Microstructure and Corrosion Resistance of Composite Based on Ultra-High Molecular Weight Polyethylene in Acidic Media
Abstract
:1. Introduction
2. Materials and Methods of Research
2.1. Materials and Method of Production of UHMWPE-Based Composite
2.2. Test Methods
Resistance to Acidic Environment
2.3. Research Methods
2.3.1. IR Analysis
2.3.2. X-Ray Diffraction Analysis
2.3.3. SEM Analysis
3. Results and Discussion
3.1. SEM Analysis of Powders
3.2. Results of Determination of Composite Samples Stability in Acidic Environment
3.3. Results of IR Analysis
3.4. Results of X-Ray Diffraction Analysis
3.5. Results of SEM Analysis
- Availability and low cost of raw materials.
- Ease of integration into existing manufacturing processes.
- Versatility of application in various industries.
- Durability and resistance to chemical and mechanical stresses.
4. Conclusions
5. Future Research Area
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdul Samad, M. Recent Advances in UHMWPE/UHMWPE Nanocomposite/UHMWPE Hybrid Nanocomposite Polymer Coatings for Tribological Applications: A Comprehensive Review. Polymers 2021, 13, 608. [Google Scholar] [CrossRef]
- Baena, J.C.; Wu, J.; Peng, Z. Wear Performance of UHMWPE and Reinforced UHMWPE Composites in Arthroplasty Applications: A Review. Lubricants 2015, 3, 413–436. [Google Scholar] [CrossRef]
- Bracco, P.; Bellare, A.; Bistolfi, A.; Affatato, S. Ultra-High Molecular Weight Polyethylene: Influence of the Chemical, Physical and Mechanical Properties on the Wear Behavior. A Review. Materials 2017, 10, 791. [Google Scholar] [CrossRef]
- Pang, W.; Ni, Z.; Wu, J.; Zhao, Y. Investigation of tribological properties of graphene oxide reinforced ultrahigh molecular weight polyethylene under artificial seawater lubricating condition. Appl. Surf. Sci. 2018, 434, 273–282. [Google Scholar] [CrossRef]
- Armenovich, T.Z.K.; Dmitrievich, Z.A. Short Overview of Practical Application and Further Prospects of Materials Based on Crosslinked Polyethylene; Springer: Singapore, 2021; pp. 349–377. [Google Scholar] [CrossRef]
- Darvish, M.S. Behaviour of UHMWPE material in water supply systems with consideration of water quality. J. Pip. Syst. Eng. Pract. 2021, 12, 04021062. [Google Scholar] [CrossRef]
- Varley, R.J.; Leong, K.H. Polymeric Coatings for Oil Field Pipelines; Hughes, A.E., Mol, J.M.C., Zheludkevich, M.L., Buchheit, R.G., Eds.; Springer: New York, NY, USA, 2016; pp. 385–428. [Google Scholar]
- Skakov, M.; Tuyakbayev, B.; Kozhakhmetov, Y.; Sapatayev, Y. The Neutron Absorption Capacity of a Composite Material Based on Ultrahigh Molecular Weight Polyethylene Under Reactor Radiation Conditions. Polymers 2024, 16, 3425. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Ding, S.; Zheng, W.; Li, W.; Li, H. Microstructure and anti-wear and corrosion performances of novel HMWPE/grapheme-nanosheet composite coatings deposited by flame spraying. Polym. Adv. Technol. 2013, 24, 888–894. [Google Scholar] [CrossRef]
- Aliyu, I.K.; Mohammed, A.S. Wear and corrosion resistance performance of UHMWPE/GNPs nanocomposite coatings on AA2028 Al alloys. Prog. Org. Coat. 2021, 151, 106072. [Google Scholar] [CrossRef]
- Adesina, A.Y.; Khan, M.F.; Azam, M.U.; Samad, M.A.; Sorour, A.A. Characterization and corrosion resistance of ultra-high molecular weight polyethylene composite coatings reinforced with tungsten carbide particles in hydrochloric acid medium. J. Polym. Eng. 2019, 39, 861–873. [Google Scholar] [CrossRef]
- Chhetri, S.; Bougherara, H. A comprehensive review on surface modification of UHMWPE fiber and interfacial properties. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106146. [Google Scholar] [CrossRef]
- Dong, P.; Zhang, Q.; Wang, K.; Zhu, B.H.; Su, W.; Li, J.F. Pursuit of the correlation between yield strength and crystallinity in sintering-molded UHMWPE. Polymer 2021, 215, 123352. [Google Scholar] [CrossRef]
- Hussain, M.; Naqvi, R.A.; Abbas, N.; Khan, S.M.; Nawaz, S.; Hussain, A.; Zahra, N.; Khalid, M.W. Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a Promising Polymer Material for Biomedical Applications: A Concise Review. Polymers 2020, 12, 323. [Google Scholar] [CrossRef]
- Egorov, V.M.; Ivan’kova, E.M.; Kulik, V.B.; Lebedev, D.A.V.; Myasnikova, L.P.; Marikhin, V.A. Features of the amorphous-crystalline structure of UHMWPE. Polym. Sci. Ser. C 2011, 53, 75–88. [Google Scholar] [CrossRef]
- Patil, N.A.; Njuguna, J.; Kandasubramanian, B. UHMWPE for biomedical applications: Performance and functionalization. Eur. Polym. J. 2020, 125, 109529. [Google Scholar] [CrossRef]
- Paffenholtz, K.N. Diabase. In Geological Dictionary; 1978; Volume 2, Nedra. Available online: https://www.geolib.net/petrography/diabaz.html (accessed on 22 July 2023).
