The Influence of Roughness of Surfaces on Wear Mechanisms in Metal–Rock Interactions
Abstract
:1. Introduction
2. Rock Classification and Its Relevance to Tool Selection
Abrasivity Group, J | Abrasivity Index, A | Abrasivity Index, B | Rock Characteristic |
---|---|---|---|
1 | 3−4.2 | <5 | Very low abrasiveness |
2 | 4.2−6 | 5−10 | Very low abrasiveness |
3 | 6−8.5 | 10−18 | Lower-than-average abrasiveness |
4 | 8.5−12 | 18−30 | Average abrasiveness |
5 | 12−17 | 30−45 | Higher-than-average abrasiveness |
6 | 17−24 | 45−65 | Abrasiveness |
7 | 24−34 | 65−90 | High abrasiveness |
8 | 34−48 | >90 | Extreme abrasiveness |
3. Materials and Methods
3.1. Materials
3.2. Estimation of Rock Hardness and Abrasivity
3.3. Tribological Testing Analysis
4. Results
5. Discussion
- -
- Rocks with very low roughness, where roughness increase is below 10%;
- -
- Rocks with low roughness, where roughness increase is between 10%–25%;
- -
- Rocks with medium roughness, where roughness increase is between 25%–40%;
- -
- Rocks with high roughness, where roughness increase is between 40%–55%;
- -
- Rocks with very high roughness, where roughness increase is above 55%.
6. Conclusions
- Regarding the correlation between rock properties and wear, it has been demonstrated that there exists a direct link between the physical and mechanical properties of rocks (hardness, porosity, mineralogical composition) and their ability to induce wear on metallic surfaces. Rocks with higher abrasivity lead to a faster wear rate of metal tools.
- The surface roughness of the rock significantly influences wear mechanisms. A higher roughness can accelerate the wear process by facilitating adhesion between rock particles and the metallic surface.
- There is significant variability in the results, even for the same rock type. This can be attributed to differences in structure, mineralogical composition, and the presence of internal defects. The increase in roughness is explained by mechanisms such as microchipping, abrasion, and the formation of surface cracks and fissures. Rock roughness is influenced by a multitude of factors beyond abrasivity. Factors such as crystalline structure, fractures, pores, and weathering and erosion processes play a significant role.
- In this study, a novel classification of rocks is proposed, categorized by their capacity to induce wear. This classification is grounded in experimental measurements and an analysis of the physical and mechanical properties of rocks. The proposed classification can be instrumental in selecting optimal materials for the cutting tools of technological equipment and optimizing operational parameters.
- Abrasive wear mechanisms can significantly degrade the service life and performance of equipment utilized in rock excavation operations. Suboptimal material selection and process parameters can exacerbate maintenance costs and curtail productivity.
- A thorough understanding of wear phenomena necessitates an interdisciplinary perspective encompassing geological, materials science, and tribological principles.
