Mechanism of Synergistic Corrosion and Radiation Protection of Hexamethylenetetramine and Benzotriazole for Bionic Superhydrophobic Coating on Q235 Steel
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Preparation
2.2. Characterization
3. Results and Discussion
3.1. Wettability and Morphology
3.2. Low Adhesion
3.3. Droplet Impact Characteristics
3.4. Self-Cleaning
3.5. Electrochemical Impedance Spectroscopy (EIS)
3.6. Ultraviolet Radiation Resistance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chu, H.; Liu, Z.; Ji, T.; Yang, C.; Xu, N. Recent advances in the preparation of superhydrophobic coatings based on low-surface-energy modifiers: Diversified properties and potential applications. Appl. Therm. Eng. 2024, 251, 123591. [Google Scholar] [CrossRef]
- Khademsameni, H.; Jafari, R.; Allahdini, A.; Momen, G. Regenerative superhydrophobic coatings for enhanced performance and durability of high-voltage electrical insulators in cold climates. Materials 2024, 17, 1622. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhou, X.; Shang, Y.; Wang, B.; Lu, K.; Gan, W.; Li, J. Synthesis and characterization of superhydrophobic epoxy resin coating with SiO2@CuO/HDTMS for enhanced self-cleaning, photocatalytic, and corrosion-resistant properties. Materials 2024, 17, 1849. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Hu, J.; Qu, J. Achieving lasting corrosion protection for superhydrophobic epoxy coatings with photothermal conversion property via constructing functionalized graphene nanoplatelet. Carbon 2023, 212, 118155. [Google Scholar] [CrossRef]
- Hou, Y.; Shang, J.; Yu, S.; Lei, H.; Zheng, H.; Liu, M.; Yan, C.; Wu, Y. Bio-inspired organic-inorganic hybrid superhydrophobic PVDF@SiO2 particles for corrosion protection. J. Mater. Sci. 2023, 58, 8061–8075. [Google Scholar] [CrossRef]
- Qiu, X.; Song, H.; Zhang, H.Z. Mechanical properties of hot-stamped spherical shell Q235 steel after exposure to elevated temperature. J. Mater. Civ. Eng. 2024, 36, 04023537. [Google Scholar] [CrossRef]
- Xu, J.; He, Z.; Xiong, L.; Wu, Y.; Guo, L.; Li, L.; Zhang, R. Enhanced corrosion inhibition of Q235 steel by N,S Co-doped carbon dots: A sustainable approach for industrial pickling corrosion inhibitors. Langmuir 2024, 40, 8352–8364. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Z. EIS and potentiodynamic polarization studies of arc-sprayed aluminum coating on Q235 steel surface. Int. J. Electrochem. Sci. 2023, 18, 100058. [Google Scholar] [CrossRef]
- Nie, X.H.; Li, Y.L.; Li, J.K.; Zhang, H.B. Morphology, products and corrosion mechanism analysis of Q235 carbon steel in sea-shore salty soil. J. Mater. Eng. 2010, 30, 24–28+33. [Google Scholar]
- Ding, K.; Guo, W.; Qiu, R.; Hou, J.; Fan, L.; Xu, L. Corrosion behavior of Q235 steel exposed in deepwater of south China sea. J. Mater. Eng. Perform. 2018, 27, 4489–4496. [Google Scholar] [CrossRef]
- Yang, L.; Luo, S.; Zheng, L.Z.T. A wear-resistant superhydrophobic surface on Q235 steel prepared by electrospark deposition and electrochemical etching. J. Mater. Sci. 2023, 58, 17966–17983. [Google Scholar] [CrossRef]
- Dong, S.; Yang, Y.; Liang, T.; Ma, R.; Du, A.; Yang, M.; Fan, Y.Z.; Zhao, X.; Cao, X.M. Construction and corrosion resistance of Ni-B4C superhydrophobic composite coatings on Q235 steel. Surf. Coat. Technol. 2021, 422, 127551. [Google Scholar] [CrossRef]
- Ye, Y.W.; Liu, Z.Y.; Liu, W.; Zhang, D.W.; Zhao, H.C.; Wang, L.P. Superhydrophobic oligoaniline-containing electroactive silica coating as pre-process coating for corrosion protection of carbon steel. Chem. Eng. J. 2018, 348, 940–951. [Google Scholar] [CrossRef]
- Qiao, M.; Ji, G.; Lu, Y.; Zhang, B. Sustainable corrosion-resistant superhydrophobic composite coating with strengthened robustness. J. Ind. Eng. Chem. 2023, 121, 215–227. [Google Scholar] [CrossRef]