- Skakov, M.; Bayandinova, M.; Ocheredko, I.; Tuyakbayev, B.; Nurizinova, M.; Gradoboev, A. Influence of diabase Filler on the Structure and Tribological Properties of Coatings Based on Ultrahigh Molecular Weight Polyethylene. Polymers 2023, 15, 3465. [Google Scholar] [CrossRef]
- Skakov, M.K.; Ocheredko, I.A.; Bayandinova, M.B.; Tuyakbaev, B.T. The impact of technological parameters of the torch to physical and chemical properties of a gas-thermal burner for spraying ultra-high molecular weight polyethylene. Phys. Sci. Technol. 2022, 9, 59–68. [Google Scholar] [CrossRef]
- Skakov, M.; Ocheredko, I.; Tuyakbayev, B.; Bayandinova, M.; Nurizinova, M. Development and Studying of the Technology for Thermal Spraying of Coatings Made from Ultra-High-Molecular-Weight Polyethylene. Coatings 2023, 13, 698. [Google Scholar] [CrossRef]
- GOST 12020-2018 (ISO 175:2010) ISO 175:2010; Plastics-Methods of Test for the Determination of the Effects of Immersion in Liquid Chemicals. MOD. Moscow Standardinform: Moscow, Russia, 2021.
- Skakov, M.; Kantay, N.; Nurizinova, M.; Tuyakbaev, B.; Bayandinova, M. Influence of silicon oxide and diabase DB powders on the degree of crystallization and chemical structure of a polymer (UHMWPE) coating produced by the method of gas thermal spraying. Sci. J. Rep. Natl. Acad. Sci. Russ. Fed. 2022, 4, 153–163. [Google Scholar]
- Rakhadilov, B.; Muktanova, N.; Kakimzhanov, D.; Adilkanova, M.; Kurbanbekov, S.; Abdulina, S. Influence of Varying the Spraying Distance on the Structural-Phase State and Mechanotribological Properties of 86WC-10Co-4Cr-Based Coatings Obtained by the HVOF Method. Coatings 2024, 14, 264. [Google Scholar] [CrossRef]
- Rakhadilov, B.; Bayandinova, M.; Kussainov, R.; Maulit, A. Electrolyte-plasma surface hardening of hollow steel applicator needles for point injection of liquid mineral fertilizers. AIMS Mater. Sci. 2024, 11, 295–308. [Google Scholar] [CrossRef]
- Tudriy, E.V.; Galkina, I.V. Physico-Chemistry of Polymers; KFU Publishing House: Kazan, Russia, 2015; 45p. [Google Scholar]
- Mooiseev, Y.V.; Zaikov, G.E. Chemical Resistance of Polymers in Aggressive Media; Carr, S.H., Translator; American Scientist: Durham, NC, USA, 1991; p. 288. [Google Scholar]
- Hodul, J.; Mészárosová, L.; Žlebek, T.; Drochytka, R.; Dufek, Z. Impact of Aggressive Media on the Properties of Polymeric Coatings with Solidification Products as Fillers. Coatings 2019, 9, 793. [Google Scholar] [CrossRef]
- Sanchis, M.R.; Blanes, V.; Blanes, M.; Garcia, D.; Balart, R. Surface modification of low density polyethylene (LDPE) film by low pressure O2 plasma treatment. Eur. Polym. J. 2006, 42, 1558–1568. [Google Scholar] [CrossRef]
- Ye, S.Q.; He, F.; Chen, J.; Yang, H.; Liu, X.Q.; Xie, J.L. Effect of Al/Si on Structure and Properties of SiO2-Al2O3-MgO Glass. J. Wuhan Univ. Technol. 2017, 36, 22–25. [Google Scholar]
- Danilova, S.N.; Liansai, V.; Yang, C. Development of wear-resistant polymer-polymer composite materials based on UHMWPE. Metall. Mater. Sci. 2020, 25, 130–142. [Google Scholar]
- Skakov, M.; Ocheredko, I.A.; Tuyakbaev, B.T.; Bayandinova, M.B. Powder Material Based on Ultra-High Molecular Weight Polyethylene for Gas-Thermal Spraying of Polymer Coatings. Patent 8197, 23 June 2023. (In Russian). [Google Scholar]