- The outcomes of this investigation can be leveraged to optimize rock-cutting and processing procedures by facilitating the selection of suitable tool materials and the establishment of optimal process parameters. Through the minimization of tool wear, significant reductions in operational and maintenance expenses can be attained.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, X.D.; Peng, Y.X.; Zhu, Z.C.; Gong, X.S.; Yu, Z.F.; Mi, Z.T.; Xu, C.M. Effects of Strand Lay Direction and Crossing Angle on Tribological Behavior of Winding Hoist Rope. Materials 2017, 10, 630. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, B.; Liu, Y.; Cai, Y.; Hu, C. Research on friction and wear behavior of gradient nano-structured 40Cr steel induced by high frequency impacting and rolling. Eng. Fail. Anal. 2018, 83, 167–177. [Google Scholar] [CrossRef]
- Pavelescu, D. Tribotehnica; Editura tehnică: București, Romania, 1983. [Google Scholar]
- Chang, X.-D.; Peng, Y.-X.; Zhu, Z.-C.; Zou, S.-Y.; Gong, X.-S.; Xu, C.-M. Evolution Properties of Tribological Parameters for Steel Wire Rope under Sliding Contact Conditions. Metals 2018, 8, 743. [Google Scholar] [CrossRef]
- Ertugrul, G.; Hälsig, A.; Hensel, J.; Buhl, J.; Härtel, S. Efficient Multi-Material and High Deposition Coating including Additive Manufacturing by Tandem Plasma Transferred Arc Welding for Functionally Graded Structures. Metals 2022, 12, 1336. [Google Scholar] [CrossRef]
- Mohamed, Z.; Mohamed, K.; Chun, G. Uniaxial Compressive Strength of Composite Rock Material with respect to Shale Thickness Ratio and Moisture Content. Electron. J. Geotech. Eng. 2008, 13, ppr0750. [Google Scholar]
- Liu, J.; Wang, E.; Song, D.; Wang, S.; Niu, Y. Effect of rock strength on failure mode and mechanical behavior of composite samples. Arab. J. Geosci. 2014, 8, 4527–4539. [Google Scholar] [CrossRef]
- Tuğrul, A.; Zarif, I. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng. Geol. 1999, 51, 303–317. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. 1997, 34, 1165–1186. [Google Scholar] [CrossRef]
- Hoek, E.; Marinos, P.G.; Marinos, V.P. Characterisation and engineering properties of tectonically undisturbed but lithologically varied sedimentary rock masses. Int. J. Rock Mech. Min. Sci. 2005, 42, 277–285. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Nie, C.; Gong, P.; Yang, J.; Hu, Z.; Li, B.; Ma, M. Research Progress on the Wear Resistance of Key Components in Agricultural Machinery. Materials 2023, 16, 7646. [Google Scholar] [CrossRef]
- Cross, R. Effects of surface roughness on rolling friction. Eur. J. Phys. 2015, 36, 065029. [Google Scholar] [CrossRef]
- Tomáš, M.; Németh, S.; Evin, E.; Hollý, F.; Kundracik, V.; Kulya, J.M.; Buber, M. Comparison of friction properties of GI steel plates with various surface treatments. Lubricants 2024, 12, 198. [Google Scholar] [CrossRef]
- Brase, M.; Binder, J.; Jonkeren, M.; Wangenheim, M. A generalised method for friction optimisation of surface textured seals by machine learning. Lubricants 2024, 12, 20. [Google Scholar] [CrossRef]
- Motamedi, N.; Magnier, V.; Wannous, H. Towards the identification of the link between the contact roughness and the friction-induced vibration: Use of deep learning. Eur. J. Mech. A Solids 2023, 99, 104949. [Google Scholar] [CrossRef]
- Pearson, S.R.; Shipway, P.H.; Abere, J.O.; Hewitt, R.A.A. The effect of temperature on wear and friction of a high strength steel in fretting. Wear 2013, 303, 622–631. [Google Scholar] [CrossRef]
- Tröber, P.; Welm, M.; Weiss, H.A.; Demmel, P.; Golle, R.; Volk, W. The influence of process parameters and sheet material on the temperature development in the forming zone. Manuf. Rev. 2019, 6, 9. [Google Scholar] [CrossRef]
- Wang, X.Y.; Meng, X.B.; Wang, J.X.; Sun, Y.H.; Gao, K. Mathematical modeling and geometric analysis for wire rope strands. Appl. Math. Model. 2015, 39, 1019–1032. [Google Scholar] [CrossRef]
