Development of a Controlled Low-Strength Material Containing Paraffin–Rice Husk Ash Composite Phase Change Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of Paraffin/RHA Composite Material (PR-PCM)
2.3. Preparation of CLSM Mixtures
2.4. Testing Program
2.5. Testing Methods
2.5.1. Flowability Test
2.5.2. Unconfined Compressive Strength (UCS) Test
2.5.3. X-ray Diffraction (XRD) Test
2.5.4. Scanning Electronic Microscopy (SEM) Test
2.5.5. Differential Scanning Calorimetry (DSC) Test
2.5.6. Phase Change Cycle Test
3. Results and Discussion
3.1. Flowability Analysis
3.2. UCS Analysis
3.3. XRD Spectrum Analysis
3.4. SEM Analysis
3.5. DSC Analysis
3.6. Thermal Storage Performance Analysis
- Q: The heat absorbed or released by materials;
- C: Specific Heat;
- M: The weight of materials;
- ΔT: The changing temperature of materials.
Material | Water | DS | OPC | PR-PCM |
---|---|---|---|---|
Specific Heat (J·kg−1·°C−1) | 4200 | 1057 | 840 | 1790 |
3.7. Phase Change Cycle Analysis
4. Conclusions
- (1)
- The properties of the CLSM mixture were significantly influenced by the PR-PCM content. As the volume ratio of PR-PCM/DS increased, the flowability of the mixture increased while the strength decreased. When the PR-PCM content was constant but the water content was decreased, the flowability decreased while the strength increased.
- (2)
- XRD analysis of the CLSM containing PR-PCM revealed the presence of paraffin diffraction peaks, which indicated that PR-PCM can exist stably in CLSM during the hydration process of the mixture. The micro-scale compactness of the mixture reflects its macro-scale strength. The decrease in water consumption increased the micro density and strength of the mixture.
- (3)
- The melting point of CLSM containing PR-PCM was lower than that of PR-PCM, which allowed the mixture to exhibit its temperature control performance at an earlier stage. The temperature difference between CLSM containing PR-PCM and ordinary CLSM could reach 3.4 °C, indicating that CLSM containing PR-PCM has better heat storage performance and can effectively reduce heat diffusion.
- (4)
- The CLSM containing PR-PCM exhibited good durability and met the long-term strength requirements. After undergoing phase change cycles, the strength increased and the melting point decreased. The adsorption of rice husk ash and hydration products effectively reduced paraffin leakage.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations and Nomenclature
CLSM | Controlled low-strength material |
PCM | Phase change material |
PR | Paraffin–Rice husk ash |
PR-PCM | Paraffin–Rice husk ash composite phase change material |
DS | Dredged sediment |
OPC | Ordinary Portland cement |
UCS | Unconfined compressive strength |
XRD | X-ray diffraction |
SEM | Scanning electronic microscopy |
DSC | Differential scanning calorimetry |
PVR | Paste volume ratio |
RHA | Rice husk ash |
C-S-H | Calcium silicate hydrate |
To | Phase change onset temperature |
Tc | Phase change end temperature |
Tp | Melting point |
ΔH | Latent heat |
σ | Standard deviation |
References
- Kecebas, A.; Alkan, M.A.; Bayhan, M. Thermo-economic analysis of pipe insulation for district heating piping systems. Appl. Therm. Eng. 2011, 31, 3929–3937. [Google Scholar] [CrossRef]
- Liiv, J.; Teppand, T.; Rikmann, E.; Tenno, T. Novel ecosustainable peat and oil shale ash-based 3D-printable composite material. Sustain. Mater. Technol. 2018, 17, e00067. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, M.; Geng, Y.; Lin, B.; Zhu, Y. A model to compare convective and radiant heating systems for intermittent space heating. Appl. Energy 2018, 215, 211–226. [Google Scholar] [CrossRef]
- Hirsch, P.; Duzinkiewicz, K.; Grochowski, M.; Piotrowski, R. Two-phase optimizing approach to design assessments of long distance heat transportation for CHP systems. Appl. Energy 2016, 182, 164–176. [Google Scholar] [CrossRef]
- Dalla-Rosa, A.; Li, H.; Svendsen, S. Method for optimal design of pipes for low-energy district heating with focus on heat losses. Energy 2011, 36, 2407–2418. [Google Scholar] [CrossRef]
- Kong, X.; Wang, G.; Rong, S.; Liang, Y.; Liu, M.; Zhang, Y. Utilization of fly ash and red mud in soil-based controlled low strength materials. Coatings 2023, 13, 893. [Google Scholar] [CrossRef]
- ACI 229R; Controlled Low-Strength Materials. American Concrete Institute: Farmington Hill, MI, USA, 2013.
