Research Status and Development Trend of Wire Arc Additive Manufacturing Technology for Aluminum Alloys
Abstract
:1. Introduction
2. WAAM Digital Control System and the Parameters Monitoring
2.1. WAAM Digital Control System
2.1.1. CAD Model Processing and Slicing Algorithm
2.1.2. Path Planning
2.2. Processing Parameters
2.2.1. Current
2.2.2. Wire Feeding Speed (WFS)
2.2.3. Travel Speed (TS)
2.2.4. Shielding Gas
2.2.5. Auxiliary Additive Manufacturing
3. WAAM Process Regulation
3.1. Heat Input
3.2. Alloy Composition
3.3. Heat Treatment
4. Mechanical Properties of the WAAM Deposition
5. Application
6. Future Prospects
- (1)
- Combining the numerical simulation with WAAM experiments. Numerical simulation technology is necessary to be used in simulating the entire process of metal materials moving, softening, melting, flowing, solidifying, and accumulating under the action of heat sources. Then, the effects of process parameters on the morphology, microstructure, and stress of the deposited parts should be deeply analyzed. Finally, the defects and microstructural evolution principles in the forming process should also be explained from the perspectives of the temperature field, flow field, and stress field in the WAAM process. Furthermore, the internal relationship among path planning, processing parameters, and alloy composition are explored, so as to guide parameter regulation and optimization in the actual experimental process.
- (2)
- Developing special wire materials for aluminum alloy arc additive manufacturing. 6XXX and 7XXX series aluminum alloys are attractive materials applied in the aerospace industry. However, due to the difficulty in manufacturing and processing special wire materials for high-strength aluminum alloys, there are still few research reports on WAAM for high-strength aluminum alloys. In addition, in the face of the characteristics of different regional performance requirements during the service process of complex components, it is urgent to develop and select different-composition metal wire materials to improve the overall performance and service life of structural components.
- (3)
- To realize the additive manufacturing technology of aluminum alloy suitable for complex service environments. It is urgent to develop in situ repair and rapid manufacturing technology for damaged parts in extreme environments, such as ocean carriers, underwater, underground, and space, so as to effectively solve the problem of difficulty in replacing the damaged parts.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Gu, D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater. Des. 2014, 63, 856–867. [Google Scholar] [CrossRef]
- Dai, P.; Luo, X.; Yang, Y.; Kou, Z.; Huang, B.; Wang, C.; Zang, J.; Ru, J. Nano-scale precipitate evolution and mechanical properties of 7085 aluminum alloy during thermal exposure. Mater. Sci. Eng. A 2018, 729, 411–422. [Google Scholar] [CrossRef]
- Li, P.; Luo, G.; Zhang, X.; Wang, X.; Wu, Z.; Sun, Y.; Shen, Q. Microstructure evolution and multi-reinforcement mechanisms in Al-Cu-Ag alloys. J. Alloys Compd. 2024, 997, 174852. [Google Scholar] [CrossRef]
- Ma, H.; Tang, J.; Geng, P.; Bandaru, A.K.; Qin, G.; Luo, R.; Ma, N.; Yip, W.S.; To, S. Effect of grain orientation angles and compressive parameters on the deformation characteristics and corrosion property of 6061 Al alloy. Mater. Charact. 2024, 213, 114006. [Google Scholar] [CrossRef]