- Liu, J.; He, T.; Peng, X.; Pan, Y. Evaluation of TBM Cutter Wear in Granite and Developing a Cutter Life Prediction Model for Face Cutters Based on Field Data: A Case Study. Buildings 2024, 14, 2453. [Google Scholar] [CrossRef]
- Zhu, M.; Lu, X.; Li, H.; Cao, H.; Wu, F. Applicability Analysis of Nickel Steel Plate Friction Coefficient Model Based on Fractal Theory. Coatings 2023, 13, 1096. [Google Scholar] [CrossRef]
- Lavrys, S.; Pohrelyuk, I.; Padgurskas, J.; Shliakhetka, K. Improving Wear Resistance of Highly Porous Titanium by Surface Engineering Methods. Coatings 2023, 13, 1714. [Google Scholar] [CrossRef]
- Vaz, R.F.; Silvello, A.; Albaladejo, V.; Sanchez, J.; Cano, I.G. Improving the Wear and Corrosion Resistance of Maraging Part Obtained by Cold Gas Spray Additive Manufacturing. Metals 2021, 11, 1092. [Google Scholar] [CrossRef]
- Chang, X.D.; Peng, Y.X.; Zhu, Z.C.; Gong, X.S.; Yu, Z.F.; Mi, Z.T.; Xu, C.M. Experimental investigation of mechanical response and fracture failure behavior of wire rope with different given surface wear. Tribol. Int. 2018, 119, 208–221. [Google Scholar] [CrossRef]
- Peng, Y.X.; Chang, X.D.; Zhu, Z.C.; Wang, D.G.; Gong, X.S.; Zou, S.Y.; Sun, S.S.; Xu, W.X. Sliding friction and wear behavior of winding hoisting rope in ultra-deep coal mine under different conditions. Wear 2016, 368, 423–434. [Google Scholar]
- Rupar, V.; Čebašek, V.; Milisavljević, V.; Stevanović, D.; Živanović, N. Determination of Mechanical Properties of Altered Dacite by Laboratory Methods. Minerals 2021, 11, 813. [Google Scholar] [CrossRef]
- Tziallas, G.; Saroglou, H.; Tsiambaos, G. Determination of mechanical properties of flysch using laboratory methods. Eng. Geol. 2013, 166, 81–89. [Google Scholar] [CrossRef]
- Duffault, P. Structural weaknesses in rocks and rock masses: Tentative classification and behaviour. In Proceedings of the ISRM International Symposium, Tokyo, Japan, 21–24 June 1981. [Google Scholar]
- Goodman, R.E. Engineering Geology; John Wiley & Sons: Hoboken, NJ, USA, 1993. [Google Scholar]
- Liu, Q.S.; Huang, X.; Gong, Q.M.; Du, L.J.; Pan, Y.C.; Liu, J.P. Application and development of hard rock TBM and its prospect in China. Tunn. Undergr. Space Technol. 2016, 57, 33–46. [Google Scholar] [CrossRef]
- Ma, X.; Cheng, W.; Zhu, L. Study and Application of Rock Drilling Resistance Characteristics in the Jiyang Depression Formation. Processes 2024, 12, 952. [Google Scholar] [CrossRef]
- Chlahbi, S.; Belem, T.; Elghali, A.; Rochdane, S.; Zerouali, E.; Inabi, O.; Benzaazoua, M. Geological and Geomechanical Characterization of Phosphate Mine Waste Rock in View of Their Potential Civil Applications: A Case Study of the Benguerir Mine Site, Morocco. Minerals 2023, 13, 1291. [Google Scholar] [CrossRef]
- Kovacs, I.; Iliaș, N.; Nan, M.S. Regimul de Lucru al Combinelor Miniere; Editura Universitas: Petroșani, Romania, 2000. [Google Scholar]
- Popa, A.; Rotunjanu, I.; Arad, V.; Gâf-Deac, I. Exploatări Miniere; Editura didactică și pedagogică, R.A.: București, Romania, 1993. [Google Scholar]
- Oparin, V.N.; Tanaino, A.S. A new method to test rock abrasiveness based on physico-mechanical and structural properties of rocks. J. Rock Mech. Geotech. Eng. 2015, 7, 250–255. [Google Scholar] [CrossRef]
- Available online: https://dot.ca.gov/-/media/dot-media/programs/engineering/documents/californiatestmethods-ctm/ctm-211-dec1995-a11y.pdf (accessed on 9 September 2024).
