Advances in Carbon Coatings for Current Collectors in Lithium-Ion Battery Applications: Focus on Three-Dimensional Carbon Nanowalls
Abstract
:1. Introduction
2. Basic Requirements for Current Collectors in Li-Ion Batteries
2.1. Electrical Requirements
2.2. Mechanical Requirements
2.3. Chemical Requirements
2.4. Thermal Requirements
3. Overview of Carbon Coating Technologies
3.1. Amorphous Carbon
3.1.1. Typical Coating Methods for Amorphous Carbon
3.1.2. Performance Enhancement with Amorphous Carbon Coating
3.2. Graphene Coatings
3.2.1. Typical Coating Methods for Graphene
3.2.2. Performance Enhancement with Graphene Coating
3.3. Carbon Nanotube Coatings
3.3.1. Typical Coating Methods for Carbon Nanotube
3.3.2. Performance Enhancement with Carbon Nanotube Coating
4. Emerging Carbon Coating Method: Carbon Nanowalls
4.1. Formation Mechanism of Carbon Nanowalls
4.2. Fundamental Properties of CNWs
4.3. Enhancing Performance of Current Collectors Using CNWs
4.4. Challenges and Future Directions
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Winter, M.; Barnett, B.; Xu, K. Before Li Ion Batteries. Chem. Rev. 2018, 118, 11433–11456. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The Lithium-Ion Battery: State of the Art and Future Perspectives. Ren. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Zhu, P.; Gastol, D.; Marshall, J.; Sommerville, R.; Goodship, V.; Kendrick, E. A Review of Current Collectors for Lithium-Ion Batteries. J. Power Sources 2021, 485, 229321. [Google Scholar] [CrossRef]
- Tu, J.; Wang, W.; Lei, H.; Wang, M.; Chang, C.; Jiao, S. Design Strategies of High-Performance Positive Materials for Nonaqueous Rechargeable Aluminum Batteries: From Crystal Control to Battery Configuration. Small 2022, 18, 2201362. [Google Scholar] [CrossRef]
- Matsumoto, F.; Fukunishi, M. Review of Current Collector-, Binder-, Conductive Additive-Free, and Freestanding Electrodes in Lithium and Related Batteries. Batteries 2024, 10, 330. [Google Scholar] [CrossRef]
- Yamada, M.; Watanabe, T.; Gunji, T.; Wu, J.; Matsumoto, F. Review of the Design of Current Collectors for Improving the Battery Performance in Lithium-Ion and Post-Lithium-Ion Batteries. Electrochem 2020, 1, 124–159. [Google Scholar] [CrossRef]
- Gabryelczyk, A.; Ivanov, S.; Bund, A.; Lota, G. Corrosion of Aluminium Current Collector in Lithium-Ion Batteries: A Review. J. Energy Storage 2021, 43, 103226. [Google Scholar] [CrossRef]
- Hao, H.; Tan, R.; Ye, C.; Low, C.T.J. Carbon-Coated Current Collectors in Lithium-Ion Batteries and Supercapacitors: Materials, Manufacture and Applications. Carbon Energy 2024, 6, e604. [Google Scholar] [CrossRef]
- Luo, J.; Fang, C.C.; Wu, N.L. High Polarity Poly(Vinylidene Difluoride) Thin Coating for Dendrite-Free and High-Performance Lithium Metal Anodes. Adv. Energy Mater. 2018, 8, 1701482. [Google Scholar] [CrossRef]
- Lepage, D.; Savignac, L.; Saulnier, M.; Gervais, S.; Schougaard, S.B. Modification of Aluminum Current Collectors with a Conductive Polymer for Application in Lithium Batteries. Electrochem. Commun. 2019, 102, 1–4. [Google Scholar] [CrossRef]
- Chen, X.; Li, J. Superlubricity of Carbon Nanostructures. Carbon 2020, 158, 1–23. [Google Scholar] [CrossRef]