- Feng, J.; Wang, Y.; Tao, F.; Li, Y.; He, K.; Xu, Z.; Tang, H.; Wang, Z. Effect of tensile cracks on the corrosion protection properties of anodic oxide films on 5083 Al alloy. J. Alloys Compd. 2024, 997, 174950. [Google Scholar] [CrossRef]
- Xue, L.; Jia, H.; Ma, P.; Song, J.; Zha, M.; Wang, H. Influence of Mg and Cu on precipitation behaviors and mechanical properties of Al–Si alloys. Mater. Sci. Eng. A 2024, 908, 146775. [Google Scholar] [CrossRef]
- Aamir, M.; Giasin, K.; Tolouei-Rad, M.; Vafadar, A. A review: Drilling performance and hole quality of aluminium alloys for aerospace applications. J. Mater. Res. Technol. 2020, 9, 12484–12500. [Google Scholar] [CrossRef]
- Li, S.S.; Yue, X.; Li, Q.Y.; Peng, H.; Dong, B.X.; Liu, T.S.; Yang, H.Y.; Fan, J.; Shu, S.; Qiu, F.; et al. Development and applications of aluminum alloys for aerospace industry. J. Mater. Res. Technol. 2023, 27, 944–983. [Google Scholar] [CrossRef]
- Shen, P.; Zhang, B.; Li, Z.; Pang, X.; Deng, W. Forming mechanism, mechanical properties, and corrosion properties of aluminum alloy sheet with gradient structure processed by plastic flow machining. J. Alloys Compd. 2023, 933, 167800. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, G.; Ji, X.; Han, F.; Zhao, Z.; Wan, J.; Xiao, X. Compound forming of 7075 aluminum alloy based on functional integration of plastic deformation and thixoformation. J. Mater. Process. Technol. 2017, 246, 167–175. [Google Scholar] [CrossRef]
- Zhang, C.; Liao, W.; Shan, Z.; Song, W.; Dong, X. Squeeze casting of 4032 aluminum alloy and the synergetic enhancement of strength and ductility via Al-Ti-Nb-B grain refiner. Mater. Sci. Eng. A 2024, 896, 146233. [Google Scholar] [CrossRef]
- Wang, T.; Huang, Y.; Ma, Y.; Wu, L.; Yan, H.; Liu, C.; Liu, Y.; Liu, B.; Liu, W. Microstructure and mechanical properties of powder metallurgy 2024 aluminum alloy during cold rolling. J. Mater. Res. Technol. 2021, 15, 3337–3348. [Google Scholar] [CrossRef]
- Niu, G.; Wang, J.; Yea, J.; Mao, J. Enhancing Fe content tolerance in A356 alloys for achieving low carbon footprint aluminum structure castings. J. Mater. Sci. Technol. 2023, 161, 180–191. [Google Scholar] [CrossRef]
- Tomar, B.; Shiva, S.; Nath, T. A review on wire arc additive manufacturing: Processing parametersdefects, quality improvement and recent advances. Mater. Today Commun. 2022, 31, 103739. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Simonelli, M.; Parry, L.; Ashcroft, I.; Tuck, C.; Hague, R. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Prog. Mater. Sci. 2019, 106, 100578. [Google Scholar] [CrossRef]
- Xie, R.; Chen, X.; Shi, Y.; Yang, C.; Chen, S.; Liu, H. Printing high-strength high-elongation aluminum alloy using commercial ER2319 welding wires through deformation-based additive manufacturing. Mater. Sci. Eng. A 2023, 868, 144773. [Google Scholar] [CrossRef]
- Zhang, J.; Song, B.; Wei, Q.; Bourell, D.; Shi, Y. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends. J. Mater. Sci. Technol. 2019, 35, 270–284. [Google Scholar] [CrossRef]
- Tan, Q.; Fan, Z.; Tang, X.; Yin, Y.; Li, G.; Huang, D.; Zhang, J.; Liu, Y.; Wang, F.; Wu, T.; et al. A novel strategy to additively manufacture 7075 aluminium alloy with selective laser melting. Mater. Sci. Eng. A 2021, 821, 141638. [Google Scholar] [CrossRef]
