Polymer-Gel-Derived PbS/C Composite Nanosheets and Their Photoelectronic Response Properties Studies in the NIR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sodium Alginate Solution
2.3. Preparation of PbS/Carbon Nanocomposite Derived from Polymer Gel
2.4. Characterization of SEM, TEM, UV–VIS-NIR, XRD, and Raman Spectra
2.5. Photocurrent Measurements of the Nanocomposite to the Visible Light and Part of NIR
2.6. Tentacle Sensitivity Examination of the PbS/C Composite Nanosheets to the Applied Force
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Zhao, F.; Nan, F.; Wang, J.; Zhang, Y.; Liang, K.; Xue, X.; Chen, T.; Kong, L.; Ge, J.; et al. Polythiophene Derivatives Carbonized Polymer Dots: Aggregation Induced Solid-State Fluorescence Emission. Chin. J. Chem. 2023, 41, 1950–1956. [Google Scholar] [CrossRef]
- Xue, S.; Li, P.; Sun, L.; An, L.; Qu, D.; Wang, X.; Sun, Z. The Formation Process and Mechanism of Carbon Dots Prepared from Aromatic Compounds as Precursors: A Review. Small 2023, 19, 2206180. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, Y.; Xue, Y.; Lu, S.; Yang, H.; Yang, L.; Ding, C.; Yu, S. Cross-Linked Polyamide Chains Enhanced the Fluorescence of Polymer Carbon Dots. ACS Omega 2020, 5, 8219–8229. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, Z.; Wu, H.; Yang, S.; Zhao, W.; Che, L.; Wang, Y.; Cao, J.; Li, K.; Qian, Z. Progress in the application of 3D-printed sodium alginate-based hydrogel scaffolds in bone tissue repair. Biomater. Adv. 2023, 152, 213501. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Zhou, J.; An, Y.; Li, M.; Zhang, J.; Yang, S. Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int. J. Biol. Macromol. 2023, 232, 123450. [Google Scholar] [CrossRef] [PubMed]
- Bhutani, U.; Laha, A.; Mitra, K.; Majumdar, S. Sodium alginate and gelatin hydrogels: Viscosity effect on hydrophobic drug release. Mater. Lett. 2016, 164, 76–79. [Google Scholar] [CrossRef]
- Yuan, N.; Li, S.; Li, G. Sodium alginate coated mesoporous silica for dual bio-responsive controlled drug delivery. J. Drug Deliv. Sci. Technol. 2018, 46, 348–353. [Google Scholar] [CrossRef]
- Fan, L.; Ge, H.; Zou, S.; Xiao, Y.; Wen, H.; Li, Y.; Feng, H.; Nie, M. Sodium alginate conjugated graphene oxide as a new carrier for drug delivery system. Int. J. Biol. Macromol. 2016, 93, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Zhang, F.; Liu, L.; Zhang, Y.; Li, Y.; Li, H.; Xie, J. Surface modification of graphene oxide nanosheets by protamine sulfate/sodium alginate for anti-cancer drug delivery application. Appl. Surf. Sci. 2018, 440, 853–860. [Google Scholar] [CrossRef]
- Zhou, Q.; Kang, H.; Bielec, M.; Wu, X.; Cheng, Q.; Wei, W.; Dai, H. Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing. Carbohydr. Polym. 2018, 197, 292–304. [Google Scholar] [CrossRef]
- Munavalli, B.; Torvi, A.; Kariduraganavar, M. A facile route for the preparation of proton exchange membranes using sulfonated side chain graphite oxides and crosslinked sodium alginate for fuel cell. Polymer 2018, 142, 293–309. [Google Scholar] [CrossRef]
- Hu, H.; Cao, L.; Xu, Z.; Zhou, L.; Li, J.; Huang, J. Carbon nanosheet frameworks derived from sodium alginate as anode materials for sodium-ion batteries. Mater. Lett. 2016, 185, 530–533. [Google Scholar] [CrossRef]
- Asma, R.; Khira, Z.; Karima, H.; Jellouli, E.D. Characterization and extraction of sodium alginate from Tunisian algae: Synthesizing a cross-linked ultrafiltration membrane. Iran. Polym. J. 2022, 31, 367–382. [Google Scholar]
- Guo, H.; Qin, Q.; Chang, J.-S.; Lee, D.-J. Modified alginate materials for wastewater treatment: Application prospects. Bioresour. Technol. 2023, 387, 129639. [Google Scholar] [CrossRef]
- Radoor, S.; Karayil, J.; Jayakumar, A.; Kandel, D.R.; Kim, J.T.; Siengchin, S.; Lee, J. Recent advances in cellulose- and alginate-based hydrogels for water and wastewater treatment: A review. Carbohydr. Polym. 2024, 323, 121339. [Google Scholar] [CrossRef]
- Doyo, A.N.; Kumar, R.; Barakat, M.A. Recent advances in cellulose, chitosan, and alginate based biopolymeric composites for adsorption of heavy metals from wastewater. J. Taiwan Inst. Chem. Eng. 2023, 151, 105095. [Google Scholar] [CrossRef]
- Reveendran, G.; Ong, S. Application of experimental design for dyes removal in aqueous environment by using sodium alginate-TiO2 thin film. Chem. Data Collect. 2018, 15–16, 32–40. [Google Scholar] [CrossRef]
- Kim, D.; Jo, A.; Yang, H.; Seo, B.; Lee, K.; Lee, T.S. Colorimetric detection and removal of radioactive Co ions using sodium alginate-based composite beads. J. Hazard. Mater. 2017, 326, 69–76. [Google Scholar] [CrossRef]
- Kazemi, M.; Jahanshahi, M.; Peyravi, M. Chitosan-sodium alginate multilayer membrane developed by Fe0@WO3 nanoparticles: Photocatalytic removal of hexavalent chromium. Carbohydr. Polym. 2018, 198, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.-J.; Huang, X.; Yang, F.; Zhao, W.; Zhou, X.; Zhao, C. Engineering sodium alginate-based cross-linked beads with high removal ability of toxic metal ions and cationic dyes. Carbohydr. Polym. 2018, 187, 85–93. [Google Scholar] [CrossRef]