- Jeong, H.; Jang, J.; Jo, C. A Review on Current Collector Coating Methods for Next-Generation Batteries. Chem. Eng. J. 2022, 446, 136860. [Google Scholar] [CrossRef]
- Liu, X.; Wang, D.; Zhang, B.; Luan, C.; Qin, T.; Zhang, W.; Wang, D.; Shi, X.; Deng, T.; Zheng, W. Vertical Graphene Nanowalls Coating of Copper Current Collector for Enhancing Rate Performance of Graphite Anode of Li Ion Battery: The Merit of Optimized Interface Architecture. Electrochim. Acta 2018, 268, 234–240. [Google Scholar] [CrossRef]
- Tran Thi, M.; Lee, S.; Choi, W. Adhesion and Stability Increased Carbon Nanowall for the Application to Lithium-Ion Batteries. J. Electr. Eng. Technol. 2022, 17, 3613–3618. [Google Scholar] [CrossRef]
- Vesel, A.; Zaplotnik, R.; Primc, G.; Mozetič, M. Synthesis of Vertically Oriented Graphene Sheets or Carbon Nanowalls-Review and Challenges. Materials 2019, 12, 2968. [Google Scholar] [CrossRef]
- Kumar, P.S.; Ayyasamy, S.; Tok, E.S.; Adams, S.; Reddy, M.V. Impact of Electrical Conductivity on the Electrochemical Performances of Layered Structure Lithium Trivanadate (LiV3-XMxO8, M = Zn/Co/Fe/Sn/Ti/Zr/Nb/Mo, x = 0.01–0.1) as Cathode Materials for Energy Storage. ACS Omega 2018, 3, 3036–3044. [Google Scholar] [CrossRef]
- Fear, C.; Juarez-Robles, D.; Jeevarajan, J.A.; Mukherjee, P.P. Elucidating Copper Dissolution Phenomenon in Li-Ion Cells under Overdischarge Extremes. J. Electrochem. Soc. 2018, 165, A1639. [Google Scholar] [CrossRef]
- Brissot, C.; Rosso, M.; Chazalviel, J.N.; Baudry, P.; Lascaud, S. In Situ Study of Dendritic Growth Inlithium/PEO-Salt/Lithium Cells. Electrochim. Acta 1998, 43, 1569–1574. [Google Scholar] [CrossRef]
- Obrovac, M.N.; Christensen, L. Structural Changes in Silicon Anodes during Lithium Insertion/Extraction. Electrochem. Solid. State Lett. 2004, 7, A93. [Google Scholar] [CrossRef]
- Ma, D.; Cao, Z.; Hu, A. Si-Based Anode Materials for Li-Ion Batteries: A Mini Review. Nanomicro Lett. 2014, 6, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Vilatela, J.J.; Marcilla, R. Tough Electrodes: Carbon Nanotube Fibers as the Ultimate Current Collectors/Active Material for Energy Management Devices. Chem. Mater. 2015, 27, 6901–6917. [Google Scholar] [CrossRef]
- Gwon, H.; Hong, J.; Kim, H.; Seo, D.H.; Jeon, S.; Kang, K. Recent Progress on Flexible Lithium Rechargeable Batteries. Energy Environ. Sci. 2014, 7, 538–551. [Google Scholar] [CrossRef]
- Zhu, J.; Feng, J.; Guo, Z. Mechanical Properties of Commercial Copper Current-Collector Foils. RSC Adv. 2014, 4, 57671–57678. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, H.; Zhang, Y.; Liu, J.; Zhang, J.; Li, L. Corrosion and Protection of Aluminum Current Collector in Lithium-Ion Batteries. Innov. Mater. 2023, 1, 100030. [Google Scholar] [CrossRef]
- Grabmann, S.; Kriegler, J.; Harst, F.; Günter, F.J.; Zaeh, M.F. Laser Welding of Current Collector Foil Stacks in Battery Production–Mechanical Properties of Joints Welded with a Green High-Power Disk Laser. Int. J. Adv. Manuf. Technol. 2022, 118, 2571–2586. [Google Scholar] [CrossRef]
- Shi, Q.; Lu, C.; Cao, Y.; Hao, Y.; Bachmatiuk, A.; Rümmeli, M.H. Recent Developments in Current Collectors for Lithium Metal Anodes. Mater. Chem. Front. 2023, 7, 1298–1311. [Google Scholar] [CrossRef]
