An Innovative Wood Fire-Retardant Coating Based on Biocompatible Nanocellulose Surfactant and Expandable Graphite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Wood
2.1.2. Nanocellulose
2.1.3. Expandable Thermographites
2.2. Methods
2.2.1. Preparation, Evaluation, and Selection of Formulations
2.2.2. Application on Wood
2.2.3. Radiant Heat Source Test, Surface Temperature Measurement and Evaluation of Layer Adhesion after Thermographite Expansion
2.2.4. Microscopic Analysis
3. Results and Discussion
3.1. Selection of Suitable Formulation
3.2. The Radiant Heat Source Test
3.3. Microscopic Analysis
4. Conclusions
- The formulation with the best surfactant solubility, dispersion of EG particles, suitable viscosity, and easy applicability consists of a 2% solution of CNC in 5% NaOH and 80 wt.% EG. At the same time, this coating has a relatively fast drying time, does not run off vertical surfaces, and has very good adhesion to the wood surface even after drying.
- Suitable types of EG to ensure the best fire-retardant properties of the coating in the formulation have a particle size of 150–180 μm, an expansion volume of 175–250 mL/g, and a starting temperature of 180–220 °C.
- If we consider the relative weight loss of the samples after the test with a radiant heat source, all prepared formulations with EG can be more or less equally effective. The values of relative mass loss ranged in a very close range of 10.01%–8.10%, which means the suppression of weight loss compared to the reference sample by approximately 78.7%–80.6%. The lowest value of this parameter was obtained with EG of GG 200–100 N (8.10 ± 1.24%). Relative mass loss of samples treated only with CNC (32.80 ± 2.87%) was reduced by more than half (approximately 56%) compared to the reference sample.
- The best adhesion of EG layers shows samples with 40 D + 500 LST and 25 K + 180.
- The course of the relative burning rate of EG-treated samples again shows the similarity within this EG-tested group. This trend can be described by a rapid increase from the beginning of the measurement up to 20 s to a value of around 0.04%·s−1 when the expanded layer is created and a subsequent idealized exponential up to fourfold decrease below the value of 0.01%·s−1. The drop in relative burning rate below the mentioned 0.01%·s−1 occurs first at GG 200–100 N (approx. in the 350th s).
- The surface temperature of all EG-treated samples in 20 s is the highest and in the range of 330–370 °C (at a lower limit of, e.g., 25 K + 180). After that, the temperature drops, and from approx. 120 s, it ranges between 290 °C and 320 °C until the end of the test. The effectiveness of the protective coatings with EG + CNC is obvious at the end of the test, when these samples show a surface temperature half lower (ca. 300 °C) than the untreated wood samples (ca. 600 °C).
- Microscopic analysis demonstrated the uniformity of the coating using graphite 40 D + 500 LST and 25 K + 180, which is probably also related to the very good adhesion of the graphite after expansion. On the other hand, it is not possible to observe a connection between the uniformity of the coating and the effectiveness against weight loss after the fire test since coatings containing cracks, holes, or unevenly distributed graphite flakes achieve slightly lower weight losses of the samples after the test with a radiant heat source (e.g., GG 200–100 N or 25 E + 180 HPH).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barnett, J.R.; Jeronimidis, G. Wood Quality and Its Biological Basis, 1st ed.; CRC Press: Boca Raton, FL, USA, 2003; pp. 187–210. [Google Scholar]
- Sydor, M.; Wieloch, G. Construction Properties of Wood Taken into Consideration in Engineering Practice. Drewno 2009, 52, 63–73. [Google Scholar]