- Hu, Z.-H.; Omer, A.M.; Ouyang, X.; Yu, D. Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution. Int. J. Biol. Macromol. 2018, 108, 149–157. [Google Scholar] [CrossRef]
- Bai, Q.; Xiong, Q.; Li, C.; Shen, Y.; Uyama, H. Hierarchical porous carbons from a sodium alginate/bacterial cellulose composite for high-performance supercapacitor electrodes. Appl. Surf. Sci. 2018, 455, 795–807. [Google Scholar] [CrossRef]
- WSangwana; Petcharoena, K.; Paradeea, N.; Lerdwijitjarudb, W.; Sirivata, A. Electrically responsive materials based on polycarbazole/sodium alginate hydrogel blend for soft and flexible actuator application. Carbohydr. Polym. 2016, 151, 213–222. [Google Scholar]
- Ciocoiua, O.; Staikosa, G.; Vasile, C. Thermoresponsive behavior of sodium alginate grafted with poly(Nisopropylacrylamide) in aqueous media. Carbohydr. Polym. 2018, 184, 118–126. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, Z.; Gao, B.; Wang, H.; Wang, M.; He, Z.; Cao, X.; Pan, F. Embedding hydrophobic MoS 2 nanosheets within hydrophilic sodium alginate membrane for enhanced ethanol dehydration. Chem. Eng. Sci. 2018, 185, 231–242. [Google Scholar] [CrossRef]
- Maier, A.; Strauß, F.; Kohlschreiber, P.; Schedel, C.; Braun, K.; Scheele, M. Sub-nanosecond Intrinsic Response Time of PbS Nanocrystal IR-Photodetectors. Nano Lett. 2022, 22, 2809–2816. [Google Scholar] [CrossRef]
- Ren, Z.; Sun, J.; Li, H.; Mao, P.; Wei, Y.; Zhong, X.; Hu, J.; Yang, S.; Wang, J. Bilayer PbS Quantum Dots for High-Performance Photodetectors. Adv. Mater. 2017, 29, 1702055. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, J. Ag nanoparticles enhanced PbS QDs/graphene/Si near-infrared photodetector. Phys. E 2023, 154, 115793. [Google Scholar] [CrossRef]
- Liu, S.; Fei, G.; Xu, S.; Gao, X. High-performance visible-near IR photodetectors based on high-quality Sn2+-sensitized PbS fflms. J. Alloys Compd. 2021, 883, 160860. [Google Scholar] [CrossRef]
- Li, K.; Zhao, X.; Fang, Y.; Tao, Y.; Song, X.; Zhang, H.; Yu, H.; Wang, P. Vertically Stacked Au/PbS/CsPbCl3 Phototransistors for Plasmon-Enhanced High-Performance Broadband Photodetection. ACS Appl. Electron. Mater. 2020, 2, 4080–4086. [Google Scholar] [CrossRef]
- Gong, M.; Liu, Q.; Goul, R.; Ewing, D.; Casper, M.; Stramel, A.; Elliot, A.; Wu, J.Z. Printable Nanocomposite FeS2–PbS Nanocrystals/Graphene Heterojunction Photodetectors for Broadband Photodetection. ACS Appl. Mater. Interfaces 2017, 9, 27801–27808. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yin, X.; Chen, G.; Sang, Z.; Yang, Y.; Que, W. High-Performance Photodetector with a-IGZO/PbS Quantum Dots Heterojunction. ACS Photonics 2023, 10, 790–800. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, M.; Jiang, D. High-Photoelectric-Conversion ZnO NWs/PbS QDs Broadband Photodetector with an Innovative Interdigitated Electrode Structure. Cryst. Growth Des. 2023, 23, 6578–6588. [Google Scholar] [CrossRef]
- Yang, Y.; Rao, Z.; Xu, Q.; Liang, Y.; Yang, L. Improving the photovoltaic performance for PbS QD thin film solar cells through interface engineering. J. Colloid Interface Sci. 2022, 627, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, N.; Ando, M.; Akai, T.; Kamada, K. Efficient NIR-to-Visible Upconversion of Surface-Modified PbS Quantum Dots for Photovoltaic Devices. ACS Appl. Nano Mater. 2021, 4, 9680–9688. [Google Scholar] [CrossRef]
- Sukharevska, N.; Bederak, D.; Goossens, V.M.; Momand, J.; Duim, H.; Dirin, D.N.; Kovalenko, M.V.; Kooi, B.J.; Loi, M.A. Scalable PbS Quantum Dot Solar Cell Production by Blade Coating from Stable Inks. ACS Appl. Mater. Interfaces 2021, 13, 5195–5207. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Yang, F.; Yuan, J.; Zhang, Y.; Gu, M.; Xu, Y.; Ling, X.; Wang, Y.; Li, F.; Zhai, T.; et al. Toward Scalable PbS Quantum Dot Solar Cells Using a Tailored Polymeric Hole Conductor. ACS Energy Lett. 2019, 4, 2850–2858. [Google Scholar] [CrossRef]
- Liu, S.; Hu, L.; Huang, S.; Zhang, W.; Ma, J.; Wang, J.-C.; Guan, X.; Lin, C.-H.; Kim, J.; Wan, T.; et al. Enhancing the Efficiency and Stability of PbS Quantum Dot Solar Cells through Engineering an Ultrathin NiO Nanocrystalline Interlayer. ACS Appl. Mater. Interfaces 2020, 12, 46239–46246. [Google Scholar] [CrossRef] [PubMed]
- Becker-Koch, D.; Albaladejo-Siguan, M.; Hofstetter, Y.J.; Solomeshch, O.; Pohl, D.; Rellinghaus, B.; Tessler, N.; Vaynzof, Y. Doped Organic Hole Extraction Layers in Efficient PbS and AgBiS2 Quantum Dot Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 18750–18757. [Google Scholar] [CrossRef]