- Ma, L.; Wang, J.; Zhang, Z.; Kang, Y.; Ma, L. Preparation of a superhydrophobic TiN/PTFE composite film toward self-cleaning and corrosion protection applications. J. Mater. Sci. 2021, 56, 1413–1425. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C.; Li, R.; Jiang, W.; Yu, X. Preparation of a superhydrophobic surface on steel substrate by nanocomposite electrodeposition. J. Harbin Eng. Univ. 2016, 37, 660–665. [Google Scholar]
- Wang, E.; Huang, W.; Miao, Y.; Jia, L.; Liang, Y.; Wang, S.; Zhang, W.B.; Zou, L.H.; Zhong, Y.; Huang, J.D. Conductive and superhydrophobic lignin/carbon nanotube coating with nest-like structure for deicing, oil absorption and wearable piezoresistive sensor. Int. J. Biol. Macromol. 2024, 278, 134886. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Z.; Liu, W. Robust mussel-inspired superhydrophobic sponge with eco-friendly photothermal effect for crude oil/seawater separation. J. Hazard. Mater. 2024, 461, 132592. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Halim, A.; Li, X.; Fan, H.; Fu, S. Performance assessment of nanocellulose hydroxypropyl methyl cellulose composite on role of nano-CaCO3 for the preservation of paper documents. Pap. Biomater. 2022, 7, 1–9. [Google Scholar]
- Wan, C.; Li, X.; Xing, H. Copper corrosion inhibition bya quaternary ammonium salt-assisted benzotriazole. Arch. Metall. Mater. 2023, 68, 1447–1456. [Google Scholar] [CrossRef]
- Ankur, K.; Pradip, J.; Ramesh, N.K.A. Benzotriazole UV stabilizers (BUVs) as an emerging contaminant of concern: A review. Environ. Sci. Pollut. Res. 2023, 30, 121370–121392. [Google Scholar]
- Fingar, M.; Miloev, I. Inhibition of copper corrosion by 1,2,3-benzotriazole: A review. Corros. Sci. 2010, 52, 2737–2749. [Google Scholar] [CrossRef]
- Aribo, S.; Olusegun, S.J.; Rodrigues, G.L.S.; Ogunbadejo, A.S.; Igbaroola, B.; Alo, A.T.; Rocha, W.R.; Mohallem, N.D.S.; Olubambi, P.A. Experimental and theoretical investigation on corrosion inhibition of hexamethylenetetramine [HMT] for mild steel in acidic solution. J. Taiwan Inst. Chem. Eng. 2020, 112, 222–231. [Google Scholar] [CrossRef]
- Vedenyapina, M.D.; Kulaishin, S.A.; Kuznetsov, V.V.; Makhova, N.N.; Kazakova, M.M. Kinetics and mechanism of gold anode corrosion in a weakly basic aqueous solution of hexamethylenetetramine (urotropine). Russ. Chem. Bull. 2022, 71, 52–58. [Google Scholar] [CrossRef]
- Avdeev, Y.G.; Kireeva, O.A.; Kuznetsov, D.S.; Kuznetsov, Y.I. The influence of hexamethylenetetramine on the corrosion inhibition of low carbon steel in mixtures of sulfurous and phosphorus acids containing Fe (III) by IFKhAN-92 and KNCS composition. Prot. Met. Phys. Chem. Surf. 2018, 54, 1298–1304. [Google Scholar] [CrossRef]
- Volovitch, P.; Gazizzullin, I.; Ruel, F.; Ogle, K. An atomic emission spectroelectrochemical study of corrosion inhibition: The effect of hexamethylenetetramine on the reaction of mild steel in HCl. Corros. Sci. 2011, 53, 1362–1368. [Google Scholar] [CrossRef]
- Shang, J.Y.; Jiang, Y.F.; Wang, W.H. Heat stability and icing delay on superhydrophobic coatings in facile one step. Polymers 2022, 14, 3124. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.J.; Wang, Z.J.; Zhao, X.X.; Feng, J.; Wang, S.T.; Zhang, J.; An, C.H. A facile approach to fabricate superhydrophobic and corrosion resistant surface. Mater. Res. Express 2015, 2, 015501. [Google Scholar] [CrossRef]
- Mao, T.; Li, C.; Mao, F.; Xue, Z.; Xu, G.; Amirfazli, A. A durable anti-corrosion superhydrophobic coatings based on carbon nanotubes and SiO2 aerogel for superior protection for Q235 steel. Diam. Relat. Mater. 2022, 129, 109370. [Google Scholar] [CrossRef]
