Revisiting the Challenges in Fabricating Uniform Coatings with Polyfunctional Molecules on High Surface Energy Materials
Abstract
:1. Introduction
1.1. Surface Modification
1.2. Surface Modification by Silane Treatment on Polymers
2. Silanes in Textile Applications
3. Silane in Polymer Chemistry
3.1. Biomimetic
3.2. Cellulose Surface Chemistry
3.3. Bound Water
3.4. Surface Roughness
4. Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Maddox, A.F.; Matisons, J.G.; Singh, M.P.; Zazyczny, J.; Arkles, B. Cyclic azasilanes: A kinetic approach to rapid silane surface modification. In Proceedings of the 249th ACS National Meeting & Exposition, Denver, CO, USA, 22–26 March 2015.
- Pouxviel, J.C.; Boilot, J.P. Kinetic simulations and mechanisms of the sol-gel polymerization. J. Non-Cryst. Solids 1987, 94, 374–386. [Google Scholar] [CrossRef]
- Yakimets, I.; Wellner, N.; Smith, A.C.; Wilson, R.H.; Farhat, I.; Mitchell, J. Mechanical properties with respect to water content of gelatin films in glassy state. Polymer 2005, 46, 12577–12585. [Google Scholar] [CrossRef]
- Shea, K.J.; Loy, D.A. A mechanistic investigation of gelation. The sol-gel polymerization of precursors to bridged polysilsesquioxanes. Acc. Chem. Res. 2001, 34, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Mauritz, K.A. Organic-inorganic hybrid materials: Perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides. Mater. Sci. Eng. C 1998, 6, 121–133. [Google Scholar] [CrossRef]
- Pasqui, D.; De Cagna, M.; Barbucci, R. Polysaccharide-based hydrogels: The key role of water in affecting mechanical properties. Polymers 2012, 4, 1517–1534. [Google Scholar] [CrossRef]
- Textor, T.; Mahltig, B. A sol-gel based surface treatment for preparation of water repellent anti-static textiles. Appl. Surf. Sci. 2010, 256, 1668–1674. [Google Scholar] [CrossRef]
- Kiraz, N.; Burunkaya, E.; Kesmez, O.; Asilturk, M.; Camurlu, H.E.; Arpac, E. Sol-gel synthesis of 3-(triethoxysilyl)propylsuccinicanhydride containing fluorinated silane for hydrophobic surface applications. J. Sol-Gel Sci. Technol. 2010, 56, 157–166. [Google Scholar] [CrossRef]
- Burunkaya, E.; Kiraz, N.; Kesmez, O.; Asilturk, M.; Camurlu, H.E.; Arpac, E. Sol-gel synthesis of IPTES and D10H consisting fluorinated silane system for hydrophobic applications. J. Sol-Gel Sci. Technol. 2010, 56, 99–106. [Google Scholar] [CrossRef]
- Kaufman, V.R.; Avnir, D.; Pines-Rojanski, D.; Huppert, D. Water consumption during the early stages of the sol-gel tetramethylorthosilicate polymerization as probed by excited state proton transfer. J. Non-Cryst. Solids 1988, 99, 379–386. [Google Scholar] [CrossRef]
- Tshabalala, M.A.; Sung, L.-P. Wood surface modification by in-situ sol-gel deposition of hybrid inorganic-organic thin films. J. Coat. Tech. Res. 2007, 4, 483–490. [Google Scholar] [CrossRef]
- Goerl, U.; Hunsche, A.; Mueller, A.; Koban, H.G. Investigations into the silica/silane reaction system. Rubber Chem Technol. 1997, 70, 608–623. [Google Scholar] [CrossRef]
- Chan, T.-H.; Melnyk, A. Kinetics and mechanism of the sulfoxide-silane reaction. J. Am. Chem. Soc. 1970, 92, 3718–3722. [Google Scholar] [CrossRef]
- James, E.M. Overview of Siloxane Polymers. In Silicones and Silicone-Modified Materials; American Chemical Society: Washington, DC, USA, 2000; Volume 729, pp. 1–10. [Google Scholar]