- Zhou, G.; Li, F.; Cheng, H.M. Progress in Flexible Lithium Batteries and Future Prospects. Energy Environ. Sci. 2014, 7, 1307–1338. [Google Scholar] [CrossRef]
- Dai, S.; Chen, J.; Ren, Y.; Liu, Z.; Chen, J.; Li, C.; Zhang, X.; Zhang, X.; Zeng, T. Electrochemical Corrosion Behavior of the Copper Current Collector in the Electrolyte of Lithium-Ion Batteries. Int. J. Electrochem. Sci. 2017, 12, 10589–10598. [Google Scholar] [CrossRef]
- Kanamura, K.; Okagawa, T.; Takehara, Z. Electrochemical Oxidation of Propylene Carbonate (Containing Various Salts) on Aluminium Electrodes. J. Power Sources 1995, 57, 119–123. [Google Scholar] [CrossRef]
- Myung, S.T.; Sasaki, Y.; Sakurada, S.; Sun, Y.K.; Yashiro, H. Electrochemical Behavior of Current Collectors for Lithium Batteries in Non-Aqueous Alkyl Carbonate Solution and Surface Analysis by ToF-SIMS. Electrochim. Acta 2009, 55, 288–297. [Google Scholar] [CrossRef]
- Zhang, S.S.; Jow, T.R. Aluminum Corrosion in Electrolyte of Li-Ion Battery. J. Power Sources 2002, 109, 458–464. [Google Scholar] [CrossRef]
- Song, K.Y.; Jang, G.S.; Tao, J.; Lee, J.H.; Joo, S.K. Influence of Conductive Carbon Content Using a Three-Dimensional Foam-Type Current Collector for Lithium Ion Battery. J. Electrochem. Soc. 2016, 163, A2981–A2987. [Google Scholar] [CrossRef]
- Wang, S.; Kravchyk, K.V.; Filippin, A.N.; Müller, U.; Tiwari, A.N.; Buecheler, S.; Bodnarchuk, M.I.; Kovalenko, M.V. Aluminum Chloride-Graphite Batteries with Flexible Current Collectors Prepared from Earth-Abundant Elements. Adv. Sci. 2018, 5, 1700712. [Google Scholar] [CrossRef] [PubMed]
- Onsrud, M.; Tezel, A.O.; Fotedar, S.; Svensson, A.M. Novel Carbon Coating on Aluminum Current Collectors for Lithium-Ion Batteries. SN Appl. Sci. 2022, 4, 225. [Google Scholar] [CrossRef]
- Yang, S.; Li, S.; Du, Z.; Du, J.; Han, C.; Li, B. MXene-Ti3C2 Armored Layer for Aluminum Current Collector Enable Stable High-Voltage Lithium-Ion Battery. Adv. Mater. Interfaces 2022, 9, 2200856. [Google Scholar] [CrossRef]
- Wang, M.; Le, A.V.; Shi, Y.; Noelle, D.J.; Qiao, Y. Heterogeneous Current Collector in Lithium-Ion Battery for Thermal-Runaway Mitigation. Appl. Phys. Lett. 2017, 110, 083902. [Google Scholar] [CrossRef]
- Ali, H.M. Thermal Management Systems for Batteries in Electric Vehicles: A Recent Review. Energy Rep. 2023, 9, 5545–5564. [Google Scholar] [CrossRef]
- Oh, K.Y.; Epureanu, B.I. Characterization and Modeling of the Thermal Mechanics of Lithium-Ion Battery Cells. Appl. Energy 2016, 178, 633–646. [Google Scholar] [CrossRef]
- Hu, J.Q.; Li, Y.Z.; Liao, S.Y.; Huang, X.W.; Chen, Y.Z.; Peng, X.K.; Yang, Y.B.; Min, Y.G. Ultralight and High Thermal Conductive Current Collector Derived from Polyimide for Advanced LIBs. ACS Appl. Energy Mater. 2021, 4, 9721–9730. [Google Scholar] [CrossRef]
- Dey, A.; Chroneos, A.; Braithwaite, N.S.J.; Gandhiraman, R.P.; Krishnamurthy, S. Plasma Engineering of Graphene. Appl. Phys. Rev. 2016, 3, 021301. [Google Scholar] [CrossRef]
- Doberdò, I.; Löffler, N.; Laszczynski, N.; Cericola, D.; Penazzi, N.; Bodoardo, S.; Kim, G.T.; Passerini, S. Enabling Aqueous Binders for Lithium Battery Cathodes—Carbon Coating of Aluminum Current Collector. J. Power Sources 2014, 248, 1000–1006. [Google Scholar] [CrossRef]