- Bederak, D.; Balazs, D.M.; Sukharevska, N.V.; Shulga, A.G.; Abdu-Aguye, M.; Dirin, D.N.; Kovalenko, M.V.; Loi, M.A. Comparing Halide Ligands in PbS Colloidal Quantum Dots for Field-Effect Transistors and Solar Cells. ACS Appl. Nano Mater. 2018, 1, 6882–6889. [Google Scholar] [CrossRef]
- Xu, Y.; Li, G.; Li, R.; Jing, Y.; Zhang, H.; Wang, X.; Du, Z.; Wu, J.; Lan, Z. PbS/CdS heterojunction thin layer affords high-performance carbon-based all-inorganic solar cells. Nano Energy 2022, 95, 106973. [Google Scholar] [CrossRef]
- Latif, H.; Ashraf, S.; Shahid Rafique, M.; Imtiaz, A.; Sattar, A.; Zaheer, S.; Shabbir, S.A.; Usman, A. A novel, PbS quantum dot-Sensitized solar cell structure with TiO2-fMWCNTS nano-composite filled meso-porous anatase TiO2 photoanode. Sol. Energy 2020, 204, 617–623. [Google Scholar] [CrossRef]
- El-Menyawy, E.M.; Zidan, T.A.; El-Khalawany, L.M.; Zedan, I.T. One-pot synthesis of PbS quantum dots decorated with graphene for assisting charge carriers transport in bulk heterojunction solar cells. Opt. Mater. 2023, 145, 114487. [Google Scholar] [CrossRef]
- Suganya, G.; Arivanandhan, M.; Kalpana, G. Investigation of electronic structure, electrical and thermal properties of PbS quantum dots for thermoelectric applications. Mater. Sci. Semicond. Process. 2022, 148, 106789. [Google Scholar] [CrossRef]
- Bhowmick, M.; Singh, A.K.; Barik, P.; Xi, H.; Ullrich, B. All-optical switch based on PbS quantum dots. Appl. Phys. Lett. 2021, 119, 192103. [Google Scholar] [CrossRef]
- Ibrahim, M.; Zayed, M.; Ahmed, A.M.; Ghanem, M.A.; Shaban, M.; Elkhalik, S.A.; Mohamed, F. Synthesis and characterization of Mo-doped PbS thin films for enhancing the photocatalytic hydrogen production. Mater. Chem. Phys. 2024, 315, 128962. [Google Scholar] [CrossRef]
- Colbert, A.E.; Placencia, D.; Ratcli, E.L.; Boercker, J.E.; Lee, P.; Aifer, E.H.; Tischler, J.G. Enhanced Infrared Photodiodes Based on PbS/PbClx Core/Shell Nanocrystals. ACS Appl. Mater. Interfaces 2021, 13, 58916–58926. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Ringström, R.; Maurer, A.B.; Abrahamsson, M.; Andréasson, J.; Albinsson, B. Optically Switchable NIR Photoluminescence of PbS Semiconducting Nanocrystals using Diarylethene Photoswitches. J. Am. Chem. Soc. 2022, 144, 17758–17762. [Google Scholar] [CrossRef] [PubMed]
- Leng, K.; Guo, Z.; Chen, J.; Fu, Y.; Ma, R.; Yu, X.; Wang, L.; Wang, Q. PbS/CsPbBr3 Heterojunction for Broadband Neuromorphic Vision Sensing. ACS Appl. Mater. Interfaces 2024, 16, 7470–7479. [Google Scholar] [CrossRef]
- Xin, X.; Zhang, Y.; Guan, X.; Cao, J.; Li, W.; Long, X.; Tan, X. Enhanced Performances of PbS Quantum-Dots-Modified MoS2 Composite for NO2 Detection at Room Temperature. ACS Appl. Mater. Interfaces 2019, 11, 9438–9447. [Google Scholar] [CrossRef]
- Wang, P.; Cao, L.; Chen, Y.; Wu, Y.; Di, J. Photoelectrochemical Biosensor Based on Co3O4 Nanoenzyme Coupled with PbS Quantum Dots for Hydrogen Peroxide Detection. ACS Appl. Nano Mater. 2019, 2, 2204–2211. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Cui, C.; Liu, Z.; Niu, Y. PbS Nanoparticle Sensitized ZnO Nanowire Arrays to Enhance Photocurrent for Water Splitting. J. Phys. Chem. C 2016, 120, 4183–4188. [Google Scholar] [CrossRef]
- Ingrosso, C.; Valenzano, V.; Corricelli, M.; Testolin, A.; Pifferi, V.; Bianco, G.; Comparelli, R.; Depalo, N.; Fanizza, E.; Striccoli, M.; et al. PbS nanocrystals decorated Reduced Graphene Oxide for NIR responsive capacitive cathodes. Carbon 2021, 182, 57–69. [Google Scholar] [CrossRef]
- Jeya, P.; Keerthana, S.P.; Kungumadevi, L.; Rathinam, Y.; Ganesan, R.; Kandasami, A.; Senthil, T.S. γ-Ray-Induced Photocatalytic Activity of Bi-Doped PbS toward Organic Dye Removal under Sunlight. ACS Omega 2023, 8, 47427–47439. [Google Scholar] [CrossRef]
- Saah, S.A.; Boadi, N.O.; Awudza, J.A. Facile synthesis of PbS, Bi2S3 and Bi-doped PbS nanoparticles from metal piperidine dithiocarbamates complexes. Results Chem. 2022, 4, 100618. [Google Scholar] [CrossRef]
- Mandal, A.R.; Mandal, S.K. Electron spin resonance in silver-doped PbS nanorods. J. Exp. Nanosci. 2010, 5, 189–198. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, W. PbS quantum dots band gap tuning via Eu doping. Mater. Res. Express 2019, 6, 115908. [Google Scholar] [CrossRef]
- Nugraha, M.I.; Kumagai, S.; Watanabe, S.; Sytnyk, M.; Heiss, W.; Loi, M.A.; Takeya, J. Enabling Ambipolar to Heavy n-Type Transport in PbS Quantum Dot Solids through Doping with Organic Molecules. ACS Appl. Mater. Interfaces 2017, 9, 18039–18045. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, D.; Li, Y.; Xia, J.; Wei, H.; Ding, C.; Hu, Y.; Wei, Y.; Li, H.; Liu, D.; et al. In Situ Room-Temperature Synthesis of All-Colloidal Quantum Dot CsPbBr3−PbS Heterostructures. ACS Photonics 2023, 10, 4305–4314. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, J.; Chen, T.; Gao, X.; Wang, S. Toward Broadband Imaging: Surface-Engineered PbS Quantum Dot/Perovskite Composite Integrated Ultrasensitive Photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 44430–44437. [Google Scholar] [CrossRef]
