Study on the Properties of Graphene Oxide–Wood Tar-Based Composite Rejuvenated Asphalt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Asphalt
2.1.2. Graphene Oxide
2.1.3. Wood Tar
2.1.4. Plasticizer
2.1.5. RA-75 Rejuvenator
2.2. Material Preparation
2.2.1. Preparation of Aged Asphalt
2.2.2. Preparation of GWCR
2.2.3. Preparation of Rejuvenated Asphalt
2.3. Test Methods
2.3.1. Physical Performance Test
2.3.2. Rheological Property Test
Dynamic Shear Rheology (DSR) Test
Bending Beam Rheology (BBR) Test
2.3.3. Component Analysis (SARA) Test
2.3.4. FTIR Test
2.3.5. Atomic Force Microscope (AFM) Test
3. Results and Discussion
3.1. Physical Properties
3.2. Rheological Properties
3.2.1. High-Temperature Performance
3.2.2. Low-Temperature Cracking Resistance
3.3. Anti-Secondary Aging Performance
3.4. Rejuvenation Mechanism Analysis
3.4.1. SARA
3.4.2. Colloidal Structure Analysis
3.4.3. Chemical Characteristic Analysis
3.4.4. Microstructure Analysis
Surface Micro-Morphology Analysis
Quantitative Analysis of Microstructure
3.5. Regression Equations Analysis
4. Conclusions and Recommendations
- (1)
- GWCR can effectively soften the aged asphalt, increase its penetration and ductility, reduce its softening point, decrease its G*/sinδ and S value, and increase its m value, indicating that the high-temperature performance of the GWCRA is decreased and the low-temperature crack resistance is enhanced, while they are slightly better than that of the 70# original base asphalt.
- (2)
- The variation range of S value and m value of the GWCRA after PAV aging is smaller than that of AO, WRA, and RAA, indicating that the synergistic effect of GO, wood tar, and DOA could effectively improve the secondary aging resistance of rejuvenated asphalt.
- (3)
- A rejuvenator can effectively increase the content of saturates and aromatics in aged asphalt, reduce the content of asphaltenes and resins, and decrease the IC value, so as to restructure the right balance between asphaltene/maltene. Differently, the GWCR has the best blending effect on the components of aged asphalt, and the IC value is reduced to the same as that of AO, so it has the best recovery effect on the performance of aged asphalt.
- (4)
- When adding a rejuvenator to aged asphalt, no new absorption peaks are found; the absorption peak of the C=O stretching vibration appeared at 1760 cm−1 in WRA and GWCRA, corresponding to the absorption peak of the C=O stretching vibration of wood tar at 1760 cm−1, indicating that the rejuvenator is physically blended with the AP. The addition of a rejuvenator can decrease the IS=O and IC=O values, but the effect of the GWCRA on the reduction in IC=O value is more pronounced than that of the IS=O value.
- (5)
- A rejuvenator can effectively disperse the asphaltene accumulated during PAV aging, reduce the “bee-like” structure area ratio and maximum size, increase the surface roughness, and enhance the adhesion. Compared with the RA-75 rejuvenator and WR, the GWCR can decrease the “bee-like” structure area ratio and increase the surface roughness and adhesion of aged asphalt.
- (6)
- The asphaltenes, resins, IC value, IS=O value, IC=O value, and “bee-like” structure area ratios in asphalt are negatively correlated with the penetration, ductility, and m value, while positively correlated with the softening point, G*/sinδ, and S value. In contrast, the saturates and aromatics in asphalt are positively correlated with the penetration, ductility, and m value, and negatively correlated with the softening point, G*/sinδ, and S value.
- (1)
- Explore the anti-secondary aging performance of the GWCRA in depth and in a comprehensive manner, and analyze its mechanism.
- (2)
- Explore the changes in asphalt performance during secondary rejuvenation using the GWCRA and its secondary rejuvenation mechanism.