- Kaliyavaradhan, S.K.; Ling, T.C.; Guo, M.Z. Upcycling of wastes for sustainable controlled low-strength material: A review on strength and excavatability. Environ. Sci. Pollut. Res. 2022, 29, 16799–16816. [Google Scholar] [CrossRef]
- Xiao, R.; Polaczyk, P.; Jiang, X.; Zhang, M.; Wang, Y.; Huang, B. Cementless controlled low-strength material (CLSM) based on waste glass powder and hydrated lime: Synthesis, characterization and thermodynamic simulation. Constr. Build. Mater. 2021, 275, 122157. [Google Scholar] [CrossRef]
- Chen, T.; Yuan, N.; Wang, S.; Hao, X.; Zhang, X.; Wang, D.; Yang, X. The effect of bottom ash ball-milling time on properties of controlled low-strength material using multi-component coal-based solid wastes. Sustainability 2022, 14, 9949. [Google Scholar] [CrossRef]
- Do, T.M.; Do, A.N.; Kang, G.O.; Kim, Y.S. Utilization of marine dredged soil in controlled low-strength material used as a thermal grout in geothermal systems. Constr. Build. Mater. 2019, 21, 613–622. [Google Scholar] [CrossRef]
- Chittoori, B.; Puppala, A.J.; Raavi, A. Strength and stiffness characterization of controlled low-strength material using native high-plasticity clay. J. Mater. Civ. Eng. 2014, 26, 04014007. [Google Scholar] [CrossRef]
- Qian, J.; Hu, Y.; Zhang, J.; Xiao, W.; Ling, J. Evaluation the performance of controlled low strength material made of excess excavated soil. J. Clean. Prod. 2019, 214, 79–88. [Google Scholar] [CrossRef]
- Alizadeh, V. New approach for proportioning of controlled low strength materials. Constr. Build. Mater. 2019, 201, 871–878. [Google Scholar] [CrossRef]
- Huang, M.; Huang, C.; Lin, J.; Ho, M. Investigated on predictive compressive strength model and setting time of controlled low-strength materials. Int. J. Pavement Res. Technol. 2020, 13, 129–137. [Google Scholar] [CrossRef]
- Sheen, Y.N.; Zhang, L.H.; Le, D.H. Engineering properties of soil-based controlled low-strength materials as slag partially substitutes to Portland cement. Constr. Build. Mater. 2013, 48, 822–829. [Google Scholar] [CrossRef]
- Chandel, S.S.; Agarwal, T. Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Renew. Sustain. Energy Rev. 2017, 67, 581–596. [Google Scholar] [CrossRef]
- Kant, K.; Biwole, P.H.; Shamseddine, I.; Tlaiji, G.; Pennec, F.; Fardoun, F. Recent advances in thermophysical properties enhancement of phase change materials for thermal energy storage. Sol. Energy Mater. Sol. Cells 2021, 231, 111309. [Google Scholar] [CrossRef]
- Kurdi, A.; Almoatham, N.; Mirza, M.; Ballweg, T.; Alkahlan, B. Potential phase change materials in building wall construction—A review. Materials 2021, 14, 5328. [Google Scholar] [CrossRef]
- Zou, T.; Xu, T.; Cui, H.; Tao, H.; Xu, H.; Zhou, X.; Chen, Q.; Chen, J.; Huang, G.; Sun, Y. Super absorbent polymer as support for shape-stabilized composite phase change material containing Na2HPO4·12H2O–K2HPO4·3H2O eutectic hydrated salt. Sol. Energy Mater. Sol. Cells 2021, 231, 111334. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Z.; Zhang, X.; Hu, M.; Zhang, L.; Fan, J. Adaptive dynamic building envelope integrated with phase change material to enhance the heat storage and release efficiency: A state-of-the-art review. Energy Build. 2023, 286, 112928. [Google Scholar] [CrossRef]
- Yu, K.; Liu, Y.; Jia, M.; Wang, C.; Yang, Y. Thermal energy storage cement mortar containing encapsulated hydrated salt/fly ash cenosphere phase change material: Thermo-mechanical properties and energy saving analysis. J. Energy Storage 2022, 51, 104388. [Google Scholar] [CrossRef]
- Gencel, O.; Ustaoglu, A.; Benli, A.; Hekimoglu, G.; Sari, A.; Erdogmus, E.; Sutcu, M.; Kaplan, G.; Bayraktar, O. Investigation of physico-mechanical, thermal properties and solar thermoregulation performance of shape-stable attapulgite based composite phase change material in foam concrete. Sol. Energy 2022, 236, 51–62. [Google Scholar] [CrossRef]