- Utyaganova, V.; Vorontsov, A.; Gurianov, D.; Shamarin, N.; Chumaevskii, A.; Rubtsov, K.; Savchenko, N.; Tarasov, S. Effect of Mg admixing on strength and corrosion of electron beam additive manufactured AlSi12 on the AA5056 substrate. Mater. Charact. 2023, 204, 113172. [Google Scholar] [CrossRef]
- Fan, H.; Hu, J.; Wang, Y.; Zhang, H.; Guo, W.; Li, J.; Xu, S.; Li, H.; Liu, P. A review of laser additive manufacturing (LAM) aluminum alloys: Methods, microstructures and mechanical properties. Opt. Laser Technol. 2024, 175, 110722. [Google Scholar] [CrossRef]
- Safyari, M.; Schnall, M.; Haunreiter, F.; Moshtaghi, M. Design of hydrogen embrittlement resistant 7xxx-T6 aluminum alloys based on wire arc additive manufacturing: Changing nanochemistry of strengthening precipitates. Mater. Des. 2024, 243, 113030. [Google Scholar] [CrossRef]
- Zhu, K.; Wang, J.; Zhang, W.; Zhu, X.; Lu, X. Effect of deposition strategies on microstructures, defects and mechanical properties of 5356 aluminum alloy by wire arc additive manufacturing. Trans. Nonferrous Met. Soc. China 2024, 34, 423–434. [Google Scholar] [CrossRef]
- Jiang, M.; Li, B.; Chen, X.; Han, T.; Ma, S.; Duan, X.; Du, W.; Lei, Z.; Chen, Y. Enhanced surface finish and reduced porosity of TiC nanoparticles reinforced 2219 aluminum alloy deposit fabricated via oscillating laser-arc hybrid additive manufacturing. J. Manuf. Process. 2024, 120, 414–425. [Google Scholar] [CrossRef]
- Wei, J.; He, C.; Dong, R.; Tian, N.; Qin, G. Enhancing mechanical properties and defects elimination in 2024 aluminum alloy through interlayer friction stir processing in wire arc additive manufacturing. Mater. Sci. Eng. A 2024, 901, 146582. [Google Scholar] [CrossRef]
- Yang, G.; Deng, F.; Zhou, S.; Wu, B.; Qin, L. Macrostructure and mechanical properties of a novel Cu-reinforced maraging steel for wire arc additive manufacturing. Mater. Sci. Eng. A. 2021, 825, 141894. [Google Scholar] [CrossRef]
- Tawfik, M.M.; Nemat-Alla, M.M.; Dewidar, M.M. Enhancing the properties of aluminum alloys fabricated using wire þ arc additive manufacturing technique—A review. J. Mater. Res. Technol. 2021, 13, 754–768. [Google Scholar] [CrossRef]
- Zhu, Z.; Hu, Z.; Seet, H.L.; Liu, T.; Liao, W.; Ramamurty, U.; Nai, S.M.L. Recent progress on the additive manufacturing of aluminum alloys and aluminum matrix composites: Microstructure, properties, and applications. Int. J. Mach. Tool. Manuf. 2023, 190, 104047. [Google Scholar] [CrossRef]
- Sinha, A.K.; Pramanik, S.; Yagati, K.P. Research progress in arc based additive manufacturing of aluminium alloys—A review. Measurement 2022, 200, 111672. [Google Scholar] [CrossRef]
- Zha, W.; Anand, S. Geometric approaches to input file modification for part quality improvement in additive manufacturing. J. Manuf. Process. 2015, 20, 465–477. [Google Scholar] [CrossRef]
- Zhang, Z.; Joshi, S. An improved slicing algorithm with efficient contour construction using STL files. Int. J. Adv. Manuf. Tech. 2015, 80, 1347–1362. [Google Scholar] [CrossRef]
- Dong, B.; Wang, Y.; Lu, Y. A slicing and path generation method for 3D printing of periodic surface structure. J. Manuf. Process. 2024, 120, 694–702. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Du, X.; Tian, W.; Zhang, T.; Hu, J.; Li, B.; Li, P.; Liao, W. Research status and quality improvement of wire arc additive manufacturing of metals. Trans. Nonferrous Met. Soc. China 2023, 33, 969–996. [Google Scholar] [CrossRef]