- Toderaş, M.; Moraru, R.I.; Danciu, C.; Buia, G.; Cioca, L.-I. Model to Assess the Quality of Magmatic Rocks for Reliable and Sustainable Constructions. Sustainability 2017, 9, 1925. [Google Scholar] [CrossRef]
- Mucha, K. Application of Rock Abrasiveness and Rock Abrasivity Test Methods—A Review. Sustainability 2023, 15, 11243. [Google Scholar] [CrossRef]
- Voit, K.; Zeman, O.; Gappmaier, P.; Wriessnig, K.; Adamcova, R. Influence of Measurement Uncertainty in the Determination of Selected Rock Parameters—A Realistic Approach. Materials 2023, 16, 3045. [Google Scholar] [CrossRef] [PubMed]
- Bieniawaski, Z. Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil and Petroleum Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1989; p. 251. [Google Scholar]
- Price, D.G. Engineering Geology: Principles and Practice; Springer: Berlin, Germany, 2009; ISBN 978-3-540-29249-4. [Google Scholar]
- Ugur, I.; Demirdag, S.; Yavuz, H. Effect of rock properties on the Los Angeles abrasion and impact test characteristics of the aggregates. Mater. Charact. 2009, 61, 90–96. [Google Scholar] [CrossRef]
- Yin, N.; Yang, P.; Liu, S.; Pan, S.; Zhang, Z. AI for tribology: Present and future. Friction 2024, 12, 1060–1097. [Google Scholar] [CrossRef]
- Seshacharyulu, K.; Bandhavi, C.; Naik, B.B.; Rao, S.S.; Singh, S.K. Understanding Friction in sheet metal forming—A review. Mater. Today Proc. 2018, 5, 13238–18244. [Google Scholar] [CrossRef]
- Freschi, M.; Paniz, A.; Cerqueni, E.; Colella, G.; Dotelli, G. The twelve principles of green tribology: Studies, research, and case studies—A brief anthology. Lubricants 2022, 10, 129. [Google Scholar] [CrossRef]
- Petrica, M.; Badisch, E.; Peinsitt, T. Abrasive wear mechanisms and their relation to rock properties. Wear 2013, 308, 86–94. [Google Scholar] [CrossRef]
- Wieczorek, A.N.; Jonczy, I.; Filipowicz, K.; Kuczaj, M.; Pawlikowski, A.; Mucha, K.; Gerle, A. Effect of the Mineralogical Composition of Sandstones on the Wear of Mining Machinery Components. Coatings 2024, 14, 859. [Google Scholar] [CrossRef]
- Barros, G.H.C.; Schramm, C.R.; Franco, S.D.; Arantes, L.J.; Arencibia, R.V. Effect of grain size and number of strokes on Rk parameters and emptiness coefficient in honing process. Int. J. Adv. Manuf. Technol. 2019, 103, 3717–3734. [Google Scholar] [CrossRef]
- Wei, T.; Zhou, Z.; Ling, X.; Lv, M.; Di, Y.; Qin, K.; Zhou, Q. A Study of the Effect of Roughness on the Three-Body Wear Mechanism from a Microscopic Point of View: Asperity Peak Removal. Metals 2024, 14, 1385. [Google Scholar] [CrossRef]
- Karaca, Z.; Günes Yılmaz, N.; Goktan, R.M. Considerations on the European Standard EN 14157 Test Methods: Abrasion Resistance of Natural Stones Used for Flooring in Buildings. Rock. Mech. Rock. Eng. 2012, 45, 103–111. [Google Scholar] [CrossRef]
- Gates, J.D.; Dargusch, M.S.; Walsh, J.J.; Field, S.L.; Hermand, M.J.-P.; Delaup, B.G.; Saad, J.R. Effect of abrasive mineral on alloy performance in the ball mill abrasion test. Wear 2008, 265, 865–870. [Google Scholar] [CrossRef]
- Yusof, N.Q.A.M.; Zabidi, H. Correlation of Mineralogical and Textural Characteristics with Engineering Properties of Granitic Rock from Hulu Langat, Selangor. Procedia Chem. 2016, 19, 975–980. [Google Scholar] [CrossRef]