- Kargin, V.A. Synthesis and Chemical Transformations of Polymers; Nauka: Moscow, Russia, 1981; 393p. (In Russian) [Google Scholar]
- Manas, D.; Ovsik, M.; Mizera, A.; Manas, M.; Hylova, L.; Bednarik, M.; Stanek, M. The Effect of Irradiation on Mechanical and Thermal Properties of Selected Types of Polymers. Polymers 2018, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Jose, S.; Parameswaranpillai, J.; Francis, B.; Aprem, A.S.; Thomas, S.L. Thermal degradation and crystallization characteristics of multiphase polymer systems with and without compatibilizer. AIMS Mater. Sci. 2016, 3, 1177–1198. [Google Scholar] [CrossRef]
- Jafari, S.H.; Javadpour, M.A.; Zebarjad, H.; Derakhshandeh, R.A.H. Effect of Acidic and Alkaline Solutions on the Mechanical Properties of Polypropylene Composites. J. Polym. Res. 2011, 18, 489–498. [Google Scholar]
- Smith, R.; Taylor, J. Chemical resistance and mechanical properties of polypropylene composites under acidic environments. J. Polym. Sci. 2021, 59, 456–468. [Google Scholar]
- Chen, Y.; Li, X.; Wu, L. Impact of Filler Particle Size and Content on Mechanical Properties of Polymer Composites. Compos. Sci. Technol. 2012, 72, 548–555. [Google Scholar]
- Zhao, Y.; Li, W. Effects of nanoparticle size and loading concentration on the properties of polymer-based composites. Adv. Mater. Sci. Eng. 2020, 34, 123–134. [Google Scholar]
Characteristics | Diabase (DB) | Graphene Nanosheets | Other Fillers (Glass Fibers, Carbon Fibers) |
---|---|---|---|
Chemical stability | Excellent | Excellent | Medium (environment dependent) |
Optimal concentration | 10%–20% | 0.5%–2% | 15%–30% |
Cost | Low | High | Medium (glass fiber), High (carbon fiber) |
Environmental friendliness | High | Moderate | Moderate |
10% HCl | 20% HCl | 10% H2SO4 | 20% H2SO4 | |
---|---|---|---|---|
Degree of swelling | 0.008536 | 0.026258 | 0.02119 | 0.035776 |
UHMWPE | UHMWPE + DB10 | UHMWPE + DB20 | UHMWPE + DB30 | UHMWPE + DB40 | |
---|---|---|---|---|---|
Degree of swelling | 0.02119 | 0.00598 | 0.01564 | 0.0329 | 0.058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skakov, M.; Bayandinova, M.; Kozhakhmetov, Y.; Tuyakbaev, B. Microstructure and Corrosion Resistance of Composite Based on Ultra-High Molecular Weight Polyethylene in Acidic Media. Coatings 2025, 15, 89. https://doi.org/10.3390/coatings15010089
Skakov M, Bayandinova M, Kozhakhmetov Y, Tuyakbaev B. Microstructure and Corrosion Resistance of Composite Based on Ultra-High Molecular Weight Polyethylene in Acidic Media. Coatings. 2025; 15(1):89. https://doi.org/10.3390/coatings15010089
Chicago/Turabian StyleSkakov, Mazhyn, Moldir Bayandinova, Yernat Kozhakhmetov, and Bauyrzhan Tuyakbaev. 2025. "Microstructure and Corrosion Resistance of Composite Based on Ultra-High Molecular Weight Polyethylene in Acidic Media" Coatings 15, no. 1: 89. https://doi.org/10.3390/coatings15010089
APA StyleSkakov, M., Bayandinova, M., Kozhakhmetov, Y., & Tuyakbaev, B. (2025). Microstructure and Corrosion Resistance of Composite Based on Ultra-High Molecular Weight Polyethylene in Acidic Media. Coatings, 15(1), 89. https://doi.org/10.3390/coatings15010089