- Wu, H.C.; Wu, H.C.; Lee, E.; Wu, N.L. High-Temperature Carbon-Coated Aluminum Current Collector for Enhanced Power Performance of LiFePO4 Electrode of Li-Ion Batteries. Electrochem. Commun. 2010, 12, 488–491. [Google Scholar] [CrossRef]
- Wu, H.C.; Lee, E.; Wu, N.L.; Jow, T.R. Effects of Current Collectors on Power Performance of Li4Ti5O12 Anode for Li-Ion Battery. J. Power Sources 2012, 197, 301–304. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, S.; Jiang, X.; Yao, X.; Xu, X.; Peng, A.; Wang, L.; Xue, Q. High-Performances of Li4Ti5O12 Anodes for Lithium-Ion Batteries via Modifying the Cu Current Collector through Magnetron Sputtering Amorphous Carbon. J. Alloys Compd. 2020, 830, 154682. [Google Scholar] [CrossRef]
- Tong, X.; Zhang, F.; Ji, B.; Sheng, M.; Tang, Y. Carbon-Coated Porous Aluminum Foil Anode for High-Rate, Long-Term Cycling Stability, and High Energy Density Dual-Ion Batteries. Adv. Mater. 2016, 28, 9979–9985. [Google Scholar] [CrossRef]
- Zheng, G.; Lee, S.W.; Liang, Z.; Lee, H.W.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; Cui, Y. Interconnected Hollow Carbon Nanospheres for Stable Lithium Metal Anodes. Nat. Nanotechnol. 2014, 9, 618–623. [Google Scholar] [CrossRef]
- Li, X.; Deng, S.; Banis, M.N.; Doyle-Davis, K.; Zhang, D.; Zhang, T.; Yang, J.; Divigalpitiya, R.; Brandys, F.; Li, R.; et al. Suppressing Corrosion of Aluminum Foils via Highly Conductive Graphene-like Carbon Coating in High-Performance Lithium-Based Batteries. ACS Appl. Mater. Interfaces 2019, 11, 32826–32832. [Google Scholar] [CrossRef]
- Kim, H.R.; Choi, W.M. Graphene Modified Copper Current Collector for Enhanced Electrochemical Performance of Li-Ion Battery. Scr. Mater. 2018, 146, 100–104. [Google Scholar] [CrossRef]
- Kim, S.Y.; Song, Y.I.; Wee, J.H.; Kim, C.H.; Ahn, B.W.; Lee, J.W.; Shu, S.J.; Terrones, M.; Kim, Y.A.; Yang, C.M. Few-Layer Graphene Coated Current Collector for Safe and Powerful Lithium Ion Battery. Carbon 2019, 153, 495–503. [Google Scholar] [CrossRef]
- Jiang, J.; Nie, P.; Ding, B.; Wu, W.; Chang, Z.; Wu, Y.; Dou, H.; Zhang, X. Effect of Graphene Modified Cu Current Collector on the Performance of Li4Ti5O12 Anode for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 30926–30932. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, L.; Li, C.; Chen, B.; Zhao, Q.; Zhang, G. Rational Design of High-Rate Lithium Zinc Titanate Anode Electrode by Modifying Cu Current Collector with Graphene and Au Nanoparticles. J. Power Sources 2016, 308, 65–74. [Google Scholar] [CrossRef]
- Zhang, R.; Wen, S.; Wang, N.; Qin, K.; Liu, E.; Shi, C.; Zhao, N. N-Doped Graphene Modified 3D Porous Cu Current Collector toward Microscale Homogeneous Li Deposition for Li Metal Anodes. Adv. Energy Mater. 2018, 8, 201800914. [Google Scholar] [CrossRef]
- Yang, G.; Chen, J.; Xiao, P.; Agboola, P.O.; Shakir, I.; Xu, Y. Graphene Anchored on Cu Foam as a Lithiophilic 3D Current Collector for a Stable and Dendrite-Free Lithium Metal Anode. J. Mater. Chem. A 2018, 6, 9899–9905. [Google Scholar] [CrossRef]