- (3)
- Introduce other more economical and environmentally friendly materials (e.g., humic acids) to improve the performance of rejuvenated asphalt and maximize its economic and environmental benefits.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Segundo, I.R.; Freitas, E.; Branco, V.T.F.C.; Landi, S.; Costa, M.F.; Carneiro, J.O. Review and analysis of advances in functionalized, smart, and multifunctional asphalt mixtures. Renew. Sustain. Energy Rev. 2021, 151, 111552. [Google Scholar] [CrossRef]
- Cao, W.D.; Liu, S.T.; Li, X.X. Laboratory evaluation of the effect of composite modifier on the performance of asphalt concrete mixture. Constr. Build. Mater. 2017, 155, 363–370. [Google Scholar] [CrossRef]
- Liu, Z.; Gu, X.Y.; Wu, C.Y.; Ren, H.; Zhou, Z.; Tang, S. Studies on the validity of strain sensors for pavement monitoring: A case study for a fiber Bragg grating sensor and resistive sensor. Constr. Build. Mater. 2022, 321, 126085. [Google Scholar] [CrossRef]
- Zhu, S.; Qin, X.; Xu, Z.; Xing, M. Life cycle assessment of energy consumption and carbon emissions of a green maintenance material for asphalt pavement: Warm mix OUFC-5. J. Clean. Prod. 2023, 428, 139481. [Google Scholar] [CrossRef]
- Liu, Q.; Yu, B.; Falchetto, A.C.; Wang, D.; Liu, J.; Bo, W. Characterization and molecular mechanism of the thermal-oxidative gradient aging behavior in asphalt films. Measurement 2022, 199, 111567. [Google Scholar] [CrossRef]
- Xu, X.; Sreeram, A.; Leng, Z.; Yu, J.; Li, R.; Peng, C. Challenges and opportunities in the high-quality rejuvenation of unmodified and SBS modified asphalt mixtures: State of the art. J. Clean. Prod. 2022, 378, 134634. [Google Scholar] [CrossRef]
- Luo, H.; Huang, X. Research on the Change of Performance and Component of Recycled Oil Regenerated Asphalt during Secondary Aging. China J. Highw. Transp. 2021, 34, 98–110. [Google Scholar]
- Taziani, E.A.; Toraldo, E.; Crispino, M.; Giustozzi, F. Application of rejuvenators and virgin bitumen to restore physical and rheological properties of RAP binder. Aust. J. Civ. Eng. 2017, 15, 73–79. [Google Scholar] [CrossRef]
- Wang, J.; Lv, S.; Liu, J.; Peng, X.; Lu, W.; Wang, Z.; Xie, N. Performance evaluation of aged asphalt rejuvenated with various bio-oils based on rheological property index. J. Clean. Prod. 2023, 385, 135593. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, Z.; Yang, J.; Li, X. Comprehensive review on the application of bio-rejuvenator in the regeneration of waste asphalt materials. Constr. Build. Mater. 2021, 295, 123631. [Google Scholar] [CrossRef]
- Junhuai, L.; Yuping, X.; Jian, Y.; Kefei, L.; Qingding, W.U. Technological properties of poplar residues functionalized powder. J. Cent. South Univ. Technol. 2019, 39, 139–144. [Google Scholar]
- Zhang, X.F.; Zhu, J.C.; Wu, C.F.; Wu, Q.D.; Liu, K.F.; Jiang, K. Preparation and Properties of Wood Tar-based Rejuvenated Asphalt. Materials 2020, 13, 1123. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the functional modification of graphene/graphene oxide: A review. RSC Adv. 2020, 10, 15328–15345. [Google Scholar] [CrossRef]
- McAllister, M.J.; Li, J.; Adamson, D.H.; Schniepp, H.C.; Abdala, A.A.; Liu, J.; Herrera-Alonso, M.; Milius, D.L.; Car, R.; Prud’Homme, R.K.; et al. Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chem. Mater. 2007, 19, 4396–4404. [Google Scholar] [CrossRef]
- Tang, Z.; Wu, X.; Guo, B.; Zhang, L.; Jia, D. Preparation of butadiene-styrene-vinyl pyridine rubber-graphene oxide hybrids through co-coagulation process and in situ interface tailoring. J. Mater. Chem. 2012, 22, 7492–7501. [Google Scholar] [CrossRef]
- Wang, J.Y.; Jia, H.B.; Tang, Y.Y.; Ji, D.D.; Sun, Y.; Gong, X.D.; Ding, L.F. Enhancements of the mechanical properties and thermal conductivity of carboxylated acrylonitrile butadiene rubber with the addition of graphene oxide. J. Mater. Sci. 2013, 48, 1571–1577. [Google Scholar] [CrossRef]
- Wang, R.; Yue, J.; Li, R.; Sun, Y. Evaluation of aging resistance of asphalt binder modified with graphene oxide and carbon nanotubes. J. Mater. Civil. Eng. 2019, 31, 4019274. [Google Scholar] [CrossRef]
- Zeng, W.; Wu, S.; Pang, L.; Sun, Y.; Chen, Z. The utilization of graphene oxide in traditional construction materials: Asphalt. Materials 2017, 10, 48. [Google Scholar] [CrossRef]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Research Institute of Highway Ministry of Transport: Beijing, China, 2011.