- Ding, D.; Pan, Z.; Cuiuri, D.; Li, H.; Larkin, N.; Duin, S.V. Automatic multi-direction slicing algorithms for wire based additive manufacturing. Robot. Comput.-Integr. Manuf. 2016, 37, 139–150. [Google Scholar] [CrossRef]
- Gohari, H.; Barari, A.; Kishawy, H. Using Multistep Methods in Slicing 2 ½ Dimensional Parametric Surfaces for Additive Manufacturing Applications. IFAC-PapersOnLine 2016, 31, 67–72. [Google Scholar] [CrossRef]
- Fortunato, G.M.; Nicoletta, M.; Batoni, E.; Vozzi, G.; Maria, C.D. A fully automatic non-planar slicing algorithm for the additive manufacturing of complex geometries. Addit. Manuf. 2023, 69, 103451. [Google Scholar] [CrossRef]
- Ding, Y.; Dwivedi, R.; Kovacevic, R. Process planning for 8-axis robotized laser-based direct metal deposition system: A case on building revolved part. Robot. Comput.-Integr. Manuf. 2017, 44, 67–76. [Google Scholar] [CrossRef]
- Asiabanpoura, B.; Khoshnevis, B. Machine path generation for the SIS process. Robot. Comput.-Integr. Manuf. 2004, 20, 167–175. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, Y. Path Planning Strategies to Optimize Accuracy, Quality, Build Time and Material Use in Additive Manufacturing: A Review. Micromachines 2020, 11, 633. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, S.k.; Rathod, D.W. A review on process planning strategies and challenges of WAAM. Mater. Today Proc. 2021, 47, 6564–6575. [Google Scholar] [CrossRef]
- Zhao, T.; Yan, Z.; Wang, L.; Pan, R.; Wang, X.; Liu, K.; Guo, K.; Hu, Q.; Chen, S. Hybrid path planning method based on skeleton contour partitioning for robotic additive manufacturing. Robot. Comput.-Integr. Manuf. 2024, 85, 102633. [Google Scholar] [CrossRef]
- Hu, Z.; Hua, L.; Qin, X.; Ni, M.; Liu, Z.; Liang, C. Region-based path planning method with all horizontal welding position for robotic curved layer wire and arc additive manufacturing. Robot. Comput.-Integr. Manuf. 2022, 74, 102286. [Google Scholar] [CrossRef]
- Liu, B.; Shen, H.; Zhou, Z.; Jin, J.; Fu, J. Research on support-free WAAM based on surface/interior separation and surface segmentation. J. Mater. Process. Technol. 2021, 297, 117240. [Google Scholar] [CrossRef]
- Kincaid, J.; Charles, E.; Garcia, R.; Dvorak, J.; No, T.; Smith, S.; Schmitz, T. Process planning for hybrid manufacturing using additive friction stir deposition. Manuf. Lett. 2023, 37, 26–31. [Google Scholar] [CrossRef]
- Diourté, A.; Bugarin, F.; Bordreuil, C.; Segonds, S. Continuous three-dimensional path planning (CTPP) for complex thin parts with wire arc additive manufacturing. Addit. Manuf. 2021, 37, 101622. [Google Scholar] [CrossRef]
- Hauser, T.; Reisch, R.T.; Seebauer, S.; Parasar, A.; Kamps, T.; Casati, R.; Volpp, J.; Kaplan, A.F.H. Multi-Material Wire Arc Additive Manufacturing of low and high alloyed aluminium alloys with in-situ material analysis. J. Manuf. Process. 2021, 69, 378–390. [Google Scholar] [CrossRef]
- Panchenko, O.; Kurushkin, D.; Mushnikov, I.; Khismatullin, A.; Popovich, A. A high-performance WAAM process for Al–Mg–Mn using controlled short-circuiting metal transfer at increased wire feed rate and increased travel speed. Mater. Des. 2020, 195, 109040. [Google Scholar] [CrossRef]
- Pan, J.; Bo, Y.; Ge, J.; Ren, Y.; Chen, H.; Zhang, L.; Lu, H. Influence of arc mode on the microstructure and mechanical properties of 5356 aluminum alloy fabricated by wire arc additive manufacturing. J. Mater. Sci. Technol. 2022, 20, 1893–1907. [Google Scholar]