Rock Category | Nature of Rocks and Useful Mineral Substances | Mechanical Work Input Necessary for the Perforation of a 1 cm3 Cavity (daNm) | Compressive Breaking Strength (MPa) | Impact Strength (MPa) |
---|---|---|---|---|
I | Extremely hard and compact quartzites | 170 | 300 | 3.0 |
II | Extremely hard basalts, andesites, diabases, diorites, and highly compact conglomeratic granulites | 155 | 240 | 2.4 |
III | Very hard granites, quartzites, and siliceous schists | 135 | 220 | 2.2 |
IV | Very hard grauwacke, gneisses, basalts, porphyries, and amphibolites | 118 | 200 | 2.0 |
V | Hard granites and gneisses, syenites, porphyrites, and amphibolites | 103 | 180 | 1.8 |
VI | Very hard limestones and sandstones, and hard conglomerates | 93 | 160 | 1.6 |
VII | Hard granites, semi-hard granites, grauwacke, very hard siderite, and sandstones | 80 | 140 | 1.4 |
VIII | Hard limestones, semi-hard gneisses and porphyrites, and hard schists | 70 | 120 | 1.2 |
IX | Marble, semi-hard limestones, dolomites, hard siderite, and magnesite | 58 | 100 | 1.0 |
X | Semi-hard siderites, soft limestones, and semi-hard sandstones | 47 | 80 | 0.8 |
XI | Sandy shales, stratified soft sandstones | 35 | 60 | 0.6 |
XII | Hard argillaceous shales, soft sandstones, and gypsum | 22 | 40 | 0.4 |
XIII | Coal | 10 | 20 | 0.2 |
Rock Class | Mohs Hardness | Compressive Strength (MPa) |
---|---|---|
Very soft rocks | 1–2 | <10 |
Soft rocks | 2–3 | 10–70 |
Semi-hard rocks | 3–5 | 70–150 |
Hard rocks | 5–6 | 150–250 |
Very hard rocks | 6 | >250 |
Rock Category | Degree of Hardness | The Nature of Rocks and Useful Minerals | Strength Coefficient, f |
---|---|---|---|
I | Extremely hard rocks | Quartzites and basalts, the hardest and most compact | 20 |
II | Very hard rocks | Very hard granitic rocks, quartz porphyries, very hard granites, quartz schists, less hard quartzites, very hard sandstones and limestones | 15 |
III | Hard rocks | Compact granite and granitic rocks, very hard limestones and sandstones, very hard conglomerates, very hard iron ores | 10 |
Hard limestones, softer granite, hard sandstones, hard marbles, dolomites, pyrites | 8 | ||
IV | Fairly hard rocks | Normal sandstones, iron ore | 6 |
Sandy shales, shaley sandstones | 5 | ||
V | Semi-hard rocks | Hard clay shale, softer sandstones, and limestones, weakly consolidated conglomerates | 4 |
Different, slightly hard shales, compact marl | 3 | ||
VI | Moderately soft rocks | Soft shale, very soft limestone, chalk, rock salt, gypsum, frozen ground, anthracite, ordinary marl, weathered sandstone, stony ground | 2 |
Less soft stony ground, weathered shale, compacted gravel and ballast, hard coal, hardened clay | 1.5 | ||
VII | Soft rocks | Compact clay, soft coal, hard alluvium, clayey soils | 1 |
Slightly sandy clay, loess, gravel (ballast), friable coal | 0.8 | ||
VIII | Earthy rocks | Vegetal soil, Peat, clayey soil, wet sand | 0.6 |
IX | Weathered rocks | Sand, debris, fine gravel, fill soil, lump or crushed coal | 0.5 |
X | Flow rocks | Quicksand, swampy terrain, saturated loess, and other waterlogged and muddy lands | 0.3 |
Rock Name | Structure | Texture | Mineralogical Composition | Section |
---|---|---|---|---|
Soimos Granite 1 | Holocrystalline, granular hypidiomorphic, slightly porphyritic | Unoriented (massive), compact | Quartz, orthose, plagioclase feldspar, biotite, opaque minerals, sericite, kaolinite | |