- Dora, S.; Barta, R.; Mini, K. Study on foam concrete incorporated with expanded vermiculite/capric acid PCM-A novel thermal storage high-performance building material. Constr. Build. Mater. 2023, 392, 131903. [Google Scholar] [CrossRef]
- Ren, M.; Wen, X.; Gao, X.; Liu, Y. Thermal and mechanical properties of ultra-high performance concrete incorporated with microencapsulated phase change material. Constr. Build. Mater. 2021, 273, 121714. [Google Scholar] [CrossRef]
- Yang, G.; Lei, G.; Liu, T.; Zheng, S.; Qu, B.; Que, C.; Feng, Y.; Jiang, G. Development and application of low-melting-point microencapsulated phase change materials for enhanced thermal stability in cementing natural gas hydrate layers. Geoenergy Sci. Eng. 2024, 238, 212846. [Google Scholar] [CrossRef]
- Cai, J.; Zhou, J.; Liu, C.; Mei, K.; Zhang, C.; Cheng, X. Microencapsulated phase change material-cement composites for cementing the natural gas hydrate layer. Constr. Build. Mater. 2023, 399, 132591. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Luo, A.; Dong, M.; Su, Q.; Zhou, C.; Zhang, Z.; Pei, Y. Experimental Investigation on a Novel Temperature-Controlled Phase Change Aggregate Concrete: Thermo-Mechanical Properties and Hydration Heat Control. Materials 2023, 16, 5269. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Ju, S.; Miao, Y.; Wang, Y.; Wang, F.; Sui, S.; Jiang, J. Study on design, preparation, and performance of low-temperature rising concrete with energy storage aggregate. Struct. Concr. 2023, 24, 6539–6551. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, J.; Gong, F.; Fu, Y.; Cheng, X.; Qiao, J. Performance and evaluation models for different structural types of asphalt mixture using shape-stabilized phase change material. Constr. Build. Mater. 2023, 383, 131411. [Google Scholar] [CrossRef]
- Hu, H.; Chen, W.; Cai, X.; Xu, T.; Cui, H.; Zhou, X.; Chen, J.; Huang, G.; Sun, Y. Study on preparation and thermal performance improvements of composite phase change material for asphalt steel bridge deck. Constr. Build. Mater. 2021, 310, 125255. [Google Scholar] [CrossRef]
- Liao, W.; Zeng, C.; Zhuang, Y.; Ma, H.; Deng, W.; Huang, J. Mitigation of thermal curling of concrete slab using phase change material: A feasibility study. Cem. Concr. Compos. 2021, 120, 104021. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Y.; Liang, J. Potential Applications of Phase Change Materials to Extend the Winter Construction Time of Earth-Rock Dam in Cold Regions. J. Mater. Civ. Eng. 2021, 33, 04021194. [Google Scholar] [CrossRef]
- Dehdezi, P.K.; Hall, M.R.; Dawson, A.R. Enhancement of soil thermo-physical properties using microencapsulated phase change materials for ground source heat pump applications. Appl. Mech. Mater. 2012, 110–116, 1191–1198. [Google Scholar] [CrossRef]
- Lyne, Y.; Paksoy, H.; Farid, M. Laboratory investigation on the use of thermally enhanced phase change material to improve the performance of borehole heat exchangers for ground source heat pumps. Int. J. Energy Res. 2019, 43, 4148–4156. [Google Scholar] [CrossRef]
- Yang, W.; Xu, R.; Yang, B.; Yang, J. Experimental and numerical investigations on the thermal performance of a borehole ground heat exchanger with PCM backfill. Energy 2019, 174, 216–235. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, S.; Zeng, C.; Zhang, Y.; Li, Y.; Han, X.; Yang, L.; Yang, X. Experimental thermal study of a new PCM-concrete thermal storage block (PCM-CTSB). Constr. Build. Mater. 2021, 293, 123540. [Google Scholar] [CrossRef]
- Yoo, D.; Jeon, I.; Woo, B.; Kim, H. Performance of energy storage system containing cement mortar and PCM/epoxy/SiC composite fine aggregate. Appl. Therm. Eng. 2021, 198, 117445. [Google Scholar] [CrossRef]
- Zhang, P.; Cheng, Z.; Chen, Z.; Gao, Y. Oleophobic modification of clay minerals to improve encapsulation ratios of shape-stabilized phase change materials: A universal method. Prog. Nat. Sci-Mater. 2021, 31, 904–910. [Google Scholar] [CrossRef]