- Wang, Y.; Chen, J.; Chen, M.; Su, H.; Zong, R.; Wu, D.; Komen, H.; Tanaka, M.; Wu, C. A comparative study on microstructure and mechanical properties of wire-arc directed energy deposited Al–Zn–Mg–Cu alloy based on the cold metal transfer technology. J. Mater. Res. Technol. 2024, 30, 102–113. [Google Scholar] [CrossRef]
- Li, Y.; Su, C.; Zhu, J. Comprehensive review of wire arc additive manufacturing: Hardware system, physical process, monitoring, property characterization, application and future prospects. Results Eng. 2022, 13, 100330. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, W.; Ouyang, J.; Kovacevic, R. Rapid prototyping of 4043 Al-alloy parts by VP-GTAW. J. Mater. Process. Technol. 2004, 148, 93–102. [Google Scholar] [CrossRef]
- Zhou, Y.; Lin, X.; Kang, N.; Huang, W.; Wang, J.; Wang, Z. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy. J. Mater. Sci. Technol. 2020, 37, 143–153. [Google Scholar] [CrossRef]
- Silvaa, L.J.; Scotti, F.M.; Fernandes, D.B.; Reis, R.P.; Scotti, A. Effect of O2 content in argon-based shielding gas on arc wandering in WAAM of aluminum thin walls. CIRP J. Manuf. Sci. Technol. 2021, 32, 338–345. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Tian, W.; Hu, J.; Li, B.; Li, P.; Liao, W. Influence of ultrasonic impact treatment and working current on microstructure and mechanical properties of 2219 aluminium alloy wire arc additive manufacturing parts. J. Mater. Sci. Technol. 2022, 21, 781–797. [Google Scholar] [CrossRef]
- Wang, T.; Mazánová, V.; Liu, X. Ultrasonic effects on gas tungsten arc based wire additive manufacturing of aluminum matrix nanocomposite. Mater. Des. 2022, 214, 110393. [Google Scholar] [CrossRef]
- Li, W.; Amanov, A.; Nagaraja, K.M.; Li, B.; Ravichander, B.B.; Zhang, R.; Lu, H.; Qian, D.; Kumar, G.; Pyun, Y.S. Processing aluminum alloy with hybrid wire arc additive manufacturing and ultrasonic nanocrystalline surface modification to improve porosity, surface finish, and hardness. J. Manuf. Process. 2023, 103, 181–192. [Google Scholar] [CrossRef]
- Huan, P.; Wei, X.; Wang, X.; Di, H.; Chen, Y.; Zhang, Q.; Chen, X.; Shen, X. Comparative study on the microstructure, mechanical properties and fracture mechanism of wire arc additive manufactured Inconel 718 alloy under the assistance of alternating magnetic field. Mater. Sci. Eng. A 2022, 854, 143845. [Google Scholar] [CrossRef]
- Zhao, W.; Jin, H.; Du, X.; Chen, J.; Wei, Y. A 3D arc-droplet-molten pool integrated model of Al alloy GMAW process: Heat transfer, fluid flow and the effect of external magnetic field. Vacuum 2022, 202, 111129. [Google Scholar] [CrossRef]
- Gu, J.; Ding, J.; Williams, S.W.; Gu, H.; Ma, P.; Zhai, Y. The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys. J. Mater. Process. Technol. 2016, 230, 26–34. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, J.; Yang, G.; Wu, B.; Xie, H.; Wu, K.; An, D. Periodic microstructure of Al–Mg alloy fabricated by inter-layer hammering hybrid wire arc additive manufacturing: Formation mechanism, microstructural and mechanical characterization. Mater. Sci. Eng. A 2022, 860, 144314. [Google Scholar] [CrossRef]
- Fang, X.; Zhang, L.; Chen, G.; Huang, K.; Xue, F.; Wang, L.; Zhao, J.; Lu, B. Microstructure evolution of wire-arc manufactured 2319 aluminum alloy with interlayer hammering. Mater. Sci. Eng. A 2021, 800, 140168. [Google Scholar] [CrossRef]