- Grimaldi, D.; Kelderer, E.; Dirin, D.N.; Kovalenko, M.V.; Hohenau, A.; Ditlbacher, H.; Krenn, J.R. Photoconductivity of PbS/perovskite quantum dots in gold nanogaps. Nanoscale Adv. 2022, 4, 3566–3572. [Google Scholar] [CrossRef]
- Zhang, Y.; Kan, Y.; Gao, K.; Gu, M.; Shi, Y.; Zhang, X.; Xue, Y.; Zhang, X.; Liu, Z.; Zhang, Y.; et al. Hybrid Quantum Dot/Organic Heterojunction: A Route to Improve Open-Circuit Voltage in PbS Colloidal Quantum Dot Solar Cells. ACS Energy Lett. 2020, 5, 2335–2342. [Google Scholar] [CrossRef]
- Lü, C.; Guan, C.; Liu, Y.; Cheng, Y.; Yang, B. PbS/Polymer Nanocomposite Optical Materials with High Refractive Index. Chem. Mater. 2005, 17, 2448–2454. [Google Scholar] [CrossRef]
- Ingrosso, C.; Bianco, G.V.; Corricelli, M.; Comparelli, R.; Altamura, D.; Agostiano, A.; Striccoli, M.; Losurdo, M.; Curri, M.L.; Bruno, G. Photoactive Hybrid Material Based on Pyrene Functionalized PbS Nanocrystals Decorating CVD Monolayer Graphene. ACS Appl. Mater. Interfaces 2015, 7, 4151–4159. [Google Scholar] [CrossRef]
- Sun, L.; Xie, G.; Wu, P.; Xiong, Y.; Xu, L. Polarization Effect of MoO3 Increases the Thermoelectric Properties Based on the PbS Quantum-Dots Doped P3HT Devices. ACS Appl. Polym. Mater. 2019, 1, 1054–1060. [Google Scholar] [CrossRef]
- Mastria, R.; Rizzo, A.; Giansante, C.; Ballarini, D.; Dominici, L.; Inganas, O.; Gigli, G. Role of Polymer in Hybrid Polymer/PbS Quantum Dot Solar Cells. J. Phys. Chem. C 2015, 119, 14972–14979. [Google Scholar] [CrossRef]
- Chaudhuri, T.K.; Kothari, A.J.; Tiwari, D.; Ray, A. Photoconducting nanocomposite films of PbS nanocrystals in insulating polystyrene. Phys. Status Solidi A 2012, 210, 356–360. [Google Scholar] [CrossRef]
- Hammad, T.M.; Salem, J.K.; Kuhn, S.; Abu Shanab, N.M.; Hempelmann, R. Surface morphology and optical properties of PVA/PbS nanoparticles. J. Lumin. 2015, 157, 88–92. [Google Scholar] [CrossRef]
- Firdaus, Y.; Vandenplas, E.; Khetubol, A.; Cheyns, D.; Gehlhaar, R.; Van der Auweraer, M. Charge transport and recombination in P3HT:PbS solar cells. J. Appl. Phys. 2015, 117, 095503. [Google Scholar] [CrossRef]
- Yee, P.Y.; Brittman, S.; Mahadik, N.A.; Tischler, J.G.; Stroud, R.M.; Efros, A.L.; Sercel, P.C.; Boercker, J.E. Cu2-xS/PbS Core/Shell Nanocrystals with Improved Chemical Stability. Chem. Mater. 2021, 33, 6685–6691. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Zhang, Y.; Han, X.; Xiao, K.; Nabahat, M.; Arbiol, J.; Llorca, J.; Iban, M.; Cabot, A. PbS−Pb−CuxS Composites for Thermoelectric Application. ACS Appl. Mater. Interfaces 2021, 13, 51373–51382. [Google Scholar] [CrossRef]
- Kroupa, D.M.; Pach, G.F.; Vo, M.; Giberti, F.; Chernomordik, B.D.; Crisp, R.W.; Nozik, A.J.; Johnson, J.C.; Singh, R.; Klimov, V.I.; et al. Enhanced Multiple Exciton Generation in PbS, CdS/Janus-like Heterostructured Nanocrystals. ACS Nano 2018, 12, 10084–10094. [Google Scholar] [CrossRef]
- Justo, Y.; Geiregat, P.; van Hoecke, K.; Vanhaecke, F.; Donega, C.D.M.; Hens, Z. Optical Properties of PbS/CdS Core/Shell Quantum Dots. J. Phys. Chem. C 2013, 117, 20171–20177. [Google Scholar] [CrossRef]
- Peng, M.; Xie, X.; Zheng, H.; Wang, Y.; Zhuo, Q.; Yuan, G.; Ma, W.; Shao, M.; Wen, Z.; Sun, X. PbS Quantum Dots/2D Nonlayered CdSxSe1−x Nanosheet Hybrid Nanostructure for High-Performance Broadband Photodetectors. ACS Appl. Mater. Interfaces 2018, 10, 43887–43895. [Google Scholar] [CrossRef]
- Wieliczka, B.M.; Kaledin, A.L.; Buhro, W.E.; Loomis, R.A. Wave Function Engineering in CdSe/PbS Core/Shell Quantum Dots. ACS Nano 2018, 12, 5539–5550. [Google Scholar] [CrossRef] [PubMed]
- Tulsani, S.R.; Rath, A.K.; Late, D.J. 2D-MoS2 nanosheets as effective hole transport materials for colloidal PbS quantum dot solar cells. Nanoscale Adv. 2019, 1, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F.H.L.; Konstantatos, G. Hybrid 2D–0D MoS2/PbS Quantum Dot Photodetectors. Adv. Mater. 2015, 27, 176–180. [Google Scholar] [CrossRef]
- Chaudhary, N.; Khanuja, M. High-Performance Supercapacitor Electrode Material Based on the Two-Dimensional/Three-Dimensional Architecture of MoS2–PbS Hybrid Material. Energy Fuels 2021, 36, 1034–1042. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Y.; Song, X.; Zhang, H.; Cao, M.; Che, Y.; Dai, H.; Yang, J.; Zhang, H.; Yao, J. PbS-Decorated WS2 Phototransistors with Fast Response. ACS Photon. 2017, 4, 950–956. [Google Scholar] [CrossRef]
- Boercker, J.E.; Woodall, D.L.; Cunningham, P.D.; Placencia, D.; Ellis, C.T.; Stewart, M.H.; Brintlinger, T.H.; Stroud, R.M.; Tischler, J.G. Synthesis and Characterization of PbS/ZnS Core/Shell Nanocrystals. Chem. Mater. 2018, 30, 4112–4123. [Google Scholar] [CrossRef]
- Brontvein, O.; Albu-Yaron, A.; Levy, M.; Feuerman, D.; Popovitz-Biro, R.; Tenne, R.; Enyashin, A.; Gordon, J.M. Solar Synthesis of PbS/SnS2 Superstructure Nanoparticles. Acsnano 2015, 9, 7831–7839. [Google Scholar] [CrossRef] [PubMed]