- Zhang, P.; Cui, Y.; Zhang, K.; Wu, S.; Chen, D.; Gao, Y. Enhanced thermal storage capacity of paraffin/diatomite composite using oleophobic modification. J. Clean. Prod. 2021, 279, 123211. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, F.; Yu, K.; Yang, Y. Experimental and numerical research on development of synthetic heat storage form incorporating phase change materials to protect concrete in cold weather. Renew. Energy 2020, 149, 1424–1433. [Google Scholar] [CrossRef]
- Zhu, C.; Zhao, C.; Chen, Z.; Zhu, R.; Sheng, N.; Rao, Z. Anisotropically thermal transfer improvement and shape stabilization of paraffin supported by SIC-coated biomass carbon fiber scaffolds for thermal energy storage. J. Energy Storage 2022, 46, 103866. [Google Scholar] [CrossRef]
- Su, H.; Guo, X.; Chen, G.; Zhang, Q.; Huang, D.; Zhang, J. A novel honeycomb-like porous carbon from loofah sponge for form-stable phase change materials with high encapsulation capacity and reliability. Mater. Lett. 2022, 308, 131118. [Google Scholar] [CrossRef]
- Ji, X.; Liu, P.; Qiu, C.; Weng, L.; Hu, J.; Wei, R.; Zhang, Y.; Sun, W.; Guo, X. Plastic composite of bamboo charcoal stabilized polyethylene glycol with thermal energy storage and temperature regulation for building energy efficiency. Polym. Compos. 2024, 45, 1910–1921. [Google Scholar] [CrossRef]
- Ye, P.; Liu, Z.; Jin, C.; Jin, Q.; Zhang, Q.; Luo, T.; Gui, C. Preparation and characterization of novel phase-change concrete based on different porous phase-change aggregates: Comprehensive comparison of various phase change composites. Constr. Build. Mater. 2024, 439, 137366. [Google Scholar] [CrossRef]
- Shang, M.; Li, J.; Tian, L.; Huang, P.; Li, X.; Yu, J.; Zhang, S.; Miao, W.; Peng, J. Thermal conductivity enhancement of polyethylene glycol/NF composite as stabilized phase change materials for thermal energy storage. J. Energy Storage 2024, 99, 113313. [Google Scholar] [CrossRef]
- Jin, J.; Liu, S.; Gao, Y.; Liu, R.; Huang, W.; Wang, L.; Xiao, T.; Lin, F.; Xu, L.; Zhang, J. Fabrication of cooling asphalt pavement by novel material and its thermodynamics model. Constr. Build. Mater. 2021, 272, 121930. [Google Scholar] [CrossRef]
- Nam, J.; Yang, S.; Yun, B.Y.; Kim, S. Evaluation of thermal/morphological performance of SSPCM based nanoclay: Influence of the interlayer microstructure of hydrophilic and hydrophobic. Sol. Energy Mater. Sol. Cells 2022, 235, 111479. [Google Scholar] [CrossRef]
- Zhang, Y.; Sang, G.; Du, X.; Cui, X.; Zhang, L.; Zhu, Y.; Guo, T. Development of a novel alkali-activated slag-based composite containing paraffin/ceramsite shape stabilized phase change material for thermal energy storage. Constr. Build. Mater. 2021, 304, 124594. [Google Scholar] [CrossRef]
- Li, X.; Wei, H.; Lin, X.; Xie, X. Preparation of stearic acid/modified expanded vermiculite composite phase change material with simultaneously enhanced thermal conductivity and latent heat. Sol. Energy Mater. Sol. Cells 2016, 155, 9–13. [Google Scholar] [CrossRef]
- Luo, M.; Song, J.; Ling, Z.; Zhang, Z.; Fang, X. Phase change material coat for battery thermal management with integrated rapid heating and cooling functions from −40 °C to 50 °C. Mater. Today Energy 2021, 20, 100652. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Yang, L.; Chen, H.; Tian, Y.; Wang, Z. A review on recent advances in the comprehensive application of rice husk ash. Res. Chem. Intermed. 2016, 42, 893–913. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, W.; Liu, H.; Lin, X.; Zhang, R. A compressive strength prediction model based on the hydration reaction of cement paste by rice husk ash. Constr. Build. Mater. 2022, 340, 127841. [Google Scholar] [CrossRef]
- Diaz, A.; Bueno, S.; Villarejo, L.; Quesada, D. Improved strength of alkali activated materials based on construction and demolition waste with addition of rice husk ash. Constr. Build. Mater. 2024, 413, 134823. [Google Scholar] [CrossRef]
- JTG 3430-2020; Test Methods of Soils for Highway Engineering. Ministry of Transport of the People’s Republic of China: Beijing, China, 2020.