Soimos Granite 2 | Holocrystalline, hypidiomorphic granular, slightly porphyroidic | Uunoriented (massive), compact | Quartz, orthose, plagioclase feldspar, biotite, opaque minerals, secondary minerals | |
Săvârşin Granite | Holocrystalline, granular hypidiomorphic, slightly porphyroidic | Unoriented (massive), compact | Quartz, orthoclase feldspar (orthose), acid plagioclase feldspar, biotite, zircon, opaque minerals, sericite, kaolinite, limonite | |
Soimos Diorite | Holocrystalline, granular hypidiomorphic | Unoriented (massive), compact | Intermediate plagioclase feldspar, pyroxenes (augite and diopside) biotite, quartz, opaque minerals, limonite | |
Cazanesti Gabbrou | Holocrystalline, hypidiomorphic and allotriomorphic | Unoriented (massive), compact | Basic plagioclase feldspar, augite, olivine, secondary minerals, saussurite | |
Albinii-Haneș Andesite | Hypocrystalline (semicrystalline), porphyry vitreous | Unoriented (massive), compact | Neutral plagioclase feldspar, hornblende, microlitic, volcanic glass, secondary and opaque minerals | |
Roșia Poieni Andesite | Hypocrystalline (semicrystalline), porphyry vitreous | Unoriented (massive), compact | Neutral plagioclase feldspar, hornblende, microlitic vitreous paste, kaolinite, sericite, calcite, pyrite |
Rock Type | Hardness, Δ | Abrasivity Coefficient, mg |
---|---|---|
Soimos Granite 1 | 5.888 | 56.43 |
Soimos Granite 2 | 6.526 | 60.86 |
Săvârşin Granite | 6.495 | 55.71 |
Soimos Diorite | 5.840 | 47.93 |
Cazanesti Gabbrou | 5.355 | 43.25 |
Albinii-Haneș Andesite | 5.028 | 41.10 |
Roșia Poieni Andesite | 4.951 | 32.56 |
Rock Name | Mohs Hardness, Δ | Abrasivity (Baron Method), Kabr (mg) | Protodiakonov Strength Coefficient, f | Compressive Strength, σrc (N/mm2) |
---|---|---|---|---|
Gabbro | 5.355 | 43.25 | 15.017 | 150.17 |
Granite | 6.526 | 60.86 | 21.222 | 212.22 |
Albinii-Haneș Andesite | 5.028 | 41.10 | 14.240 | 142.4 |
Roșia Poieni Andesite | 4.951 | 32.56 | 12.963 | 129.63 |
Limestone | 3.526 | 21.83 | 7.81 | 78.11 |
Sandstone | 4.536 | 30.18 | 11.04 | 110.43 |
Marble | 4.025 | 30.63 | 11.24 | 112.42 |
Rock Name | Load N | Number of Cycles | Coefficient of Friction | Initial Ra, μ | Final Ra, μ | Ra Increasing, % |
---|---|---|---|---|---|---|
Albini Haneș Andesite | 1 | 500 | 0.3118 | 6.4 | 7.5 | 17.19 |
1 | 1000 | 0.4992 | 6.1 | 7.4 | 21.31 | |
5 | 500 | 0.4813 | 6.9 | 8.6 | 24.64 | |
5 | 1000 | 0.5706 | 6.6 | 8.3 | 25.76 | |
Limestone | 1 | 500 | 0.3212 | 4.6 | 6.4 | 17.39 |
1 | 1000 | 0.5784 | 4.6 | 5.9 | 28.26 | |
5 | 500 | 0.5291 | 4.2 | 6.2 | 47.62 | |
5 | 1000 | 0.5742 | 4.0 | 6.3 | 57.50 | |
Gabbro | 1 | 500 | 0.4046 | 5.3 | 5.8 | 9.43 |
1 | 1000 | 0.4155 | 5.4 | 6.4 | 18.52 | |
5 | 500 | 0.3922 | 4.0 | 4.8 | 20.00 | |
5 | 1000 | 0.4145 | 4.3 | 5.5 | 27.91 | |
Granite | 1 | 500 | 0.3955 | 5.8 | 6.2 | 6.90 |
1 | 1000 | 0.3965 | 5.2 | 5.8 | 11.54 | |
5 | 500 | 0.4936 | 4.2 | 4.8 | 14.29 | |
5 | 1000 | 0.5048 | 4.6 | 5.3 | 15.22 | |
Sandstone | 1 | 500 | 0.0938 | 17.6 | 22.6 | 28.41 |
1 | 1000 | 0.2052 | 19.2 | 25.7 | 33.85 | |
5 | 500 | 0.0700 | 16.2 | 22.8 | 40.74 | |
5 | 1000 | 0.1716 | 14.1 | 22.0 | 56.03 | |
Marble | 1 | 500 | 0.0125 | 5.9 | 6.4 | 8.47 |
1 | 1000 | 0.0798 | 7.0 | 7.8 | 11.43 | |