- Petrová, Š.; Soudek, P.; Vaněk, T. Flame Retardants, Their Use and Environmental Impact. Chem. Listy 2015, 109, 679–686. (In Czech) [Google Scholar]
- Reinprecht, L. Wood Deterioration, Protection and Maintenance; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; p. 357. ISBN 9781119106531. [Google Scholar] [CrossRef]
- Kulshreshtha, A.K.; Vasile, C. Handbook of Polymer Blends and Composites; iSmithers Rapra Publishing: Shrewsbury, Shropshire, UK, 2002; p. 558. [Google Scholar]
- Wang, Z.; Han, E.; Liu, F.; Ke, W. Thermal behavior of nano-TiO2 in fire resistant coating. J. Mater. Sci. Technol. 2007, 23, 547–550. [Google Scholar]
- Garskaite, E.; Karlsson, O.; Stankeviciute, Z.; Kareiva, A.; Jones, D.; Sandberg, D. Surface hardness and flammability of Na2SiO3 and nano-TiO2 reinforced wood composites. RSC Adv. 2019, 9, 27973–27986. [Google Scholar] [CrossRef] [PubMed]
- Kačíková, D.; Kubovský, I.; Eštoková, A.; Kačík, F.; Kmeťová, E.; Kováč, J.; Ďurkovič, J. The Influence of Nanoparticles on Fire Retardancy of Pedunculate Oak Wood. Nanomaterials 2021, 11, 3405. [Google Scholar] [CrossRef] [PubMed]
- Vahidi, G.; Bajwa, D.S.; Shojaeiarani, J.; Stark, N.; Darabi, A. Advancements in traditional and nanosized flame retardants for polymers—A review. J. Appl. Polym. Sci. 2021, 138, 50050. [Google Scholar] [CrossRef]
- Kresheck, G.C. Surfactants. In Water A Comprehensive Treatise: Aqueous Solutions of Amphiphiles and Macromolecules, 1st ed.; Franks, F., Ed.; Springer: Boston, MA, USA, 1975; pp. 95–167. [Google Scholar] [CrossRef]
- Kumar, R.; Rai, B.; Gahlyan, S.; Kumar, G. A comprehensive review on production, surface modification and characterization of nanocellulose derived from biomass and its commercial applications. eXPRESS Polym. Lett. 2021, 15, 104–120. [Google Scholar] [CrossRef]
- Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S. Commercial application of cellulose nano-composites—A review. Biotechnol. Rep. 2019, 21, e00316. [Google Scholar] [CrossRef] [PubMed]
- Trache, D.; Tarchoun, A.F.; Derradji, M.; Hamidon, T.S.; Masruchin, N.; Brosse, N.; Hussin, M.H. Nanocellulose: From Fundamentals to Advanced Applications. Front. Chem. 2020, 8, 392. [Google Scholar] [CrossRef]
- Bacakova, L.; Pajorova, J.; Bacakova, M.; Skogberg, A.; Kallio, P.; Kolarova, K.; Svorcik, V. Versatile application of nanocellulose: From industry to skin tissue engineering and wound healing. Nanomaterials 2019, 9, 164. [Google Scholar] [CrossRef]
- Phanthong, P.; Reubroycharoen, P.; Hao, X.; Xu, G.; Abudula, A.; Guan, G. Nanocellulose: Extraction and application. Carbon Resour. Convers. 2018, 1, 32–43. [Google Scholar] [CrossRef]
- Norrrahim, M.N.F.; Kasim, N.A.M.; Knight, V.F.; Ujang, F.A.; Janudin, N.; Razak, M.A.I.A.; Shah, N.A.A.; Noor, S.A.M.; Jamal, S.H.; Ong, K.K.; et al. Nanocellulose: The next super versatile material for the military. Mater. Adv. 2021, 2, 1485–1506. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Xu, W.; Wu, H.; Shao, Y.; Han, X.; Zhou, M.; Gu, P.; Li, Z. Preparation methods of cellulose nanocrystal and its application in treatment of environmental pollution: A mini-review. Colloids Interface Sci. Commun. 2023, 53, 100707. [Google Scholar] [CrossRef]
- Emam, H.E.; Shaheen, T.I. Investigation into the role of surface modification of cellulose nanocrystals with succinic anhydride in dye removal. J. Polym. Environ. 2019, 27, 2419–2427. [Google Scholar] [CrossRef]
- Ramírez, J.A.Á.; Fortunati, E.; Kenny, J.M.; Torre, L.; Foresti, M.L. Simple citric acid-catalyzed surface esterification of cellulose nanocrystals. Carbohydr. Polym. 2017, 157, 1358–1364. [Google Scholar] [CrossRef]