- JTG F40-2004; Technical Specification for Construction of Highway Asphalt Pavements. Research Institute of Highway Ministry of Transport: Beijing, China, 2004.
- Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 2006, 18, 2740–2749. [Google Scholar] [CrossRef]
- Kumar, N.; Das, S.; Bernhard, C.; Varma, G.D. Effect of graphene oxide doping on superconducting properties of bulk MgB2. Supercond. Sci. Technol. 2013, 26, 95008. [Google Scholar]
- JTG/T 5521-2019; Technical Specifications for Highway Asphalt Pavement Recycling. Research Institute of Highway Ministry of Transport: Beijing, China, 2019.
- Siddiqui, M.N.; Ali, M.F. Studies on the aging behavior of the Arabian asphalts. Fuel 1999, 78, 1005–1015. [Google Scholar] [CrossRef]
- Mirwald, J.; Werkovits, S.; Camargo, I.; Maschauer, D.; Hofko, B.; Grothe, H. Investigating bitumen long-term-ageing in the laboratory by spectroscopic analysis of the SARA fractions. Constr. Build. Mater. 2020, 258, 119577. [Google Scholar] [CrossRef]
- Yongping, H.; Wei, S.; Xingxiang, K.; Yu, X.; Haopeng, W.; Tony, P.; Dan, A.G. State of the art: Multiscale evaluation of bitumen ageing behaviour. Fuel 2022, 326, 125045. [Google Scholar]
- Wang, J.; Wang, T.; Hou, X.; Xiao, F. Modelling of rheological and chemical properties of asphalt binder considering SARA fraction. Fuel 2019, 238, 320–330. [Google Scholar] [CrossRef]
- Chen, A.; Liu, G.; Zhao, Y.; Li, J.; Pan, Y.; Zhou, J. Research on the aging and rejuvenation mechanisms of asphalt using atomic force microscopy. Constr. Build. Mater. 2018, 167, 177–184. [Google Scholar] [CrossRef]
- Yan, S.; Zhou, C.; Sun, Y. Evaluation of rejuvenated aged-asphalt binder by waste-cooking oil with secondary aging considered. J. Mater. Civil. Eng. 2022, 34, 4022157. [Google Scholar] [CrossRef]
- Xiao, F.; Amirkhanian, S.; Wang, H.; Hao, P. Rheological property investigations for polymer and polyphosphoric acid modified asphalt binders at high temperatures. Constr. Build. Mater. 2014, 64, 316–323. [Google Scholar] [CrossRef]
- Xu, G.; Wang, H. Molecular dynamics study of oxidative aging effect on asphalt binder properties. Fuel 2017, 188, 1–10. [Google Scholar] [CrossRef]
- Cao, W.; Fini, E. A molecular dynamics approach to the impacts of oxidative aging on the engineering characteristics of asphalt. Polymers 2022, 14, 2916. [Google Scholar] [CrossRef] [PubMed]
- Prosperi, E.; Bocci, E. A review on bitumen aging and rejuvenation chemistry: Processes, materials and analyses. Sustainability 2021, 13, 6523. [Google Scholar] [CrossRef]
- Caputo, P.; Loise, V.; Crispini, A.; Sangiorgi, C.; Scarpelli, F.; Rossi, C.O. The efficiency of bitumen rejuvenator investigated through Powder X-ray Diffraction (PXRD) analysis and T2-NMR spectroscopy. Colloids Surf. Physicochem. Eng. Asp. 2019, 571, 50–54. [Google Scholar] [CrossRef]
