Tribological Comparison of Coatings Produced by PVD Sputtering for Application on Combustion Piston Rings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Deposition Parameters and Properties
2.2. Coatings’ Tribological Performance
3. Results
3.1. Load Scanner (LS) Results
3.2. Block-on-Ring (BoR) Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jost, H.P. Tribology—Origin and Future. Wear 1990, 136, 1–17. [Google Scholar] [CrossRef]
- Duncan, D. History of Tribology; Wiley: Hoboken, NJ, USA, 1998; ISBN 978-1-86058-070-3. [Google Scholar]
- Echávarri, J.; De La Guerra, E.; Chacón, E. Tribology: A Historical Overview of the Relation between Theory and Application. In A Bridge between Conceptual Frameworks; Pisano, R., Ed.; History of Mechanism and Machine Science; Springer: Dordrecht, The Netherlands, 2015; Volume 27, pp. 135–154. ISBN 978-94-017-9644-6. [Google Scholar]
- Holmberg, K.; Andersson, P.; Erdemir, A. Global Energy Consumption Due to Friction in Passenger Cars. Tribol. Int. 2012, 47, 221–234. [Google Scholar] [CrossRef]
- Holmberg, K.; Andersson, P.; Nylund, N.-O.; Mäkelä, K.; Erdemir, A. Global Energy Consumption Due to Friction in Trucks and Buses. Tribol. Int. 2014, 78, 94–114. [Google Scholar] [CrossRef]
- Holmberg, K.; Siilasto, R.; Laitinen, T.; Andersson, P.; Jäsberg, A. Global Energy Consumption Due to Friction in Paper Machines. Tribol. Int. 2013, 62, 58–77. [Google Scholar] [CrossRef]
- Holmberg, K.; Kivikytö-Reponen, P.; Härkisaari, P.; Valtonen, K.; Erdemir, A. Global Energy Consumption Due to Friction and Wear in the Mining Industry. Tribol. Int. 2017, 115, 116–139. [Google Scholar] [CrossRef]
- Holmberg, K.; Erdemir, A. Influence of Tribology on Global Energy Consumption, Costs and Emissions. Friction 2017, 5, 263–284. [Google Scholar] [CrossRef]
- Ferreira, A.R.M. New Processing Technologies for Improved Compression Piston Ring Performance. Doctoral Dissertation, University of Minho, Guimarães, Portugal, 2021. [Google Scholar]
- Ferreira, R.; Martins, J.; Carvalho, Ó.; Sobral, L.; Carvalho, S.; Silva, F. Tribological Solutions for Engine Piston Ring Surfaces: An Overview on the Materials and Manufacturing. Mater. Manuf. Process. 2020, 35, 498–520. [Google Scholar] [CrossRef]
- Ferreira, R.; Almeida, R.; Carvalho, Ó.; Sobral, L.; Carvalho, S.; Silva, F. Influence of a DLC Coating Topography in the Piston Ring/Cylinder Liner Tribological Performance. J. Manuf. Process. 2021, 66, 483–493. [Google Scholar] [CrossRef]
- Tung, S.C.; Gao, H. Tribological Characteristics and Surface Interaction between Piston Ring Coatings and a Blend of Energy-Conserving Oils and Ethanol Fuels. Wear 2003, 255, 1276–1285. [Google Scholar] [CrossRef]
- Bruno, R.A.; Rabello, R.B.; Silva, D.A.; Araujo, J.A. DLC Coated Ring Pack for Heavy Duty Diesel Engines. In Blucher Engineering Proceedings; Editora Blucher: São Paulo, Brasil, 2017; pp. 462–476. [Google Scholar]
- Rao, X.; Yang, J.; Chen, Z.; Yuan, Y.; Chen, Q.; Feng, X.; Qin, L.; Zhang, Y. Tuning C–C Sp2/Sp3 Ratio of DLC Films in FCVA System for Biomedical Application. Bioact. Mater. 2020, 5, 192–200. [Google Scholar] [CrossRef]
- Takikawa, H.; Izumi, K.; Miyano, R.; Sakakibara, T. DLC Thin Film Preparation by Cathodic Arc Deposition with a Super Droplet-Free System. Surf. Coat. Technol. 2003, 163–164, 368–373. [Google Scholar] [CrossRef]
- Heshmat, H.; Hryniewicz, P.; Walton Ii, J.F.; Willis, J.P.; Jahanmir, S.; DellaCorte, C. Low-Friction Wear-Resistant Coatings for High-Temperature Foil Bearings. Tribol. Int. 2005, 38, 1059–1075. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, W.; Yu, J.; Chen, C.; Zhou, L. The Role of Carbon in Wear Resistance of CoCrFeNiTi0.5 High-Entropy Alloy Layer. J. Mater. Eng. Perform. 2024. [Google Scholar] [CrossRef]