- Sun, G.; Sun, X.; Zhao, X.; Chen, C. Effect of interlayer rapid cooling on the microstructure and properties of aluminum alloys produced by wire arc additive manufacturing. Manuf. Lett. 2024, 40, 70–74. [Google Scholar] [CrossRef]
- Eimer, E.; Ganguly, S.; Czink, S.; Dietrich, S.; Chehab, B.; Ding, J.; Williams, S. Effect of inter layer cold work on 2024 aluminium alloy produced by wire directed energy deposition. Mater. Sci. Eng. A 2023, 880, 145272. [Google Scholar] [CrossRef]
- Teixeira, F.R.; Scotti, F.M.; Reis, R.P.; Scotti, A. Effect of the CMT advanced process combined with an active cooling technique on macro and microstructural aspects of aluminum WAAM. Rapid Prototyp. J. 2021, 27, 1206–1219. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Zhang, C.; Li, X. Inhibiting sensitivity of microstructure and properties to heat input in DED-arc of 7075 aluminum alloys: The role of TiC-nanoparticles. Mater. Sci. Eng. A 2024, 897, 146295. [Google Scholar] [CrossRef]
- da Silva, L.J.; Souza, D.M.; Araújo, D.B.; Reis, R.P.; Scotti, A. Concept and validation of an active cooling technique to mitigate heat accumulation in WAAM. Int. J. Adv. Manuf. Technol. 2020, 107, 2513–2523. [Google Scholar] [CrossRef]
- Fu, R.; Duan, S.; Ma, Y.; Luo, J.; Liu, C.; Lei, H.; Chen, H. Dynamic mechanical properties of nanoparticle-enhanced aluminum alloys fabricated by arc-directed energy deposition. J. Alloys Compd. 2023, 952, 169997. [Google Scholar] [CrossRef]
- Fu, R.; Guo, Y.; Cui, Y.; Wang, J.; Lei, H.; Liu, C. Large-size ultra-high strength-plasticity aluminum alloys fabricated by wire arc additive manufacturing via added nanoparticles. Mater. Sci. Eng. A 2023, 864, 144582. [Google Scholar] [CrossRef]
- Chen, F.; Yang, Y.; Chen, C.; Wang, Q.; Xie, R. Effect of La2O3 particle size on the microstructure and properties of Al–Si alloys deposited via wire arc additive manufacturing. J. Manuf. Process. 2021, 68, 523–533. [Google Scholar] [CrossRef]
- Jin, P.; Liu, Y.; Li, F.; Sun, Q. Realization of synergistic enhancement for fracture strength and ductility by adding TiC particles in wire and arc additive manufacturing 2219 aluminium alloy. Compos. Part B-Eng. 2021, 219, 108921. [Google Scholar] [CrossRef]
- Eimer, E.; Williams, S.; Ding, J.; Ganguly, S.; Chehab, B. Mechanical performances of the interface between the substrate and deposited material in aluminium wire Direct Energy Deposition. Mater. Des. 2023, 225, 111594. [Google Scholar] [CrossRef]
- Arana, M.; Ukar, E.; Rodriguez, I.; Aguilar, D.; Álvarez, P. Influence of deposition strategy and heat treatment on mechanical properties and microstructure of 2319 aluminium WAAM components. Mater. Des. 2022, 221, 110974. [Google Scholar] [CrossRef]
- Gu, J.; Ding, J.; Williams, S.W.; Gu, H.; Bai, J.; Zhai, Y.; Ma, P. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3%Cu alloy. Mater. Sci. Eng. A 2016, 651, 18–26. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, K.; Yang, G.; Wu, B.; Qin, L.; Wu, H.; Yang, C. Microstructure and mechanical properties of wire arc additively manufactured 205A high strength aluminum alloy: The comparison of as-deposited and T6 heat-treated samples. Mater. Charact. 2022, 189, 111990. [Google Scholar] [CrossRef]