- Batmaz, R.; Mohammed, N.; Zaman, M.; Minhas, G.; Berry, R.M.; Tam, K.C. Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 2014, 21, 1655–1665. [Google Scholar] [CrossRef]
- Azzam, F.; Galliot, M.; Putaux, J.-L.; Heux, L.; Jean, B. Surface peeling of cellulose nanocrystals resulting from periodate oxidation and reductive amination with water-soluble polymers. Cellulose 2015, 22, 3701–3714. [Google Scholar] [CrossRef]
- Luo, J.; Wang, H. Preparation, thermal insulation and flame retardance of cellulose nanocrystal aerogel modified by TiO2. Int. J. Heat Technol. 2018, 36, 614–618. [Google Scholar] [CrossRef]
- Modesti, M.; Lorenzetti, A.; Simioni, F.; Camino, G. Expandable graphite as an intumescent flame retardant in polyisocyanurate–polyurethane foams. Polym. Degrad. Stab. 2002, 77, 195–202. [Google Scholar] [CrossRef]
- Dufresne, A. Nanocellulose: A new ageless bionanomaterial. Mater. Today 2013, 16, 220–227. [Google Scholar] [CrossRef]
- Bai, G.; Guo, C.; Li, L. Synergistic effect of intumescent flame retardant and expandable graphite on mechanical and flame-retardant properties of wood flour-polypropylene composites. Constr. Build. Mater. 2014, 50, 148–153. [Google Scholar] [CrossRef]
- Mazela, B.; Batista, A.; Grześkowiak, W. Expandable graphite as a fire retardant for cellulosic materials—A review. Forests 2020, 11, 755. [Google Scholar] [CrossRef]
- Anielkis, B.; Wojciech, G.; Bartłomiej, M. Expandable Graphite Flakes as an Additive for a New Fire Retardant Coating for Wood and Cellulose Materials–Comparison Analysis. In Wood & Fire Safety: Proceedings of the 9th International Conference on Wood & Fire Safety, Štrbské Pleso, Slovakia, 3–6 May 2020; Springer Nature: Cham, Switzerland, 2020; pp. 120–124. [Google Scholar] [CrossRef]
- Kmeťová, E.; Kačíková, D.; Jurczyková, T.; Kačík, F. The Influence of Different Types of Expandable Graphite on the Thermal Resistance of Spruce Wood. Coatings 2023, 13, 1181. [Google Scholar] [CrossRef]
- Santos, L.P.; da Silva, D.S.; Bertacchi, J.P.F.; Moreira, K.S.; Burgo, T.A.L.; Batista, B.C.; dos Santos, J.; de Paula, P.A.; Galembeck, F. Multifunctional coatings of exfoliated and reassembled graphite on cellulosic substrates. Faraday Discuss. 2021, 227, 105–124. [Google Scholar] [CrossRef]
- Mariappan, T. Fire retardant coatings. In New Technologies in Protective Coatings, 1st ed.; Giudice, C., Canosa, G., Eds.; IntechOpen: London, UK, 2017; Volume 28, p. 132. [Google Scholar] [CrossRef]
- Rao, W.H.; Liao, W.; Wang, H.; Zhao, H.B.; Wang, Y.Z. Flame-retardant and smoke-suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite. J. Hazard. Mater. 2018, 360, 651–660. [Google Scholar] [CrossRef]
- Kmeťová, E.; Kačík, F.; Kubovský, I.; Kačíková, D. Effect of expandable graphite flakes on the flame resistance of oak wood. Coatings 2022, 12, 1908. [Google Scholar] [CrossRef]
- Kmeťová, E.; Kačíková, D.; Kačík, F. The Effect of Intumescent Coating Containing Expandable Graphite onto Spruce Wood. Coatings 2024, 14, 490. [Google Scholar] [CrossRef]
- Kmeťová, E.; Mitterová, I.; Kačíková, D. Evaluation of selected coniferous and deciduous trees species after radiant heat loading by the method of mass loss. Delta Fire Prot. Saf. Sci. J. 2020, 14, 16–29. [Google Scholar]
- Tribulová, T.; Kačík, F.; Evtuguin, D.V. Impacts of inorganic chemicals used for wood protection: A review. Acta Fac. Xylologiae Zvolen Res Publica Slovaca 2017, 59, 5–22. [Google Scholar] [CrossRef]
- Bilbao, R.; Mastral, J.F.; Lana, J.A.; Ceamanos, J.; Aldea, M.E.; Betrán, M. A model for the prediction of the thermal degradation and ignition of wood under constant and variable heat flux. J. Anal. Appl. Pyrolysis 2002, 62, 63–82. [Google Scholar] [CrossRef]