- Huang, W.; Zhang, J.; Wang, J.; Zheng, Y.; Ma, J.; Ding, F. Performance analysis of paraffin microcapsules and phase change concrete based on microporous cenospheres. Constr. Build. Mater. 2023, 409, 134030. [Google Scholar] [CrossRef]
- ASTM D6103; Standard Test Method for Flow Consistency of Controlled Low Strength Material (CLSM). American Society of Testing Materials: West Conshohocken, PA, USA, 2017.
- JGJ/T 70-2009; Standard for Test Method of Basic Properties of Construction Mortar. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2009.
Physical Properties | Value |
---|---|
Liquid limit (%) | 29.2 |
Plastic limit (%) | 22.5 |
Plasticity index | 6.7 |
Maximum dry density (g/cm3) | 1.93 |
Optimum water content (%) | 14.4 |
Composition | SiO2 | Al2O3 | CaO | Fe2O3 | Na2O | MgO | K2O | SO3 |
---|---|---|---|---|---|---|---|---|
DS | 51.10 | 16.56 | 13.46 | 9.73 | 0.95 | 2.26 | 3.95 | 0.07 |
OPC | 24.99 | 8.26 | 51.42 | 4.03 | 0.32 | 3.71 | 0.88 | 2.51 |
RHA | 85.83 | 0.45 | 1.55 | 0.23 | 1.28 | 1.14 | 5.19 | 0.78 |
Mixture Name | PR-PCM Content (%) | Weight Fraction | |||
---|---|---|---|---|---|
Water | DS | OPC | PR-PCM | ||
D100P0 | 0 | 2.9 | 5.0 | 1 | 0 |
D90P10 | 10 | 2.9 | 4.5 | 1 | 0.2 |
D80P20 | 20 | 2.9 | 4.0 | 1 | 0.4 |
D70P30 | 30 | 2.9 | 3.5 | 1 | 0.5 |
D90P10B | 10 | 2.7 | 4.5 | 1 | 0.2 |
D80P20B | 20 | 2.4 | 4.0 | 1 | 0.4 |
D70P30B | 30 | 2.2 | 3.5 | 1 | 0.5 |
Number of Phase Change Cycles (N) | UCS (MPa) | To (°C) | Tc (°C) | Tp (°C) | ΔH (J/g) |
---|---|---|---|---|---|
0 | 1.85 | 46.15 | 53.97 | 50.65 | 4.10 |
3 | 2.10 | 43.12 | 53.72 | 50.04 | 5.71 |
6 | 2.43 | 41.31 | 53.59 | 48.83 | 5.14 |
9 | 2.51 | 41.19 | 51.98 | 47.75 | 3.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Qu, W. Development of a Controlled Low-Strength Material Containing Paraffin–Rice Husk Ash Composite Phase Change Material. Coatings 2024, 14, 1173. https://doi.org/10.3390/coatings14091173
Xu H, Qu W. Development of a Controlled Low-Strength Material Containing Paraffin–Rice Husk Ash Composite Phase Change Material. Coatings. 2024; 14(9):1173. https://doi.org/10.3390/coatings14091173
Chicago/Turabian StyleXu, Hongfei, and Wenting Qu. 2024. "Development of a Controlled Low-Strength Material Containing Paraffin–Rice Husk Ash Composite Phase Change Material" Coatings 14, no. 9: 1173. https://doi.org/10.3390/coatings14091173
APA StyleXu, H., & Qu, W. (2024). Development of a Controlled Low-Strength Material Containing Paraffin–Rice Husk Ash Composite Phase Change Material. Coatings, 14(9), 1173. https://doi.org/10.3390/coatings14091173