- Rytel, K.; Waszak, D.; Kędzierski, K.; Wróbel, D. Novel Method of Current Collector Coating by Multiwalled Carbon Nanotube Langmuir Layer for Enhanced Power Performance of LiMn2O4 Electrode of Li-Ion Batteries. Electrochim. Acta 2016, 222, 921–925. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, C.; Sun, Y.; Yi, R.; Cai, Y.; Li, Y.; Mitrovic, I.; Taylor, S.; Chalker, P.; Yang, L.; et al. 3D-Structured Multi-Walled Carbon Nanotubes/Copper Nanowires Composite as a Porous Current Collector for the Enhanced Silicon-Based Anode. J. Alloys Compd. 2019, 803, 505–513. [Google Scholar] [CrossRef]
- Ventrapragada, L.K.; Creager, S.E.; Rao, A.M.; Podila, R. Carbon Nanotubes Coated Paper as Current Collectors for Secondary Li-Ion Batteries. Nanotechnol. Rev. 2019, 8, 18–23. [Google Scholar] [CrossRef]
- Shimizu, M.; Ohnuki, T.; Ogasawara, T.; Banno, T.; Arai, S. Electrodeposited Cu/MWCNT Composite-Film: A Potential Current Collector of Silicon-Based Negative-Electrodes for Li-Ion Batteries. RSC Adv. 2019, 9, 21939–21945. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, B.; Hitz, E.; Luo, W.; Yao, Y.; Li, Y.; Dai, J.; Chen, C.; Wang, Y.; Yang, C.; et al. A Carbon-Based 3D Current Collector with Surface Protection for Li Metal Anode. Nano Res. 2017, 10, 1356–1365. [Google Scholar] [CrossRef]
- Wang, K.; Wu, Y.; Wu, H.; Luo, Y.; Wang, D.; Jiang, K.; Li, Q.; Li, Y.; Fan, S.; Wang, J. Super-Aligned Carbon Nanotube Films with a Thin Metal Coating as Highly Conductive and Ultralight Current Collectors for Lithium-Ion Batteries. J. Power Sources 2017, 351, 160–168. [Google Scholar] [CrossRef]
- Li, N.; Jia, T.; Liu, Y.; Ouyang, Y.; Lv, Y.; Zhong, G.; Wang, Y.; Sun, B.; Lu, S.; Huang, S.; et al. Super-Three-Dimensional Lithiophilic Cu-Based Current Collector for Anode-Free Lithium Metal Battery. Mater. Today Energy 2023, 36, 101341. [Google Scholar] [CrossRef]
- Inamoto, J.; Enoki, S.; Inoo, A.; Tamura, N.; Matsuo, Y. Promise of Dual Carbon Batteries with Graphene-like Graphite as Both Electrodes. Carbon 2024, 216, 118512. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, H. Minimizing the Volume Expansion by a Self-Standing Reduced Graphene Oxide/Silicon Nanoparticles/Copper Mesh Hybrid Electrodes for Enhanced Lithium-Ion Batteries. J. Energy Storage 2023, 64, 107202. [Google Scholar] [CrossRef]
- Kang, C.; Lahiri, I.; Baskaran, R.; Kim, W.G.; Sun, Y.K.; Choi, W. 3-Dimensional Carbon Nanotube for Li-Ion Battery Anode. J. Power Sources 2012, 219, 364–370. [Google Scholar] [CrossRef]
- Ichikawa, T.; Shimizu, N.; Ishikawa, K.; Hiramatsu, M.; Hori, M. Synthesis of Isolated Carbon Nanowalls via High-Voltage Nanosecond Pulses in Conjunction with CH4/H2 Plasma Enhanced Chemical Vapor Deposition. Carbon 2020, 161, 403–412. [Google Scholar] [CrossRef]
- Vishal, B.; Reguig, A.; Bahabri, M.; Costa, P.M.F.J. Graphene Nanowalls Formation Investigated by Electron Energy Loss Spectroscopy. Sci. Rep. 2024, 14, 1658. [Google Scholar] [CrossRef]
- Mori, S.; Ueno, T.; Suzuki, M. Synthesis of Carbon Nanowalls by Plasma-Enhanced Chemical Vapor Deposition in a CO/H2 Microwave Discharge System. Diam. Relat. Mater. 2011, 20, 1129–1132. [Google Scholar] [CrossRef]