- Tian, W.; Gao, Y.; Li, Y.; Zhu, J.; Zhan, M.; Wang, S. Molecular dynamics study on the effect of rheological performance of asphalt with different plasticizers. Constr. Build. Mater. 2023, 400, 132791. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, Y.; Li, F. Influence of ageing conditions on the chemical property changes of asphalt binders. Road Mater. Pavement 2021, 22, 653–681. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, K.; Shi, X. Performance evaluation and modification mechanism analysis of asphalt binders modified by graphene oxide. Constr. Build. Mater. 2018, 163, 880–889. [Google Scholar] [CrossRef]
- Fu, Z.; Shi, K.; Ma, F.; Song, R.; Chen, L.; Dai, J.; Shen, W. Rheological properties of dioctyl adipate-modified asphalt binder. Int. J. Pavement Eng. 2022, 23, 2644–2653. [Google Scholar] [CrossRef]
- Pyshyev, S.; Miroshnichenko, D.; Chipko, T.; Donchenko, M.; Bogoyavlenska, O.; Lysenko, L.; Miroshnychenko, M.; Prysiazhnyi, Y. Use of Lignite Processing Products as Additives to Road Petroleum Bitumen. Chemengineering 2024, 8, 27. [Google Scholar] [CrossRef]
- You, L.; You, Z.; Yang, X.; Ge, D.; Lv, S. Laboratory testing of rheological behavior of water-foamed bitumen. J. Mater. Civil. Eng. 2018, 30, 4018153. [Google Scholar] [CrossRef]
- Lv, S.; Wang, S.; Guo, T.; Xia, C.; Li, J.; Hou, G. Laboratory evaluation on performance of compound-modified asphalt for rock asphalt/styrene-butadiene rubber (sbr) and rock asphalt/nano-CaCO3. Appl. Sci. 2018, 8, 1009. [Google Scholar] [CrossRef]
- Yao, H.; Dai, Q.; You, Z. Fourier Transform Infrared Spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders. Constr. Build. Mater. 2015, 101, 1078–1087. [Google Scholar] [CrossRef]
- Gu, X.; Ma, X.; Li, L.; Liu, C.; Cheng, K.; Li, Z. Pyrolysis of poplar wood sawdust by TG-FTIR and Py–GC/MS. J. Anal. Appl. Pyrol 2013, 102, 16–23. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, W.; Polaczyk, P.A.; Han, B.; Xiao, R.; Zhang, M.; Huang, B. Rheological and aging characteristics of the recycled asphalt binders with different rejuvenator incorporation methods. J. Clean. Prod. 2020, 262, 121249. [Google Scholar] [CrossRef]
- Lu, Z.; Feng, Z.; Liu, S.; Crispino, M.; Ketabdari, M.; Toraldo, E.; Li, X. Mechanism and performance evaluation of secondary regeneration of asphalt. Constr. Build. Mater. 2024, 416, 135211. [Google Scholar] [CrossRef]
- Marsac, P.; Piérard, N.; Porot, L.; Van den Bergh, W.; Grenfell, J.; Mouillet, V.; Pouget, S.; Besamusca, J.; Farcas, F.; Gabet, T. Potential and limits of FTIR methods for reclaimed asphalt characterisation. Mater. Struct. 2014, 47, 1273–1286. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, K.; Liu, K.; Shi, X. Adhesion characteristics of graphene oxide modified asphalt unveiled by surface free energy and AFM-scanned micro-morphology. Constr. Build. Mater. 2020, 244, 118404. [Google Scholar] [CrossRef]