5 | 500 | 0.1262 | 8.2 | 9.5 | 15.85 | |
5 | 1000 | 0.1514 | 7.1 | 9.0 | 26.76 | |
Roșia Poieni Andesite | 1 | 500 | 0.5939 | 5.4 | 5.9 | 9.26 |
1 | 1000 | 0.5642 | 4.3 | 4.8 | 11.63 | |
5 | 500 | 0.5347 | 4.5 | 5.3 | 17.78 | |
5 | 1000 | 0.5371 | 4.9 | 5.9 | 20.41 |
Rock Name | Load N | Number of Cycles | Coefficient of Friction | Final Mass of the Ball (100Cr6), g | Reduction in Ball Mass (100Cr6), % |
---|---|---|---|---|---|
Albini Haneș Andesite | 1 | 500 | 0.3118 | 0.8859 | 0.1803 |
1 | 1000 | 0.4992 | 0.8818 | 0.6423 | |
5 | 500 | 0.4813 | 0.8852 | 0.2592 | |
5 | 1000 | 0.5706 | 0.8812 | 0.7099 | |
Limestone | 1 | 500 | 0.3212 | 0.8864 | 0.1239 |
1 | 1000 | 0.5784 | 0.8846 | 0.3268 | |
5 | 500 | 0.5291 | 0.8859 | 0.1803 | |
5 | 1000 | 0.5742 | 0.8843 | 0.3606 | |
Gabbro | 1 | 500 | 0.4046 | 0.8851 | 0.2704 |
1 | 1000 | 0.4155 | 0.8823 | 0.5859 | |
5 | 500 | 0.3922 | 0.8846 | 0.3268 | |
5 | 1000 | 0.4145 | 0.8814 | 0.6873 | |
Granite | 1 | 500 | 0.3955 | 0.8842 | 0.3718 |
1 | 1000 | 0.3965 | 0.8811 | 0.7211 | |
5 | 500 | 0.4936 | 0.8836 | 0.4394 | |
5 | 1000 | 0.5048 | 0.8805 | 0.7887 | |
Sandstone | 1 | 500 | 0.0938 | 0.8867 | 0.0901 |
1 | 1000 | 0.2052 | 0.8847 | 0.3155 | |
5 | 500 | 0.0700 | 0.8862 | 0.1465 | |
5 | 1000 | 0.1716 | 0.8838 | 0.4169 | |
Marble | 1 | 500 | 0.0125 | 0.8869 | 0.0676 |
1 | 1000 | 0.0798 | 0.8863 | 0.1352 | |
5 | 500 | 0.1262 | 0.8865 | 0.1127 | |
5 | 1000 | 0.1514 | 0.8854 | 0.2366 | |
Roșia Poieni Andesite | 1 | 500 | 0.5939 | 0.8853 | 0.2479 |
1 | 1000 | 0.5642 | 0.8831 | 0.4958 | |
5 | 500 | 0.5347 | 0.8848 | 0.3042 | |
5 | 1000 | 0.5371 | 0.8821 | 0.6085 |
Rock Classification | Rock Name | Rock Roughness | * Roughness Increase % | Abrasivity, mg | Ball Wear (Mass Loss) % | Dislodging Tools |
---|---|---|---|---|---|---|
I | Granite | Very rough rocks | 54.35 | 60.86 | 0.7887 | Excavator/loader teeth, bucket teeth |
II | Roșia Poieni Andesite | Highly rough rocks | 44.9 | 32.56 | 0.6085 | Excavator/loader teeth, bucket teeth |
III | Gabbro | Rocks with average surface roughness | 37.21 | 43.25 | 0.6873 | Drill bits |
Albini Haneș Andesite | 36.36 | 41.10 | 0.7099 | excavator/loader teeth, bucket teeth | ||
Marble | 26.76 | 30.63 | 0.5366 | drill bits | ||
IV | Sandstone | Rocks with low surface roughness | 20.57 | 30.18 | 0.4169 | Excavator/loader teeth, bucket teeth |
V | Limestone | Rocks with low surface roughness | 8.51 | 21.83 | 0.3606 | Drill bits |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florea, V.A.; Toderaș, M.; Danciu, C. The Influence of Roughness of Surfaces on Wear Mechanisms in Metal–Rock Interactions. Coatings 2025, 15, 150. https://doi.org/10.3390/coatings15020150
Florea VA, Toderaș M, Danciu C. The Influence of Roughness of Surfaces on Wear Mechanisms in Metal–Rock Interactions. Coatings. 2025; 15(2):150. https://doi.org/10.3390/coatings15020150
Chicago/Turabian StyleFlorea, Vlad Alexandru, Mihaela Toderaș, and Ciprian Danciu. 2025. "The Influence of Roughness of Surfaces on Wear Mechanisms in Metal–Rock Interactions" Coatings 15, no. 2: 150. https://doi.org/10.3390/coatings15020150
APA StyleFlorea, V. A., Toderaș, M., & Danciu, C. (2025). The Influence of Roughness of Surfaces on Wear Mechanisms in Metal–Rock Interactions. Coatings, 15(2), 150. https://doi.org/10.3390/coatings15020150