- Nakatani, H.; Iwakura, K.; Miyazaki, K.; Okazaki, N.; Terano, M. Effect of chemical structure of silane coupling agent on interface adhesion properties of syndiotactic polypropylene/cellulose composite. J. Appl. Polym. Sci. 2011, 119, 1732–1741. [Google Scholar] [CrossRef]
- Ukaji, E.; Furusawa, T.; Sato, M.; Suzuki, N. The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter. Appl. Surf. Sci. 2007, 254, 563–569. [Google Scholar] [CrossRef]
- Abdelmouleh, M.; Boufi, S.; ben Salah, A.; Belgacem, M.N.; Gandini, A. Interaction of silane coupling agents with cellulose. Langmuir 2002, 18, 3203–3208. [Google Scholar] [CrossRef]
- Plueddemann, E.P. Silane Coupling Agents, 2nd ed.; Springer US: New York, NY, USA, 1991. [Google Scholar]
- Matisons, J.G. Silane coupling agents and glass fibre surfaces: A perspective. In Silanes and Other Coupling Agents; CRC Press: Boca Raton, FL, USA, 2009; Volume 5, pp. 1–24. [Google Scholar]
- Xie, Y.; Hill, C.A.S.; Xiao, Z.; Militz, H.; Mai, C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos. A Appl. Sci. Manuf. 2010, 41, 806–819. [Google Scholar] [CrossRef]
- Mittal, K.L. Silanes and Other Coupling Agents; CRC Press: Boca Raton, FL, USA, 2007; Volume 4. [Google Scholar]
- Salon, M.-C.B.; Gerbaud, G.; Abdelmouleh, M.; Bruzzese, C.; Boufi, S.; Belgacem, M.N. Studies of interactions between silane coupling agents and cellulose fibers with liquid and solid-state NMR. Magn. Reson. Chem. 2007, 45, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Sabzi, M.; Mirabedini, S.M.; Zohuriaan-Mehr, J.; Atai, M. Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog. Org. Coat. 2009, 65, 222–228. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, X.; Zhang, J.; Wang, Y.; Han, Z.; Ren, L. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate. Appl. Surf. Sci. 2013, 280, 845–849. [Google Scholar] [CrossRef]
- Croll, T.I.; O’Connor, A.J.; Stevens, G.W.; Cooper-White, J.J. Controllable surface modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis I: Physical, chemical, and theoretical aspects. Biomacromolecules 2004, 5, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.M.; Ko, T.M.; Hiraoka, H. Polymer surface modification by plasmas and photons. Surf. Sci. Rep. 1996, 24, 1–54. [Google Scholar] [CrossRef]
- Chitnis, G.; Ding, Z.; Chang, C.-L.; Savran Cagri, A.; Ziaie, B. Laser-treated hydrophobic paper: An inexpensive microfluidic platform. Lab Chip 2011, 11, 1161–1165. [Google Scholar] [CrossRef] [PubMed]
- Niino, H.; Yabe, A. Surface modification and metallization of fluorocarbon polymers by excimer laser processing. Appl. Phys. Lett. 1993, 63, 3527–3529. [Google Scholar] [CrossRef]
- Jiang, L.; Sangeeth, C.S.S.; Yuan, L.; Thompson, D.; Nijhuis, C.A. One-nanometer thin monolayers remove the deleterious effect of substrate defects in molecular tunnel junctions. Nano Lett. 2015, 15, 6643–6649. [Google Scholar] [CrossRef] [PubMed]
- Nerngchamnong, N.; Wu, H.; Sotthewes, K.; Yuan, L.; Cao, L.; Roemer, M.; Lu, J.; Loh, K.P.; Troadec, C.; Zandvliet, H.J.W.; et al. The supramolecular structure of self-assembled monolayers of ferrocenyl terminated n-alkanethiolates on gold surfaces. Langmuir 2014, 30, 13447–13455. [Google Scholar] [CrossRef] [PubMed]