- Martinka, J.; Hroncová, E.; Chrebet, T.; Balog, K. The influence of spruce wood heat treatment on its thermal stability and burning process. Eur. J. Wood Wood Prod. 2014, 72, 477–486. [Google Scholar] [CrossRef]
- Harangozó, J.; Tureková, I.; Marková, I.; Hašková, A.; Králik, R. Study of the Influence of Heat Flow on the Time to Ignition of Spruce and Beech Wood. Appl. Sci. 2024, 14, 4237. [Google Scholar] [CrossRef]
- Zhan, W.; Gu, Z.; Jiang, J.; Chen, L. Influences of surface area of graphene on fire protection of waterborne intumescent fire resistive coating. Process Saf. Environ. Prot. 2020, 139, 106–113. [Google Scholar] [CrossRef]
Product | Solid Content | Surface Property | Surface Groups | Fiber Dimensions (nm) | Producer (Country) |
---|---|---|---|---|---|
CNC–COM–regular | 6% suspension in water | Hydrophilic | Hydroxyl, sulfonic | Width: 5–20 Length: 100–250 | CELLULOSELab (Fredericton, NB, USA) |
Product | Carbon Content (%) | Expansion Volume (mL/g) | Particle Size (μm) | pH Value | Starting Temperature (°C) | Producer (Country) |
---|---|---|---|---|---|---|
40 D + 500 LST | 99 | 400 | min. 80% > 500 | 5–9 | 180–220 | Epinikon a.s. (Vodňany, Czech Republic) |
20 K + 300 LST | 95 | 200 | min. 70% > 300 | 5–9 | 140–170 | Epinikon a.s. (Vodňany, Czech Republic) |
25 K + 180 | 95 | 250 | min. 80% > 180 | 5–9 | 180–220 | Epinikon a.s. (Vodňany, Czech Republic) |
25 E + 180 HPH | 98 | 250 | min. 80% > 180 | 8–11 | 180–220 | Epinikon a.s. (Vodňany, Czech Republic) |
GG 210–200 N | >93 | 80 | 90 | 5–8.5 | 210 | NeoGraf (Lakewood, OH, USA) |
GG 200–100 N | >93 | 175 | 150 | 5–8.5 | 200 | NeoGraf (Lakewood, OH, USA) |
Surfactant Type | CNC | |||||
---|---|---|---|---|---|---|
Solution (%) | in Water | in 5% NaOH | ||||
Dry matter content of surfactant (%) | 2 | 4 | 2 | 2 | 4 | 4 |
EG content in formulation (wt.%) | 60 | 60 | 60 | 80 | 60 | 80 |
Surfactant Type | CNC | |||||
---|---|---|---|---|---|---|
Solution (%) | in Water | in 5% NaOH | ||||
1. Dry matter content of surfactant (%) | 2 | 4 | 2 | 2 | 4 | 4 |
2. EG content in formulation (wt.%) | 60 | 60 | 60 | 80 | 60 | 80 |
3. Surfactant solubility | − | − | + + | + + | + + | + + |
4. Dispersion of EG particles in surfactant | − | − − | + | ++ | + | + |
5. Formulation consistency | − − − | − − − | − | − | − | − |
6. Application | − − | − − | − | + | − − | − − |
7. Coating uniformity | − − | − − | + | + | − − | − − |
8. Flowability on vertical surfaces | + | + | + + + | + + + | + + + | + + |
9. Drying time | − | − | + + | + + | + + | + + |
10. Adhesion with wood after drying | − | − | + + + | + + + | + + | + + |
Recommendations for use | no | no | yes | definitely yes | rather yes | rather not |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurczyková, T.; Kmeťová, E.; Kačík, F.; Lexa, M.; Ťoupal, J. An Innovative Wood Fire-Retardant Coating Based on Biocompatible Nanocellulose Surfactant and Expandable Graphite. Coatings 2024, 14, 1036. https://doi.org/10.3390/coatings14081036
Jurczyková T, Kmeťová E, Kačík F, Lexa M, Ťoupal J. An Innovative Wood Fire-Retardant Coating Based on Biocompatible Nanocellulose Surfactant and Expandable Graphite. Coatings. 2024; 14(8):1036. https://doi.org/10.3390/coatings14081036
Chicago/Turabian StyleJurczyková, Tereza, Elena Kmeťová, František Kačík, Martin Lexa, and Jakub Ťoupal. 2024. "An Innovative Wood Fire-Retardant Coating Based on Biocompatible Nanocellulose Surfactant and Expandable Graphite" Coatings 14, no. 8: 1036. https://doi.org/10.3390/coatings14081036
APA StyleJurczyková, T., Kmeťová, E., Kačík, F., Lexa, M., & Ťoupal, J. (2024). An Innovative Wood Fire-Retardant Coating Based on Biocompatible Nanocellulose Surfactant and Expandable Graphite. Coatings, 14(8), 1036. https://doi.org/10.3390/coatings14081036