- Zaini, M.S.; Liew, J.Y.C.; Ahmad, S.A.A.; Mohmad, A.R.; Kamarudin, M.A. Photoluminescence Investigation of Carrier Localization in Colloidal PbS and PbS/MnS Quantum Dots. ACS Omega 2020, 5, 30956–30962. [Google Scholar] [CrossRef] [PubMed]
- Ranga, M.; Sinha, S. Photoelectrochemical integrated treatment of textile wastewater by prepared optimized Ni-doped PbS quantum dots on WO3/BiVO4 along with H2 production. Sep. Puriffcation Technol. 2025, 352, 127928. [Google Scholar] [CrossRef]
- Wang, X.; Xu, K.; Yan, X.; Xiao, X.; Aruta, C.; Foglietti, V.; Ning, Z.; Yang, N. Amorphous ZnO/PbS Quantum Dots Heterojunction for Efficient Responsivity Broadband Photodetectors. ACS Appl. Mater. Interfaces 2020, 12, 8403–8410. [Google Scholar] [CrossRef] [PubMed]
- Misra, M.; Singh, S.; Paul, A.K.; Singla, M.L. Influence of a PbS layer on the optical and electronic properties of ZnO@PbS core–shell nanorod thin films. J. Mater. Chem. C 2015, 3, 6086. [Google Scholar] [CrossRef]
- Du, K.; Liu, G.; Chen, X.; Wang, K. PbS Quantum Dots Sensitized TiO2Nanotubes for Photocurrent Enhancement. J. Electrochem. Soc. 2015, 162, E251–E257. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, H.; Wu, N.; El Khakani, M.A.; Ma, D. Tuning the Charge-Transfer Property of PbS-Quantum Dot/TiO2-Nanobelt Nanohybrids via Quantum Confinement. J. Phys. Chem. Lett. 2010, 1, 1030–1035. [Google Scholar] [CrossRef]
- Sadeghi, S.M.; Gutha, R.R.; Hatef, A.; Goul, R.; Wu, J.Z. Ultrahigh Brightening of Infrared PbS Quantum Dots via Collective Energy Transfer Induced by a Metal-Oxide Plasmonic Metastructure. ACS Appl. Mater. Interfaces 2020, 12, 11913–11921. [Google Scholar] [CrossRef]
- Chang, C.; Pundi, A.; Hsieh, S.; Tsay, C.; Chang, Y.; Wang, C. PbS dendrites/graphene membranes as efffcient solar steam generators. J. Taiwan Inst. Chem. Eng. 2024, 156, 105398. [Google Scholar] [CrossRef]
- Parand, P.; Samadpour, M.; Esfandiar, A.; Zad, A.I. Graphene/PbS as a Novel Counter Electrode for Quantum Dot Sensitized Solar Cells. ACS Photonics 2014, 1, 323–330. [Google Scholar] [CrossRef]
- Nian, Q.; Gao, L.; Hu, Y.; Deng, B.; Tang, J.; Cheng, G.J. Graphene/PbS-Quantum Dots/Graphene Sandwich Structures Enabled by Laser Shock Imprinting for High Performance Photodetectors. ACS Appl. Mater. Interfaces 2017, 9, 44715–44723. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-S.; Neo, D.C.J.; Hou, B.; Park, J.B.; Cho, Y.; Zhang, N.; Hong, J.; Pak, S.; Lee, S.; Sohn, J.I.; et al. High Performance PbS Quantum Dot/Graphene Hybrid Solar Cell with Efficient Charge Extraction. ACS Appl. Mater. Interfaces 2016, 8, 13902–13908. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.; Chung, H.; Chen, W.; Moreno-Gonzalez, M.A.; Vazquez-Mena, O. Optoelectronic response of hybrid PbS-QD/graphene photodetectors. J. Chem. Phys. 2019, 151, 234705. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhang, Y.; Zhang, H.; Yu, Y.; Cao, M.; Che, Y.; Dai, H.; Yang, J.; Ding, X.; Yao, J. Graphene and PbS quantum dot hybrid vertical phototransistor. Nanotechnology 2017, 28, 145201. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, K.; Ka, I.; Le Borgne, V.; Kang, C.-S.; Kobayashi, K.; Muramatsu, H.; Hayashi, T.; Kim, Y.A.; Endo, M.; Terrones, M.; et al. Elucidating the local interfacial structure of highly photoresponsive carbon nanotubes/PbS-QDs based nanohybrids grown by pulsed laser deposition. Carbon 2016, 96, 145–152. [Google Scholar] [CrossRef]
- Ka, I.; Le Borgne, V.; Fujisawa, K.; Hayashi, T.; Kim, Y.A.; Endo, M.; Ma, D.; El Khakani, M.A. PbS-quantum-dots/double-wall-carbon-nanotubes nanohybrid based photodetectors with extremely fast response and high responsivity. Mater. Today Energy 2020, 16, 100378. [Google Scholar] [CrossRef]
- Yang, J.; Lee, J.; Yi, W. Field emission enhancement of PbS colloidal quantum dot-decorated single-walled carbon nanotubes. J. Alloys Compd. 2019, 809, 151832. [Google Scholar] [CrossRef]
- Jana, S.; Banerjee, D.; Jha, A.; Chattopadhyay, K. Fabrication of PbS nanoparticle coated amorphous carbon nanotubes: Structural, thermal and field emission properties. Mater. Res. Bull. 2011, 46, 1659–1664. [Google Scholar] [CrossRef]
- Fernandes, G.E.; Tzolov, M.B.; Kim, J.H.; Liu, Z.; Xu, J. Infrared Photoresponses from PbS Filled Multiwall Carbon Nanotubes. J. Phys. Chem. C 2010, 114, 22703–22709. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, L.; Sun, H.; Huang, X.; Luo, Y.; Li, D.; Meng, Q. Composite Counter Electrode Based on Nanoparticulate PbS and Carbon Black: Towards Quantum Dot-Sensitized Solar Cells with Both High Efficiency and Stability. ACS Appl. Mater. Interfaces 2012, 4, 6162–6168. [Google Scholar] [CrossRef]
- Popov, G.; Baci, G.; Manner, T.; Lindstro, H.; Seppan, H.; Suihkonen, S.; Vehkamak, M.; Kemell, M.; Jalkanen, P.; Mizohata, K.; et al. Atomic Layer Deposition of PbS Thin Films at Low Temperatures. Chem. Mater. 2020, 32, 8216–8228. [Google Scholar] [CrossRef]