- Hong, H.; Zhang, H.; Zhang, S. Effect of multi-dimensional nanomaterials on the aging behavior of asphalt by atomic force microscope. Constr. Build. Mater. 2020, 260, 120389. [Google Scholar] [CrossRef]
- Rebelo, L.M.; De Sousa, J.S.; Abreu, A.S.; Baroni, M.; Alencar, A.; Soares, S.A.; Mendes Filho, J.; Soares, J.B. Aging of asphaltic binders investigated with atomic force microscopy. Fuel 2014, 117, 15–25. [Google Scholar] [CrossRef]
- Gong, M.; Zhu, H.; Pauli, T.; Yang, J.; Wei, J.; Yao, Z. Evaluation of bio-binder modified asphalt’s adhesion behavior using sessile drop device and atomic force microscopy. Constr. Build. Mater. 2017, 145, 42–51. [Google Scholar] [CrossRef]
Technology Index | Technical Specification | 70# Original Base Asphalt | |
---|---|---|---|
Penetration/(25 °C, 0.1 mm) | 60~80 | 63.2 | |
Softening point/°C | ≥46 | 47.5 | |
Ductility/(10 °C, cm) | ≥10 | 25.3 | |
After TFOT * (163 °C, 5 h) | Mass change/% | −0.8~0.8 | −0.06 |
Residual penetration ratio/(25 °C, %) | ≥58 | 70.6 |
Technical Index | Water Content/% | Density/(g/cm3) | pH |
---|---|---|---|
Wood tar | 5.62 | 1.18 | 2.23 |
Technical Index | Boiling Point/K | Density/(g/cm3) | Flash Point/K |
---|---|---|---|
DOA | 487.15 | 0.922 | 469.15 |
Rejuvenator Type | Viscosity/(60 °C, Pa·s) | Flash Point/°C | Saturates Content/% | Aromatics Content/% | After TFOT | |
---|---|---|---|---|---|---|
Ratio of Viscosity | Mass Loss/% | |||||
GWCR | 5673 | 305 | 18.5 | 59.6 | 1.1 | 0.3 |
WR | 5361 | 276 | 21.7 | 64.3 | 1.6 | 0.7 |
RA-75 rejuvenator | 5970 | 241 | 19.6 | 62.3 | 1.8 | 0.8 |
Specification requirement | 50~60,000 | ≥220 | ≤30 | -- | ≤3 | −3~3 |
Physical Property | AO | AP | RAA | WRA | GWCRA |
---|---|---|---|---|---|
Penetration/(25 °C, 0.1 mm) | 63.2 | 20.3 | 61.2 | 64.2 | 63.5 |
Softening point/°C | 47.5 | 86.1 | 57.8 | 46.2 | 56.3 |
Ductility/(10 °C, cm) | 25.3 | 2.6 | 21.6 | 27.5 | 26.7 |
Asphalt Type | AO | AP | RAA | WRA | GWCRA |
---|---|---|---|---|---|
“Bee-like” structure area ratio of asphalt/% | 3.09 | 4.46 | 4.29 | 2.93 | 2.73 |
X | Asphaltene | Saturate | Aromatic | Resin | IC Value | |
---|---|---|---|---|---|---|
Y | ||||||
Penetration | y = 143.2−6.9539x R2 = 0.9942 | y = −451.031 + 34.553x R2 = 0.82 | y = −125.14 + 3.897x R2 = 0.999 | y = 247.712 − 7.287x R2 = 0.999 | y = 214.4 − 422.774x R2 = 0.998 | |
Softening point | y = −13.569 + 5.671x R2 = 0.933 | y = 503.609 − 30.405x R2 = 0.896 | y = 202.918 − 3.127x R2 = 0.907 | y = −96.244 + 5.846x R2 = 0.907 | y = −69.4 + 338.842x R2 = 0.904 | |
Ductility | y = 68.664−3.756x R2 = 0.984 | y = −269.506 + 19.839x R2 = 0.918 | y = −75.023 + 2.077x R2 = 0.963 | y = 123.711 − 3.883x R2 = 0.962 | y = 106.0 − 225.441x R2 = 0.963 | |