- Zhen-yu, Z.; Zhi-guo, J.; Qiu-yang, Z.; Yu, L.; Zhi-peng, Y.; Cong, D.; Zhong-yu, P. Research on the Construction of Gradient Nanostructure and Anti-Tribocorrosion Behavior of Aluminum Alloy Surface. Tribol. Int. 2024, 194, 109448. [Google Scholar] [CrossRef]
- Gustavsson, F.; Jacobson, S. Diverse Mechanisms of Friction Induced Self-Organisation into a Low-Friction Material—An Overview of WS2 Tribofilm Formation. Tribol. Int. 2016, 101, 340–347. [Google Scholar] [CrossRef]
- Scharf, T.W. Transition Metal Dichalcogenide-Based (MoS2, WS2) Coatings. In ASM Handbook—Friction, Lubrication, and Wear Technology; Totten, G.E., Ed.; ASM International: Almere, The Netherlands, 2017; Volume 18, p. 14. [Google Scholar]
- Vazirisereshk, M.R.; Martini, A.; Strubbe, D.A.; Baykara, M.Z. Solid Lubrication with MoS2: A Review. Lubricants 2019, 7, 57. [Google Scholar] [CrossRef]
- Hudec, T. Transition Metal Dichalcogenide-Based Solid Lubricant Coatings Prepared by High Target Utilisation Sputtering. Doctoral Dissertation, University of Southampton, Southampton, UK, 2021. [Google Scholar]
- Fominski, V.; Fominski, D.; Demin, M.; Romanov, R.; Goikhman, A. Enhanced Tribological Performance of Low-Friction Nanocomposite WSexSy/NP-W Coatings Prepared by Reactive PLD. Nanomaterials 2023, 13, 1122. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, F.; Yang, K.; Xiong, Y.; Tang, J.; Chen, H.; Duan, M.; Li, Z.; Zhang, H.; Xiong, B. Review of Two-Dimensional Nanomaterials in Tribology: Recent Developments, Challenges and Prospects. Adv. Colloid Interface Sci. 2023, 321, 103004. [Google Scholar] [CrossRef]
- Li, M.; Zhou, Q.; Cao, M.; Zhou, Z.; Liu, X. High-Temperature Solid Lubrication Applications of Transition Metal Dichalcogenides(TMDCs) MX2: A Review. Nano Mater. Sci. 2024. [Google Scholar] [CrossRef]
- Mukhtar, S.H.; Gulzar, A.; Saleem, S.; Wani, M.F.; Sehgal, R.; Yakovenko, A.A.; Goryacheva, I.G.; Sharma, M.D. Advances in Development of Solid Lubricating MoS2 Coatings for Space Applications: A Review of Modeling and Experimental Approaches. Tribol. Int. 2024, 192, 109194. [Google Scholar] [CrossRef]
- Scharf, T.W.; Prasad, S.V. Solid Lubricants: A Review. J. Mater. Sci. 2013, 48, 511–531. [Google Scholar] [CrossRef]
- Yaqub, T.B. Optimization of Sputtered Mo-Se-C Coatings for Efficient Self-Adaptation during Sliding in Diverse Enviroments. Doctoral Dissertation, Universidade de Coimbra, Coimbra, Portugal, 2020. [Google Scholar]
- Polcar, T.; Cavaleiro, A. Review on Self-Lubricant Transition Metal Dichalcogenide Nanocomposite Coatings Alloyed with Carbon. Surf. Coat. Technol. 2011, 206, 686–695. [Google Scholar] [CrossRef]
- Hebbar Kannur, K.; Yaqub, T.B.; Pupier, C.; Héau, C.; Cavaleiro, A. Mechanical Properties and Vacuum Tribological Performance of Mo–S–N Sputtered Coatings. ACS Appl. Mater. Interfaces 2020, 12, 43299–43310. [Google Scholar] [CrossRef]
- Araujo, J.A.; Araujo, G.M.; Souza, R.M.; Tschiptschin, A.P. Effect of Periodicity on Hardness and Scratch Resistance of CrN/NbN Nanoscale Multilayer Coating Deposited by Cathodic Arc Technique. Wear 2015, 330–331, 469–477. [Google Scholar] [CrossRef]
- Lin, J.; Wei, R.; Bitsis, D.C.; Lee, P.M. Development and Evaluation of Low Friction TiSiCN Nanocomposite Coatings for Piston Ring Applications. Surf. Coat. Technol. 2016, 298, 121–131. [Google Scholar] [CrossRef]
- Ludema, K.C. A Review of Scuffing and Running-in of Lubricated Surfaces, with Asperities and Oxides in Perspective. Wear 1984, 100, 315–331. [Google Scholar] [CrossRef]
- Shuster, M.M.; Stong, T.; Deis, M.C.; Burke, D.C. Piston Ring Cylinder Liner Scuffing Phenomenon: Investigation, Simulation and Prevention; SAE International: Warrendale, PA, USA, 1 March 1999; No. 1999-01-1219. [Google Scholar]
- Zhang, W.; Becker, E.; Wang, Y.; Zou, Q.; Zhou, B.; Barber, G.C. Investigation of Scuffing Resistance of Piston Rings Run against Piston Ring Grooves. Tribol. Trans. 2008, 51, 621–626. [Google Scholar] [CrossRef]