- Huang, T.; Zhao, Q.; Xiao, J.; Qi, L. Controllable Self-Assembly of PbS Nanostars into Ordered Structures: Close-Packed Arrays and Patterned Arrays. ACS Nano 2010, 4, 4707–4716. [Google Scholar] [CrossRef]
- Weeraddana, T.M.D.; Premathilaka, S.M.; Tang, Y.; Antu, A.D.; Roach, A.; Yang, J.; Sun, L. Dielectrically Conffned Stable Excitons in Few-Atom-Thick PbS Nanosheets. J. Phys. Chem. Lett. 2022, 13, 7756–7761. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Walker, A.V. Morphological Control of PbS Grown on Functionalized Self-Assembled Monolayers by Chemical Bath Deposition. Langmuir 2014, 30, 6954–6962. [Google Scholar] [CrossRef]
- Macias-Pinilla, D.F.; Echeverría-Arrondo, C.; Reyes, A.F.G.; Agouram, S.; Mun, V.; Planelles, J.; Mora-Sero, I.; Climente, J.I. Morphology and Band Structure of Orthorhombic PbS Nanoplatelets: An Indirect Band Gap Material. Chem. Mater. 2021, 33, 420–429. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, A.; Li, K.; Yang, C.; Wang, M.; Ye, H.; Hou, Y.; Teng, F. Shape-Controlled Synthesis of PbS Nanocrystals via a Simple One-Step Process. Langmuir 2012, 28, 16436–16443. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Dong, Y.; Jia, M.; Wen, J.; Su, C.; Shang, Y.; Zhang, X.; Pang, F.; Wang, T. Temperature-induced PbS quantum dots with tunable broadband wavelength grown by atomic layer deposition. Appl. Surf. Sci. 2021, 546, 149086. [Google Scholar] [CrossRef]
- Xing, M.; Li, Z.; Wang, Y.; Wang, R. Experimental and numerical study of quantum dot heterojunction solar cells by single-step deposition PbS optical absorber layer. Opt. Mater. 2024, 149, 114920. [Google Scholar] [CrossRef]
- Saah, S.A.; Khan, M.D.; Awudza, J.A.M.; Revaprasadu, N.; O’Brien, P.L. A Facile Green Synthesis of Ultranarrow PbS Nanorods. J. Inorg. Organomet. Polym. Mater. 2019, 29, 2274–2281. [Google Scholar] [CrossRef]
- Biadala, L.; Peng, W.; Lambert, Y.; Kim, J.H.; Canneson, D.; Houppe, A.; Berthe, M.; Troadec, D.; Deresmes, D.; Patriarche, G.; et al. Trap-Free Heterostructure of PbS Nanoplatelets on InP(001) by Chemical Epitaxy. ACS Nano 2019, 13, 1961–1967. [Google Scholar] [CrossRef]
- Akkerman, Q.A.; Martín-García, B.; Buha, J.; Almeida, G.; Toso, S.; Marras, S.; Bonaccorso, F.; Petralanda, U.; Infante, I.; Manna, L. Ultrathin Orthorhombic PbS Nanosheets. Chem. Mater. 2019, 31, 8145–8153. [Google Scholar] [CrossRef]
- Qin, L.; Wu, S.; Wang, J.G.; Li, Q.; Yuan, C.; Wang, Z.; Wang, J.; Hu, Z.; Wang, L.; Wang, Q. Enhancement of infrared response speed via modulating crystallinity of highly-oriented PbS polycrystalline thin films. Infrared Phys. Technol. 2022, 121, 104033. [Google Scholar] [CrossRef]
- Zhan, L.; Shen, S.; Xie, B.; Yang, K. A novel method of preparing PbS from waste lead paste through in-situ vulcanization and reduction. J. Clean. Prod. 2019, 208, 778–784. [Google Scholar] [CrossRef]
- Grevtseva, I.; Chirkov, K.; Ovchinnikov, O.; Smirnov, M.; Perepelitsa, A. Thermally stimulated luminescence of PbS quantum dots with various interface passivators. J. Lumin. 2024, 267, 120348. [Google Scholar] [CrossRef]
- Imperiale, C.J.; Villanueva, F.Y.; Nikbin, E.; Howe, J.Y.; Wilson, M.W.B. Direct Synthesis of Ultrasmall PbS Nanocrystals Passivated with a Metal-Halide-Perovskite-like Monolayer. Chem. Mater. 2024, 36, 4121–4134. [Google Scholar] [CrossRef]
- Albaladejo-Siguan, M.; Becker-Koch, D.; Taylor, A.D.; Sun, Q.; Lami, V.; Oppenheimer, P.G.; Paulus, F.; Vaynzof, Y. Efficient and Stable PbS Quantum Dot Solar Cells by Triple-Cation Perovskite Passivation. ACS Nano 2020, 14, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Teh, Z.L.; Hu, L.; Zhang, Z.; Gentle, A.R.; Chen, Z.; Gao, Y.; Yuan, L.; Hu, Y.; Wu, T.; Patterson, R.J.; et al. Enhanced Power Conversion Efficiency via Hybrid Ligand Exchange Treatment of p-Type PbS Quantum Dots. ACS Appl. Mater. Interfaces 2020, 12, 22751–22759. [Google Scholar] [CrossRef]
- Lu, H.; Joy, J.; Gaspar, R.L.; Bradforth, S.E.; Brutchey, R.L. Iodide-Passivated Colloidal PbS Nanocrystals Leading to Highly Efficient Polymer:Nanocrystal Hybrid Solar Cells. Chem. Mater. 2016, 28, 1897–1906. [Google Scholar] [CrossRef]
- Perez, K.A.; Lian, S.; Kodaimati, M.S.; He, C.; Weiss, E.A. Mechanisms of Defect Passivation by Fluorinated Alkylthiolates on PbS Quantum Dots. J. Phys. Chem. C 2018, 122, 13911–13919. [Google Scholar] [CrossRef]
- Bederak, D.; Sukharevska, N.; Kahmann, S.; Abdu-Aguye, M.; Duim, H.; Dirin, D.N.; Kovalenko, M.V.; Portale, G.; Loi, M.A. On the Colloidal Stability of PbS Quantum Dots Capped with Methylammonium Lead Iodide Ligands. ACS Appl. Mater. Interfaces 2020, 12, 52959–52966. [Google Scholar] [CrossRef]
- Green, P.B.; Villanueva, F.Y.; Demmans, K.Z.; Imperiale, C.J.; Hasham, M.; Nikbin, E.; Howe, J.Y.; Burns, D.C.; Wilson, M.W. PbS Nanocrystals Made Using Excess Lead Chloride Have a Halide-Perovskite-Like Surface. Chem. Mater. 2021, 33, 9270–9284. [Google Scholar] [CrossRef]