58 °C G*/sinδ | y = −0.807 + 0.276x R2 = 0.981 | y = 23.511 − 1.422x R2 = 0.87 | y = 9.797 − 0.154x R2 = 0.973 | y = −4.911 + 0.288x R2 = 0.974 | y = −3.584 + 16.652x R2 = 0.97 | |
−18 °C S value | y = −240.5 + 41.944x R2 = 0.996 | y = 3437.169 − 214.8x R2 = 0.873 | y = 1371.3 − 23.357x R2 = 0.988 | y = −863.5 + 43.675x R2 = 0.988 | y = −663.7 + 2534.0x R2 = 0.987 | |
−18 °C m value | y = 0.584 − 0.028x R2 = 0.995 | y = −1.857 + 0.143x R2 = 0.878 | y = −0.482 + 0.015x R2 = 0.986 | y = 0.996 − 0.029x R2 = 0.985 | y = 0.864 − 1.677x R2 = 0.985 |
X | IS=O Value | IC=O Value | “Bee-like” Structure Area Ratio | Rq Value | Ra Value | |
---|---|---|---|---|---|---|
Y | ||||||
Penetration | y = 89.7 − 1297.06x R2 = 0.527 | y = 71.7 − 2239.274x R2 = 0.561 | y = 112.16 − 16.477x R2 = 0.492 | y = 17.142 + 12.866x R2 = 0.297 | y = −2.854 + 11.435x R2 = 0.292 | |
Softening point | y = 24.6 + 1259.649x R2 = 0.701 | y = 44.68 + 1831.607x R2 = 0.53 | y = 6.949 + 14.806x R2 = 0.56 | y = 88.462 − 10.228x R2 = 0.265 | y = 103.928 − 9.004x R2 = 0.255 | |
Ductility | y = 39.244 − 681.808x R2 = 0.494 | y = 30.2 − 1227.511x R2 = 0.573 | y = 56.552 − 10.23x R2 = 0.644 | y = −1.414 + 7.634x R2 = 0.355 | y = −13.177 + 6.764x R2 = 0.347 | |
58 °C G*/sinδ | y = −1.217 + 55.171x R2 = 0.597 | y = 2.046 + 86.72x R2 = 0.527 | y = 0.322 + 0.683x R2 = 0.53 | y = 4.125 − 0.486x R2 = 0.266 | y = 4.869 − 0.43x R2 = 0.258 | |
−18 °C S value | y = 82.4 + 7819.342x R2 = 0.527 | y = 190.2 + 13558.69x R2 = 0.567 | y = −76.6 + 106.062x R2 = 0.561 | y = 527.78 − 80.338x R2 = 0.319 | y = 651.95 − 71.262x R2 = 0.312 | |
−18 °C m value | y = 0.368 − 5.085x R2 = 0.509 | y = 0.3 − 9.007x R2 = 0.57 | y = 0.479 − 0.071x R2 = 0.576 | y = 0.073 + 0.054x R2 = 0.33 | y = −0.011 + 0.048x R2 = 0.323 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, L.; Zhou, F.; Li, Y.; Liu, K.; Zhu, J.; Gong, G. Study on the Properties of Graphene Oxide–Wood Tar-Based Composite Rejuvenated Asphalt. Coatings 2024, 14, 1081. https://doi.org/10.3390/coatings14091081
Feng L, Zhou F, Li Y, Liu K, Zhu J, Gong G. Study on the Properties of Graphene Oxide–Wood Tar-Based Composite Rejuvenated Asphalt. Coatings. 2024; 14(9):1081. https://doi.org/10.3390/coatings14091081
Chicago/Turabian StyleFeng, Ling, Fuyan Zhou, Yongwei Li, Kefei Liu, Juncai Zhu, and Guoqing Gong. 2024. "Study on the Properties of Graphene Oxide–Wood Tar-Based Composite Rejuvenated Asphalt" Coatings 14, no. 9: 1081. https://doi.org/10.3390/coatings14091081
APA StyleFeng, L., Zhou, F., Li, Y., Liu, K., Zhu, J., & Gong, G. (2024). Study on the Properties of Graphene Oxide–Wood Tar-Based Composite Rejuvenated Asphalt. Coatings, 14(9), 1081. https://doi.org/10.3390/coatings14091081