- Liu, X.; Zhan, T.; Zhang, B. Attapulgite-based superhydrophobic coating on aluminum alloy substrate with self-cleaning, anti-corrosion and robustness. J. Ind. Eng. Chem. 2024, 130, 357–367. [Google Scholar] [CrossRef]
- Wen, J.; Reddyhoff, T.; Hu, S.; Puhan, D.; Dini, D. Exploiting air cushion effects to optimise a superhydrophobic/hydrophilic patterned liquid ring sealed air bearing. Tribol. Int. 2020, 144, 106129. [Google Scholar] [CrossRef]
- Zou, F.D.; Li, G.; Wang, X.H.; Yarin, A.L. Dynamic hydrophobicity of superhydrophobic PTFE-SiO2 electrospun fibrous membranes. J. Membr. Sci. 2021, 619, 118810. [Google Scholar] [CrossRef]
- Crick, C.R.; Parkin, I.P. Relationship between surface hydrophobicity and water bounces—A dynamic method for accessing surface hydrophobicity. J. Mater. Chem. A 2013, 1, 799–804. [Google Scholar] [CrossRef]
- Zhang, M.L.; Zhao, J.M. Research progress on synergistic effect and synergistic mechanism of corrosion inhibitors. Chin. J. Corros. Prot. 2016, 36, 1–10. [Google Scholar]
- Li, L.X.; Xie, Z.H.; Fernandez, C.; Wu, L.; Cheng, D.J.; Jiang, X.H.; Zhong, C.J. Development of a thiophene derivative modified LDH coating for Mg alloy corrosion protection. Electrochim. Acta 2020, 330, 135186. [Google Scholar] [CrossRef]
- Huang, Z.F.; Yong, Q.W.; Fan, R.; Xie, Z.H. Superhydrophobic corrosion-resistant nickel-based composite coating on the surface of AZ31 magnesium alloy. Chin. J. Corros. Prot. 2023, 43, 755–764. [Google Scholar]
- Chen, H.; Li, H.L.; Gao, F.; Guo, M.X. Study of benzotriazole-based UV stabilizers with ESIPT properties. J. Chongqing Univ. Nat. Sci. Ed. 2017, 40, 9. [Google Scholar]
- Wang, B.H.; Huang, W.X.; Liu, X.F.; Tu, M.J. Optical characterization of nano-SiO2. J. Mater. Sci. Eng. 2003, 21, 4. [Google Scholar]
Sample | PDMS (g) | HMTA (g) | BTA (g) |
---|---|---|---|
MTMS-SiO2-ZnO | - | - | - |
MTMS-SiO2-ZnO-PDMS | 0.25 | - | - |
MTMS-SiO2-ZnO-HMTA | - | 0.025 | - |
MTMS-SiO2-ZnO-BTA | - | - | 0.0125 |
MTMS-SiO2-ZnO-PDMS-HMTA-BTA | 0.25 | 0.025 | 0.0125 |
Sample | |||
---|---|---|---|
Bare Q235 steel | −0.62 | 2.83 × 10−5 | - |
MTMS-SiO2-ZnO | −0.57 | 1.68 × 10−5 | 40.64 |
MTMS-SiO2-ZnO-BTA | −0.56 | 4.32 × 10−6 | 84.73 |
MTMS-SiO2-ZnO-PDMS | −0.53 | 2.33 × 10−6 | 91.77 |
MTMS-SiO2-ZnO-HMTA | −0.51 | 2.91 × 10−6 | 89.72 |
MTMS-SiO2-ZnO-PDMS-HMTA-BTA | −0.50 | 2.23 × 10−6 | 92.12 |
Sample | Cc/(F·cm−2) | Rc/(Ω·cm2) | Cdl/(F·cm−2) | Rct/(Ω·cm2) |
---|---|---|---|---|
Q235 Steel | - | - | 1.637 × 10−1 | 191.6 |
Superhydrophobic Coating | 2.85 × 10−5 | 365.7 | 3.622 × 10−5 | 7346 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, J.; Jiang, Y.; Yan, B.; Shi, B.; Chen, B.; Bao, Y.; Yang, K. Mechanism of Synergistic Corrosion and Radiation Protection of Hexamethylenetetramine and Benzotriazole for Bionic Superhydrophobic Coating on Q235 Steel. Coatings 2025, 15, 16. https://doi.org/10.3390/coatings15010016
Shang J, Jiang Y, Yan B, Shi B, Chen B, Bao Y, Yang K. Mechanism of Synergistic Corrosion and Radiation Protection of Hexamethylenetetramine and Benzotriazole for Bionic Superhydrophobic Coating on Q235 Steel. Coatings. 2025; 15(1):16. https://doi.org/10.3390/coatings15010016
Chicago/Turabian StyleShang, Jingyu, Yongfeng Jiang, Bo Yan, Baidi Shi, Bingyan Chen, Yefeng Bao, and Ke Yang. 2025. "Mechanism of Synergistic Corrosion and Radiation Protection of Hexamethylenetetramine and Benzotriazole for Bionic Superhydrophobic Coating on Q235 Steel" Coatings 15, no. 1: 16. https://doi.org/10.3390/coatings15010016
APA StyleShang, J., Jiang, Y., Yan, B., Shi, B., Chen, B., Bao, Y., & Yang, K. (2025). Mechanism of Synergistic Corrosion and Radiation Protection of Hexamethylenetetramine and Benzotriazole for Bionic Superhydrophobic Coating on Q235 Steel. Coatings, 15(1), 16. https://doi.org/10.3390/coatings15010016