- Adachi, K.; Hutchings, I.M. Sensitivity of Wear Rates in the Micro-Scale Abrasion Test to Test Conditions and Material Hardness. Wear 2005, 258, 318–321. [Google Scholar] [CrossRef]
- Hertz, H. Über Die Berürung Fester Elastischer Körper. J. Für Die Reine Und Angew. Math. 1881, 92, 156–171. [Google Scholar]
- Horowitz, A. A Contribution to the Engineering Design of Machine Elements Involving Contrashaped Contacts. Isr. J. Technol. 1971, 9, 311–322. [Google Scholar]
- Savkoor, A.R. Models of Friction. In Handbook of Materials Behavior Models; Elsevier: Amsterdam, The Netherlands, 2001; pp. 700–759. ISBN 978-0-12-443341-0. [Google Scholar]
- Neis, P.D.; Ferreira, N.F.; Fekete, G.; Matozo, L.T.; Masotti, D. Towards a Better Understanding of the Structures Existing on the Surface of Brake Pads. Tribol. Int. 2017, 105, 135–147. [Google Scholar] [CrossRef]
- Poletto, J.C.; Barros, L.Y.; Neis, P.D.; Ferreira, N.F. Analysis of the Error in the Estimation of the Morphology of Contact Plateaus Existing on the Surface of Brake Pads. Tribol. Int. 2018, 126, 297–306. [Google Scholar] [CrossRef]
- Yaqub, T.B.; Vuchkov, T.; Bruyère, S.; Pierson, J.-F.; Cavaleiro, A. A Revised Interpretation of the Mechanisms Governing Low Friction Tribolayer Formation in Alloyed-TMD Self-Lubricating Coatings. Appl. Surf. Sci. 2022, 571, 151302. [Google Scholar] [CrossRef]
Coating | Base Pressure (Pa) | Working Pressure (Pa) | Elemental Composition (%) | Hardness (GPa) | Thickness (µm) | Reference (DOI) | ||
---|---|---|---|---|---|---|---|---|
DLC | 0.0003 | 0.37 (Ar) | C: 99.3 | O: 0.7 | 21.4 | 2 | 10.1016/j.diamond.2016.10.024 | |
MoSeN | 0.0004 | 0.26 (Ar + N) | Mo: 26 | Se: 41 | N: 33 | 4.8 | 2 | 10.1016/j.matlet.2022.131967 |
MoSeC | 0.0003 | 0.31 (Ar) | Mo: 52 | Se: 30 | C: 18 | 7.2 | 1.8 | 10.1016/j.surfcoat.2020.125889 |
WSN | 0.0003 | 0.27 (Ar + N) | W: 39 | S: 38 | N: 23 | 4.6 | 1 | 10.1016/j.jmrt.2022.02.116 |
WSC | 0.0003 | 0.3 (Ar) | W: 19 | S: 31 | C: 50 | 5.8 | 1.8 | 10.1016/j.triboint.2020.106363 |
Coating | Ra [µm] | Rq [µm] |
---|---|---|
DLC | 0.032 ± 0.002 | 0.042 ± 0.003 |
WSC | 0.028 ± 0.002 | 0.036 ± 0.002 |
WSN | 0.034 ± 0.001 | 0.044 ± 0.001 |
MoSeC | 0.026 ± 0.002 | 0.035 ± 0.002 |
MoSeN | 0.021 ± 0.003 | 0.026 ± 0.003 |
Ring | 0.261 ± 0.026 | 0.323 ± 0.035 |
Temperature [°C] | Repetitions [-] | Normal Force [N] | Sliding Velocity [m/s] | Total Sliding Distance [m] |
---|---|---|---|---|
20 | 6 | |||
60 | 3 | 10 | 0.05 | 196 |
100 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, N.F.; Fernandes, F.; Neis, P.D.; Poletto, J.C.; Yaqub, T.B.; Cavaleiro, A.; Vilhena, L.; Ramalho, A. Tribological Comparison of Coatings Produced by PVD Sputtering for Application on Combustion Piston Rings. Coatings 2024, 14, 1109. https://doi.org/10.3390/coatings14091109
Ferreira NF, Fernandes F, Neis PD, Poletto JC, Yaqub TB, Cavaleiro A, Vilhena L, Ramalho A. Tribological Comparison of Coatings Produced by PVD Sputtering for Application on Combustion Piston Rings. Coatings. 2024; 14(9):1109. https://doi.org/10.3390/coatings14091109
Chicago/Turabian StyleFerreira, Ney Francisco, Filipe Fernandes, Patric Daniel Neis, Jean Carlos Poletto, Talha Bin Yaqub, Albano Cavaleiro, Luis Vilhena, and Amilcar Ramalho. 2024. "Tribological Comparison of Coatings Produced by PVD Sputtering for Application on Combustion Piston Rings" Coatings 14, no. 9: 1109. https://doi.org/10.3390/coatings14091109
APA StyleFerreira, N. F., Fernandes, F., Neis, P. D., Poletto, J. C., Yaqub, T. B., Cavaleiro, A., Vilhena, L., & Ramalho, A. (2024). Tribological Comparison of Coatings Produced by PVD Sputtering for Application on Combustion Piston Rings. Coatings, 14(9), 1109. https://doi.org/10.3390/coatings14091109