- Xiao, G.; Liang, T.; Wang, X.; Ying, C.; Lv, K.; Shi, C. Reduced Surface Trap States of PbS Quantum Dots by Acetonitrile Treatment for Efffcient SnO2 Based PbS Quantum Dot Solar Cells. ACS Omega 2024, 9, 12211–12218. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Wu, C.; Yang, J.; Hu, P.; Qian, L.; Sun, T.; Xiang, C. Reducing the Open-Circuit Voltage Loss of PbS Quantum Dot Solar Cells via Hybrid Ligand Exchange Treatment. ACS Appl. Mater. Interfaces 2024, 16, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Liu, S.; Liu, M.; Choi, P.; Liu, Q.; Xu, Z. Revelation of the Nature of the Ligand–PbS Bond and Its Implication on Chemical Functionalization of PbS. J. Phys. Chem. C 2019, 123, 22981–22988. [Google Scholar] [CrossRef]
- Aynehband, S.; Mohammadi, M.; Thorwarth, K.; Hany, R.; Nüesch, F.A.; Rossell, M.D.; Pauer, R.; Nunzi, J.-M.; Simchi, A. Solution Processing and Self-Organization of PbS Quantum Dots Passivated with Formamidinium Lead Iodide (FAPbI3). ACS Omega 2020, 5, 15746–15754. [Google Scholar] [CrossRef] [PubMed]
- Ge, F.; Han, Y.; Feng, C.; Zhang, H.; Chen, F.; Xu, D.; Tao, C.; Cheng, F.; Wu, X. Halide Ions Regulating the Morphologies of PbS and Au@PbS Core−Shell Nanocrystals: Synthesis, Self-Assembly, and Electrical Transport Properties. J. Phys. Chem. Lett. 2023, 14, 9521–9530. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Qi, R.; Wu, J.; Guo, H.; Li, X.; Fang, Y.; Xie, D.; Lin, Y. Enhancing the photoinduced charge carrier transfer by coupling the InZnP quantum-dots with PbS shell for solution-processed solar cells application. J. Power Sources 2022, 542, 231732. [Google Scholar] [CrossRef]
- Nordin, M.N.; Bourdakos, K.N.; Curry, R.J. Charge transfer in hybrid organic–inorganic PbS nanocrystal systems. Phys. Chem. Chem. Phys. 2010, 12, 7371–7377. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Katayama, K.; Sawada, T.; Hachiya, S.; Toyoda, T. Ultrafast carrier dynamics in PbS quantum dots. Chem. Phys. Lett. 2012, 542, 89–93. [Google Scholar] [CrossRef]
- Li, H.; Ding, C.; Oguri, N.; Makino, Y.; Liu, D.; Guo, Y.; Wei, Y.; Li, Y.; Yang, Y.; Wang, D.; et al. Elucidating the Mechanisms of the Large Stokes Shift in Isolated and Coupled PbS Quantum Dots. J. Phys. Chem. C 2024, 128, 8732–8740. [Google Scholar] [CrossRef]
- Voznyy, O.; Levina, L.; Fan, F.; Walters, G.; Fan, J.Z.; Kiani, A.; Ip, A.H.; Thon, S.M.; Proppe, A.H.; Liu, M.; et al. Origins of stokes shift in PbS nanocrystals. Nano Lett. 2017, 17, 7191–7195. [Google Scholar] [CrossRef] [PubMed]
- Zherebetskyy, D.; Zhang, Y.; Salmeron, M.; Wang, L.-W. Tolerance of Intrinsic Defects in PbS Quantum Dots. J. Phys. Chem. Lett. 2015, 6, 4711–4716. [Google Scholar] [CrossRef] [PubMed]
- Balazs, D.M.; Nugraha, M.I.; Bisri, S.Z.; Sytnyk, M.; Heiss, W.; Loi, M.A. Reducing charge trapping in PbS colloidal quantum dot solids. Appl. Phys. Lett. 2014, 104, 112104. [Google Scholar] [CrossRef]
- Dantas, N.O.; de Paula, P.M.N.; Silva, R.S.; López-Richard, V.; Marques, G.E. Radiative versus nonradiative optical processes in PbS nanocrystals. J. Appl. Phys. 2011, 109, 024308. [Google Scholar] [CrossRef]
- Kushnir, K.; Chen, K.; Zhou, L.; Giri, B.; Grimm, R.L.; Rao, P.M.; Titova, L.V. Dynamics of Photoexcited Carriers in Polycrystalline PbS and at PbS/ZnO Heterojunctions: Influence of Grain Boundaries and Interfaces. J. Phys. Chem. C 2018, 122, 11682–11688. [Google Scholar] [CrossRef]
- Moroz, P.; Kholmicheva, N.; Mellott, B.; Liyanage, G.; Rijal, U.; Bastola, E.; Huband, K.; Khon, E.; McBride, K.; Zamkov, M. Suppressed Carrier Scattering in CdS-Encapsulated PbS Nanocrystal Films. ACS Nano 2013, 7, 6964–6977. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lee, J.; Lee, J.; Yi, W. Suppressed Interfacial Charge Recombination of PbS Quantum Dot Photovoltaics by Graphene Incorporated into ZnO Nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 25311–25320. [Google Scholar] [CrossRef] [PubMed]
- Nestoklon, M.O.; Goupalov, S.V. Exciton interaction with acoustic phonons in PbS nanocrystals. Phys. Rev. B 2022, 106, 045306. [Google Scholar] [CrossRef]
- Aerts, M.; Bielewicz, T.; Klinke, C.; Grozema, F.C.; Houtepen, A.J.; Schins, J.M.; Siebbeles, L.D.A. Highly efficient carrier multiplication in PbS nanosheets. Nat. Commun. 2014, 5, 3789. [Google Scholar] [CrossRef]
- Kennehan, E.R.; Munson, K.T.; Doucette, G.S.; Marshall, A.R.; Beard, M.C.; Asbury, J.B. Dynamic Ligand Surface Chemistry of Excited PbS Quantum Dots. J. Phys. Chem. Lett. 2020, 11, 2291–2297. [Google Scholar] [CrossRef]
- Xia, P.; Liang, Z.; Mahboub, M.; van Baren, J.; Lui, C.H.; Jiao, J.; Graham, K.R.; Tang, M.L. Surface Fluorination for Controlling the PbS Quantum Dot Bandgap and Band Offset. Chem. Mater. 2018, 30, 4943–4948. [Google Scholar] [CrossRef]