- Lee, S.; Kwon, S.; Kim, K.; Kang, H.; Ko, J.M.; Choi, W. Preparation of Carbon Nanowall and Carbon Nanotube for Anode Material of Lithiumion Battery. Molecules 2021, 26, 6950. [Google Scholar] [CrossRef]
- Yerlanuly, Y.; Zhumadilov, R.; Nemkayeva, R.; Uzakbaiuly, B.; Beisenbayev, A.R.; Bakenov, Z.; Ramazanov, T.; Gabdullin, M.; Ng, A.; Brus, V.V.; et al. Physical Properties of Carbon Nanowalls Synthesized by the ICP-PECVD Method vs. the Growth Time. Sci. Rep. 2021, 11, 19287. [Google Scholar] [CrossRef]
- Zhumadilov, B.; Kenzhegulov, A.; Nemkayeva, R.; Partizan, G.; Yerlanuly, Y.; Gadbullin, M. Synthesis of Carbon Nanowalls by Oxy-Acetylene Torch Method. J. Met. Mater. Miner. 2023, 33, 1806. [Google Scholar] [CrossRef]
- Wang, M.; Yang, H.; Wang, K.; Chen, S.; Ci, H.; Shi, L.; Shan, J.; Xu, S.; Wu, Q.; Wang, C.; et al. Quantitative Analyses of the Interfacial Properties of Current Collectors at the Mesoscopic Level in Lithium Ion Batteries by Using Hierarchical Graphene. Nano Lett. 2020, 20, 2175–2182. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Bon, C.Y.; Kim, J.; Ko, J.M.; Choi, W. Carbon Nanowalls as Anode Materials with Improved Performance Using Carbon Nanofibers. Nanomaterials 2023, 13, 2622. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Zhou, Z.; Man, P.; Zhang, Q.; Li, C.; Xie, L.; Wang, X.; Li, Q.; Yao, Y. V2O5 Nanosheets Supported on 3D N-Doped Carbon Nanowall Arrays as an Advanced Cathode for High Energy and High Power Fiber-Shaped Zinc-Ion Batteries. J. Mater. Chem. A 2019, 7, 12979–12986. [Google Scholar] [CrossRef]
- Mishra, K.K.; Ghosh, S.; Ravindran, T.R.; Amirthapandian, S.; Kamruddin, M. Thermal Conductivity and Pressure-Dependent Raman Studies of Vertical Graphene Nanosheets. J. Phys. Chem. C 2016, 120, 25092–25100. [Google Scholar] [CrossRef]
- Han, C.P.; Veeramani, V.; Hsu, C.C.; Jena, A.; Chang, H.; Yeh, N.C.; Hu, S.F.; Liu, R.S. Vertically-Aligned Graphene Nanowalls Grown via Plasma-Enhanced Chemical Vapor Deposition as a Binder-Free Cathode in Li-O2 Batteries. Nanotechnology 2018, 29, 505401. [Google Scholar] [CrossRef]
- Zhu, R.; Mabuchi, Y.; Vishwakarma, R.; Jaisi, B.P.; Li, H.; Naito, M.; Umeno, M.; Soga, T. Enhancing In-Plane Uniformity of Graphene Nanowalls Using a Rotating Platform for Solid-State Lithium-Ion Battery. AIMS Mater. Sci. 2024, 11, 760–773. [Google Scholar] [CrossRef]
- Tran Thi, M.; Kim, C.; Kwon, S.; Kang, H.; Ko, J.M.; Kim, J.; Choi, W. Investigation of the Properties of Anode Electrodes for Lithium–Ion Batteries Manufactured Using Cu, and Si-Coated Carbon Nanowall Materials. Energies 2023, 16, 1935. [Google Scholar] [CrossRef]
- Krivchenko, V.A.; Itkis, D.M.; Evlashin, S.A.; Semenenko, D.A.; Goodilin, E.A.; Rakhimov, A.T.; Stepanov, A.S.; Suetin, N.V.; Pilevsky, A.A.; Voronin, P.V. Carbon Nanowalls Decorated with Silicon for Lithium-Ion Batteries. Carbon 2012, 50, 1438–1442. [Google Scholar] [CrossRef]
- Lin, G.; Wang, H.; Zhang, L.; Cheng, Q.; Gong, Z.; Ostrikov, K. Graphene Nanowalls Conformally Coated with Amorphous/ Nanocrystalline Si as High-Performance Binder-Free Nanocomposite Anode for Lithium-Ion Batteries. J. Power Sources 2019, 437, 226909. [Google Scholar] [CrossRef]