- Guo, X.; Li, H.; Xue, P.; Pan, Z.; Xu, R.; Ni, D.; Ma, Z. Microstructure and mechanical properties of 600 MPa grade ultra-high strength aluminum alloy fabricated by wire-arc additive manufacturing. J. Mater. Sci. Technol. 2023, 149, 56–66. [Google Scholar] [CrossRef]
- Li, S.; Zhang, L.; Ning, J.; Wang, X.; Zhang, G.; Zhang, J.; Na, S. Microstructures and mechanical properties of Al–Zn–Mg aluminium alloy samples produced by wire + arc additive manufacturing. J. Mater. Res. Technol. 2020, 9, 13770–13780. [Google Scholar] [CrossRef]
- Miao, Q.; Wu, D.; Chai, D.; Zhan, Y.; Bi, G.; Niu, F.; Ma, G. Comparative study of microstructure evaluation and mechanical properties of 4043 aluminum alloy fabricated by wire-based additive manufacturing. Mater. Des. 2020, 186, 108205. [Google Scholar] [CrossRef]
- He, P.; Bai, X.; Zhang, H. Microstructure refinement and mechanical properties enhancement of wire and arc additively manufactured 6061 aluminum alloy using friction stir processing post-treatment. Mater. Lett. 2023, 330, 133365. [Google Scholar] [CrossRef]
- Qi, Z.; Qia, B.; Cong, B.; Sun, H.; Zhao, G.; Ding, J. Microstructure and mechanical properties of wire + arc additively manufactured 2024 aluminum alloy components, As-deposited and post heat-treated. J. Manuf. Process. 2019, 40, 27–36. [Google Scholar] [CrossRef]
- Gua, J.; Wang, X.; Bai, J.; Ding, J.; Williams, S.; Zhai, Y.; Liu, K. Deformation microstructures and strengthening mechanisms for the wire+arc additively manufactured Al-Mg4.5Mn alloy with inter-layer rolling. Mater. Sci. Eng. A 2018, 712, 292–301. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Wang, H.; Wang, J.; Bian, W. Mechanical properties and microstructure revolution of vibration assisted wire arc additive manufacturing 2319 aluminum alloy. Mater. Sci. Eng. A 2023, 885, 145634. [Google Scholar] [CrossRef]
- Xiang, H.; Xu, C.; Zhan, T.; Guo, P.; Li, L. Fabrication of high strength-ductility aluminum alloy heterogeneous plates using additive manufacturing and hot rolling process. J. Mater. Process. Technol. 2024, 329, 118451. [Google Scholar] [CrossRef]
- Dai, G.; Xue, M.; Guo, Y.; Sun, Z.; Chang, H.; Lu, J.; Li, W.; Panwisawas, C.; Alexandrov, I.V. Gradient microstructure and strength-ductility synergy improvement of 2319 aluminum alloys by hybrid additive manufacturing. J. Alloys Compd. 2023, 968, 171781. [Google Scholar] [CrossRef]
- Integrated Manufacturing of 10 M-Grade High-Strength Aluminum Alloy Heavy Launch Vehicle Connecting Ring. 2021. Available online: http://amreference.com/?p=14279 (accessed on 5 February 2024).
- Ding, D.; Shen, C.; Pan, Z.; Cuiuri, D.; Li, H.; Larkin, N.; Duin, S.V. Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished part. Comput.-Aided Des. 2016, 73, 66–75. [Google Scholar] [CrossRef]
- Vishnukumar, M.; Pramod, R.; Kannan, A.R. Wire arc additive manufacturing for repairing aluminium structures in marine applications. Mater Lett. 2021, 299, 130112. [Google Scholar] [CrossRef]
- MX3D 3D Printed a 12 Meter Long Stainless Steelpedestrian Bridge. 2021. Available online: https://mx3d.com/industries/design/smart-bridge/ (accessed on 13 March 2024).
- MX3D, from Early Development to the Production Stage. 2023. Available online: https://www.fabbaloo.com/news/mx3d-from-early-development-to-the-production-stage (accessed on 7 April 2024).
- Have we 3D Printed the Biggest Metal Part Ever. 2021. Available online: https://waammat.com/blog/have-we-3d-printed-the-biggest-metal-part-ever (accessed on 12 May 2024).