- Li, F.; Liu, J.J.; Xu, Q.; Chang, R.; Wang, L.; Wu, Z.; Shen, H.; Du, Z. High-Radiance Shortwave Infrared Light-Emitting Diodes Based on Highly Stable PbS Colloidal Quantum Dots. J. Phys. Chem. Lett. 2023, 14, 4252–4258. [Google Scholar] [CrossRef] [PubMed]
- Ruggieri, M.; Colantoni, E.; Marconi, E.; Fabbri, A.; Branchini, P.; Colace, L.; Tortora, L.; De Iacovo, A. Low-Voltage and Highly Sensitive PbS Quantum Dot Thin-Film X-ray Monitors. ACS Appl. Electron. Mater. 2023, 5, 5642–5650. [Google Scholar] [CrossRef]
- Zhang, H.; Ledos, N.; Cavallo, M.; Bossavit, E.; Khalili, A.; Curti, L.; Xu, X.Z.; Dandeu, E.; Utterback, J.K.; Ithurria, S.; et al. Photoemission Insight on Narrow Band Gap PbS Quantum Dots Relevant for Infrared Imaging. J. Phys. Chem. C 2024, 128, 2028–2036. [Google Scholar] [CrossRef]
- He, J.; Zhou, X.; Wang, Y.; Yuan, M.; Xia, H.; Chen, X.; Ge, Y.; Wang, X.; Gao, L.; Tang, J. Mid-infrared response of PbS colloidal quantum dot solids. J. Mater. Chem. C 2023, 11, 10033–10042. [Google Scholar] [CrossRef]
- Bederak, D.; Dirin, D.N.; Sukharevska, N.; Momand, J.; Kovalenko, M.V.; Loi, M.A. S Rich PbS Quantum Dots: A Promising p Type Material for Optoelectronic Devices. Chem. Mater. 2021, 33, 320–326. [Google Scholar] [CrossRef]
- Shi, X.; Tao, L.; Wang, L.; Liu, X.; Liu, S.; Wang, Z. Plasmonic-Fluorescent Janus Au-PbS Nanoparticles with Bright Near-Infrared-II Fluorescence and Photothermal Effect for Computed Tomography Imaging-Guided Combination Cancer Therapy. Chem. Mater. 2024, 36, 2776–2789. [Google Scholar] [CrossRef]
- Li, X.; Suzuki, K.; Toda, T.; Yasuda, S.; Murakoshi, K. Plasmonic Enhancement of Photoenergy Conversion in the Visible Light Region Using PbS Quantum Dots Coupled with Au Nanoparticles. J. Phys. Chem. C 2015, 119, 22092–22101. [Google Scholar] [CrossRef]
- Mamiyev, Z.; Balayeva, N.O. PbS nanostructures: A review of recent advances. Mater. Today Sustain. 2023, 21, 100305. [Google Scholar] [CrossRef]
- Ma, X.; Gao, M.; Zhang, X.; Wang, Y.; Li, G. Polymer-Derived Carbon Nanofiber and Its Photocurrent-Switching Responses of Carbon Nanofiber/Cu Nanocomposite in Wide Ranges of Excited Light Wavelength. Polymers 2023, 15, 3528. [Google Scholar] [CrossRef]
- Ma, X.; Gao, M.; Zhang, X.; Wang, Y.; Li, G. Interface Interaction between Mo2O3 and Carbon Dots Derived from Chitosan Promoted the Photocurrent Extraction Ability of Carriers in a Wide Range of the Light Spectrum. Coatings 2024, 14, 171. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Y.; Gao, M.; Xu, H.; Li, G. A novel strategy to prepare ZnO/PbS heterostructured functional nanocomposite utilizing the surface adsorption property of ZnO nanosheets. Catal. Today 2010, 158, 459–463. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, J.; Ma, L.; Guo, B.; He, X.; Gao, M.; Bian, L.; Ma, X.; Li, G. Charge Behavior of Low-Dimensional V2O5/Graphene Nanoribbons Oxides Nanocomposites under Irradiation of Visible Light and its Application. Mater. Sci. Forum 2016, 847, 203–210. [Google Scholar] [CrossRef]
- Zhang, B.; He, X.; Gao, M.; Ma, X.; Li, G. Entanglement of CeO2 Nanorods and Graphene Nanoribbons and their Properties Studies of Nanocomposites. Mater. Sci. Forum 2015, 814, 153–160. [Google Scholar] [CrossRef]
- Ma, X.; Li, C.; Gao, M.; Zhang, X.; Wang, Y.; Li, G. Interface Optimization of Metal Quantum Dots/Polymer Nanocomposites and their Properties: Studies of Multi-Functional Organic/Inorganic Hybrid. Materials 2022, 16, 150. [Google Scholar] [CrossRef]
Inorganic Ligands | Organic Ligands |
---|---|
Halide ions (I−, Br−, Cl−) | oleates |
PbI2 and PbBr2, PbI2 | amines |
Thiocyanate anion (SCN−), etc. | oleic acid (OA) |
1,2-ethanedithiol (EDT) | |
1-pyrene butyric acid (PBA) | |
1,4-benzenedithiol | |
1,2-ethanedithiol | |
-SCF3 | |
CF3(CF2)14COOH (pFA) | |
1,3-mercaptopropionic acid (MPA) | |
acetonitrile | |
P3HT | |
MAPbI3, CsPbI3, CsxMAyFAzPbX3, formamidinium lead iodide | |
trioctylphosphine | |
thiolates | |
thiophenolate | |
polyvinylpyrrolidone |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Zhang, X.; Gao, M.; Wang, Y.; Li, G. Polymer-Gel-Derived PbS/C Composite Nanosheets and Their Photoelectronic Response Properties Studies in the NIR. Coatings 2024, 14, 981. https://doi.org/10.3390/coatings14080981
Ma X, Zhang X, Gao M, Wang Y, Li G. Polymer-Gel-Derived PbS/C Composite Nanosheets and Their Photoelectronic Response Properties Studies in the NIR. Coatings. 2024; 14(8):981. https://doi.org/10.3390/coatings14080981
Chicago/Turabian StyleMa, Xingfa, Xintao Zhang, Mingjun Gao, You Wang, and Guang Li. 2024. "Polymer-Gel-Derived PbS/C Composite Nanosheets and Their Photoelectronic Response Properties Studies in the NIR" Coatings 14, no. 8: 981. https://doi.org/10.3390/coatings14080981
APA StyleMa, X., Zhang, X., Gao, M., Wang, Y., & Li, G. (2024). Polymer-Gel-Derived PbS/C Composite Nanosheets and Their Photoelectronic Response Properties Studies in the NIR. Coatings, 14(8), 981. https://doi.org/10.3390/coatings14080981