- Kulczyk-Malecka, J.; dos Santos, I.V.J.; Betbeder, M.; Rowley-Neale, S.J.; Gao, Z.; Kelly, P.J. Low-Temperature Synthesis of Vertically Aligned Graphene through Microwave-Assisted Chemical Vapour Deposition. Thin Solid. Film. 2021, 733, 138801. [Google Scholar] [CrossRef]
- Wang, K.; Wang, C.; Yang, H.; Wang, X.; Cao, F.; Wu, Q.; Peng, H. Vertical Graphene Nanosheetsmodified Al Current Collectors for High-Performance Sodium-Ion Batteries. Nano Res. 2020, 13, 1948–1954. [Google Scholar] [CrossRef]
- Ji, P.; Chen, J.; Huang, T.; Jin, C.; Zhuge, L.; Wu, X. Fast Preparation of Vertical Graphene Nanosheets by Helicon Wave Plasma Chemical Vapor Deposition and Its Electrochemical Performance. Diam. Relat. Mater. 2020, 108, 107958. [Google Scholar] [CrossRef]
- Hu, S.; Wang, D.; Večerník, J.; Křemenáková, D.; Militký, J. Electromagnetic Interference (EMI) Shielding and Thermal Management of Sandwich-Structured Carbon Fiber-Reinforced Composite (CFRC) for Electric Vehicle Battery Casings. Polymers 2024, 16, 2291. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, H.; Luo, K.; Mao, W.; Xu, Y.; Zhang, J.; Ge, J.; Li, Y.; Yang, Y.; Wu, T. Synthesis of High-Quality Vertical Graphene Nanowalls on Metal Foams and Their Applications in EMI Shielding. Mater. Today Commun. 2022, 33, 104608. [Google Scholar] [CrossRef]
Requirement | Details |
---|---|
Electrical Requirements | High conductivity to minimize ohmic losses and maintain efficient charge transfer under repeated cycling. |
Mechanical Requirements | Must resist cracking, deformation, and delamination during cycling; flexibility is essential for wearable applications. |
Chemical Requirements | Resistant to corrosion and oxidation; maintain conductivity in reactive environments. |
Thermal Requirements | Manage heat dissipation effectively to prevent thermal runaway and maintain structural integrity under high-power operations. |
Coating Materials | Methods | Substrates | Notes | Ref. |
---|---|---|---|---|
Amorphous Carbon | CVD | Al | Enhanced cycling stability Reduced interface resistance | [43] |
Amorphous Carbon | High-temperature CVD | Al and Cu | Reduced interface resistance Increased capacity at a high charge–discharge rate | [44] |
Amorphous Carbon | Magnetron Sputtering | Cu | Improved capacity retention | [45] |
Amorphous Carbon | Pyrolysis of resorcinol formaldehyde | Cu mesh | Reduced nucleation overpotential Enhanced Coulombic efficiency Prolonged cycle life | [61] |
Amorphous Carbon | Carbonization of PAN | Porous Al | Enhanced mechanical stability Improved high-rate performance | [46] |
Hollow carbon nanosphere | Template synthesis | Cu | Dendrite-free Li metal anodes Improved Coulombic efficiency | [47] |
Graphene | CVD | Al | Improved corrosion resistance Enhanced performance at high voltages | [48] |
Graphene | High-temperature CVD | Cu | Improved adhesion with graphite Reduced contact resistance Enhanced cycle stability | [49] |
Graphene | CVD | Al | Enhanced corrosion resistance Improved rate and cycle performance | [50] |
Graphene | Low-pressure PVD | Cu | Reduced internal resistance Improved high-rate performance Cu oxidation prevention | [51] |
Graphene/ Au NP | CVD/ Au deposition | Cu | Increased electron transport Enhanced Li+ storage properties | [52] |