Aluminum Alloy | Heat Source | Parameter | Processing Method | Average Grain Size (μm) | Tensile Strength (MPa) | Yield Strength (MPa) | Hardness (HV) | Forming Quality | Ref. |
---|---|---|---|---|---|---|---|---|---|
Al-Zn-Mg-Cu | CMT | WFS: 6.5 m/min TS: 0.54 m/min | T6 Heat treatment | 6 | 618 (Ultimate) | 542 | / | Composed of fine equiaxed grains, eutectic structures were precipitated. | [74] |
Al-Zn-Mg | MIG | TS: 0.2–0.35 m/min Current: 97–112 A | / | / | 299 (Ultimate) | 188 | 112 | The weld bead smoother, with a few pores on weld bead. | [75] |
4043 | TIG | WFS: 1.0 m/min TS: 0.25 m/min | Laser-arc hybrid additive manufacturing | / | 151.91 | 69.71 | 49.97 | Finer grains, the microstructure morphology in different zones is different. | [76] |
2219 + TiC particles | TIG | WFS: 2.0 m/min TS: 0.2 m/min | / | / | 384 | / | / | The surface roughness of the specimens increased, eliminated the slender columnar grains, and refined the Grains. | [68] |
6061 | CMT | WFS: 6.0 m/min TS: 0.36 m/min | Friction stir processing | 5 | 257 (Ultimate) | 142 | 99.71 | Significant microstructure refinement and porosity reduction. | [77] |
2319 + 5087 | GTAW | WFS: 2.4 m/min (2319) 1.05 m/min (5087) TS: 0.3 m/min | T4 Heat treatment + T6 Heat treatment | / | 458 (T4, Ultimate) 470 (T6, Ultimate) | 310 (T4) 374 (T6) | 138 (T4) 146 (T6) | Obvious dendrite morphology disappeared, layer-distributing characteristics of the phases became obvious. | [78] |
7075 + TiC particles | GTAW | WFS: 3.0 m/min TS: 0.24 m/min | T6 Heat treatment | / | Significant improvement | Significant improvement | 193 | Finer grains, the adiabatic shear band is first generated with an increase in the strain rate. | [66] |
7075 + TiC particles | GTAW | WFS: 3.0 m/min TS: 0.24 m/min | / | 15.2 | 435 | 310 | / | Uneven microstructural features and grain boundary segregation were eliminated | [69] |
5087 | CMT | WFS: 6.0 m/min TS: 0.6 m/min | Interlayer rolling | / | 344 (Ultimate) | 240 | 107.2 | Primary coarse grain structures were found to become greatly refined with an evident rolling texture after deformation. | [79] |
2319 | CMT | WFS: 4.0 m/min TS: 0.48 m/min | Low- frequency vibration | 16 | 266.1 (Ultimate) | 120.6 | / | Refines the grain size, and reduces the texture density. | [80] |
5356 + 7A48 | CMT | WFS: 10.1 m/min TS: 0.6 m/min | Hot rolling | 51.6 | 392.3 | 280.2 | 72 (5356) 160 (7A48) | Heterogeneous plate with lamella structure and without any noticeable crack defects. | [81] |
2319 | CMT | WFS: 5.6 m/min TS: 1.8 m/min | Friction stir processing | 4.98 | 289.6 (Ultimate) | 162.9 | 88 | Ultrafine grains, equiaxed grains, columnar grains, gradient microstructure. | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, P.; Li, A.; Zhang, J.; Chen, R.; Luo, X.; Wen, L.; Wang, C.; Lv, X. Research Status and Development Trend of Wire Arc Additive Manufacturing Technology for Aluminum Alloys. Coatings 2024, 14, 1094. https://doi.org/10.3390/coatings14091094
Dai P, Li A, Zhang J, Chen R, Luo X, Wen L, Wang C, Lv X. Research Status and Development Trend of Wire Arc Additive Manufacturing Technology for Aluminum Alloys. Coatings. 2024; 14(9):1094. https://doi.org/10.3390/coatings14091094
Chicago/Turabian StyleDai, Pan, Ao Li, Jianxun Zhang, Runjie Chen, Xian Luo, Lei Wen, Chen Wang, and Xianghong Lv. 2024. "Research Status and Development Trend of Wire Arc Additive Manufacturing Technology for Aluminum Alloys" Coatings 14, no. 9: 1094. https://doi.org/10.3390/coatings14091094
APA StyleDai, P., Li, A., Zhang, J., Chen, R., Luo, X., Wen, L., Wang, C., & Lv, X. (2024). Research Status and Development Trend of Wire Arc Additive Manufacturing Technology for Aluminum Alloys. Coatings, 14(9), 1094. https://doi.org/10.3390/coatings14091094