130) | - | |
57.58 | (211) | (310) | |
63.00 | (002) | - | |
65.03 | (221) | - |
Specimen | Condition | Boride Layers | Ultimate Tensile Strength (MPa) | Yield Strength (MPa) | Total Elongation (%) | Reference |
---|---|---|---|---|---|---|
API X70 | -- | --- | 692 | 458 | 15.7 | [37] |
API X60 | -- | -- | 577 | 480 | 27 | [38] |
API 5L grade B steel | Powder pack 1273K-6 h No immersion | Fe2B | 493.57 | 312.83 | 23.41 | [39] |
API X70 | Dehydrated paste pack Immersion diesel | FeB + Fe2B | 259.57 ± 12.3 | 163.34 ± 11.5 | 23.41 ± 0.12 | Present study |
API X60 | Dehydrated paste pack Immersion diesel | FeB + Fe2B | 276.22 ± 13.5 | 194.22 ± 15.55 | 26.18 ± 0.15 | Present study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López Perrusquia, N.; de la Mora Ramírez, T.; Pérez Mendoza, G.J.; Olmos Domínguez, V.H.; Sánchez Huitron, D.; Doñu Ruiz, M.A. Experimental Study on Microalloyed Steel with Layers Subjected to Diesel. Coatings 2024, 14, 912. https://doi.org/10.3390/coatings14070912
López Perrusquia N, de la Mora Ramírez T, Pérez Mendoza GJ, Olmos Domínguez VH, Sánchez Huitron D, Doñu Ruiz MA. Experimental Study on Microalloyed Steel with Layers Subjected to Diesel. Coatings. 2024; 14(7):912. https://doi.org/10.3390/coatings14070912
Chicago/Turabian StyleLópez Perrusquia, Noé, Tomas de la Mora Ramírez, Gerardo Julián Pérez Mendoza, Víctor Hugo Olmos Domínguez, David Sánchez Huitron, and Marco Antonio Doñu Ruiz. 2024. "Experimental Study on Microalloyed Steel with Layers Subjected to Diesel" Coatings 14, no. 7: 912. https://doi.org/10.3390/coatings14070912
APA StyleLópez Perrusquia, N., de la Mora Ramírez, T., Pérez Mendoza, G. J., Olmos Domínguez, V. H., Sánchez Huitron, D., & Doñu Ruiz, M. A. (2024). Experimental Study on Microalloyed Steel with Layers Subjected to Diesel. Coatings, 14(7), 912. https://doi.org/10.3390/coatings14070912