Graphene-like Graphite | Reduction in GO | Al mesh | Suppressed cross-talk reactions Efficient anion intercalation Stable cycling performance. | [62] |
N-doped Graphene | CVD | Porous Cu | Uniform Li deposition Improved cycling stability | [53] |
Graphene | Reduction in GO | Cu foam | Dendrite-free Li deposition Improved Coulombic efficiency | [54] |
Graphene/ Si | Reduction in GO | Cu mesh | High specific capacity Improved cycling stability Reduced charge transfer resistance | [63] |
MWCNT | Langmuir- Schaefer Method | Al | Reduced charge-transfer resistance Improved power performance of the cathodes | [55] |
MWCNT | Spin Coating | Cu Nanowire | Enhanced long-term cycling High specific capacity | [56] |
MWCNT/Cu | Electroplating | Cu | Increased cycling stability and charge capacity Enhanced conductivity | [58] |
MWCNT | CVD | Cu mesh | Enhanced specific capacity Improved cycling stability Higher capacity compared | [64] |
MWCNT | Spray Coating | Paper | 17% areal capacity improvement 450 cycles stability | [57] |
Coating Materials | Methods | Substrates | Notes | Ref. |
---|---|---|---|---|
CNW | PECVD | Cu | High-rate capability Enhanced charge–discharge performance | [14] |
CNW | PECVD | Si | Improved wall-to-wall distance control Optimized electron pathway | [65] |
CNW | PECVD | Al | Reduced interfacial resistance Enhanced power performance | [71] |
CNW | PECVD | Ni foam | Reduced charge overpotential Improved electron transfer | [75] |
CNW | Microwave plasma CVD (MWCVD) | Stainless Steel | Enhanced anode-specific capacity Better electrolyte integration | [76] |
CNW/CNFs | PECVD | Al | Enhanced charge–discharge Enhanced cycling stability | [72] |
V2O5/CNW | High-voltage PECVD | Carbon Nanofiber | Enhanced structural stability Reduced interfacial resistance | [73] |
CNW/Cu | PECVD | Cu | Enhanced electronic conductivity Reduced impedance | [77] |
CNW/Si | PECVD | Cu | High specific capacity Mitigated volume expansion Prolonged cycle life. | [77] |
CNW/Si | PECVD | Ti | High specific capacity Improved cycling stability | [78] |
CNW/Si | PECVD | Ni foam | Enhanced discharge capacity Improved capacity retention Stable cycling performance | [79] |
CNW/CNT | PECVD/ Drop casting | Cu Foil | Enhanced electrochemical performance | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, C.-M. Advances in Carbon Coatings for Current Collectors in Lithium-Ion Battery Applications: Focus on Three-Dimensional Carbon Nanowalls. Coatings 2025, 15, 86. https://doi.org/10.3390/coatings15010086
Han C-M. Advances in Carbon Coatings for Current Collectors in Lithium-Ion Battery Applications: Focus on Three-Dimensional Carbon Nanowalls. Coatings. 2025; 15(1):86. https://doi.org/10.3390/coatings15010086
Chicago/Turabian StyleHan, Cheol-Min. 2025. "Advances in Carbon Coatings for Current Collectors in Lithium-Ion Battery Applications: Focus on Three-Dimensional Carbon Nanowalls" Coatings 15, no. 1: 86. https://doi.org/10.3390/coatings15010086
APA StyleHan, C.-M. (2025). Advances in Carbon Coatings for Current Collectors in Lithium-Ion Battery Applications: Focus on Three-Dimensional Carbon Nanowalls. Coatings, 15(1), 86. https://doi.org/10.3390/coatings15010086