- Nerngchamnong, N.; Yuan, L.; Qi, D.-C.; Li, J.; Thompson, D.; Nijhuis, C.A. Role of van der waals forces in performance of molecular diodes. Nature Nanotechnol. 2013, 8, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Nijhuis, C.A.; Reus, W.F.; Siegel, A.C.; Whitesides, G.M. A molecular half-wave rectifier. J. Am. Chem. Soc. 2011, 133, 15397–15411. [Google Scholar] [CrossRef] [PubMed]
- Thuo, M.M.; Reus, W.F.; Nijhuis, C.A.; Barber, J.R.; Kim, C.; Schulz, M.D.; Whitesides, G.M. Odd-even effects in charge transport across self-assembled monolayers. J. Am. Chem. Soc. 2011, 133, 2962–2975. [Google Scholar] [CrossRef] [PubMed]
- Baghbanzadeh, M.; Simeone, F.C.; Bowers, C.M.; Liao, K.-C.; Thuo, M.; Baghbanzadeh, M.; Miller, M.S.; Carmichael, T.B.; Whitesides, G.M. Odd-even effects in charge transport across n-alkanethiolate-based SAMs. J. Am. Chem. Soc. 2014, 136, 16919–16925. [Google Scholar] [CrossRef] [PubMed]
- Thuo, M.M.; Reus, W.F.; Simeone, F.C.; Kim, C.; Schulz, M.D.; Yoon, H.J.; Whitesides, G.M. Replacing –CH2CH2– with –CONH– Does Not Significantly Change Rates of Charge Transport through AgTS-SAM//Ga2O3/EGaIn Junctions. J. Am. Chem. Soc. 2012, 134, 10876–10884. [Google Scholar] [CrossRef] [PubMed]
- Glavan, A.C.; Martinez, R.V.; Subramaniam, A.B.; Yoon, H.J.; Nunes, R.M.D.; Lange, H.; Thuo, M.M.; Whitesides, G.M. Omniphobic “RF paper” produced by silanization of paper with fluoroalkyltrichlorosilanes. Adv. Funct. Mater. 2014, 24, 60–70. [Google Scholar] [CrossRef]
- Oyola-Reynoso, S.; Heim, A.P.; Halbertsma-Black, J.; Zhao, C.; Tevis, I.D.; Cinar, S.; Cademartiri, R.; Liu, X.; Bloch, J.-F.; Thuo, M.M. Draw your assay: Fabrication of low-cost paper-based diagnostic and multi-well test zones by drawing on a paper. Talanta 2015, 144, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Tevis, I.D.; Newcomb, L.B.; Thuo, M. Synthesis of liquid core-shell particles and solid patchy multicomponent particles by shearing liquids into complex particles (SLICE). Langmuir 2014, 30, 14308–14313. [Google Scholar] [CrossRef] [PubMed]
- Bel-Hassen, R.; Boufi, S.; Salon, M.-C.B.; Abdelmouleh, M.; Belgacem, M.N. Adsorption of silane onto cellulose fibers. II. The effect of pH on silane hydrolysis, condensation, and adsorption behavior. J. Appl. Polym. Sci. 2008, 108, 1958–1968. [Google Scholar] [CrossRef]
- Pallandre, A.; Glinel, K.; Jonas, A.M.; Nysten, B. Binary nanopatterned surfaces prepared from silane monolayers. Nano Lett. 2004, 4, 365–371. [Google Scholar] [CrossRef]
- Mandal, S.; Das, G.; Dhar, S.; Tomy, R.M.; Mukhopadhyay, S.; Banerjee, C.; Barua, A.K. Development of a novel fluorinated n-nc-SiO:H material for solar cell application. Mater. Chem. Phys. 2015, 157, 130–137. [Google Scholar] [CrossRef]
- Bisanda, E.T.N.; Ansell, M.P. The effect of silane treatment on the mechanical and physical-properties of sisal-epoxy composites. Compos. Sci. Technol. 1991, 41, 165–178. [Google Scholar] [CrossRef]
- Hsieh, H.-Y.; Wang, P.-C.; Wu, C.-L.; Huang, C.-W.; Chieng, C.-C.; Tseng, F.-G. Effective enhancement of fluorescence detection efficiency in protein microarray assays: Application of a highly fluorinated organosilane as the blocking agent on the background surface by a facile vapor-phase deposition process. Anal. Chem. 2009, 81, 7908–7916. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wang, H.; Niu, H.; Gestos, A.; Wang, X.; Lin, T. Fluoroalkyl silane modified silicone rubber/nanoparticle composite: A super durable, robust superhydrophobic fabric coating. Adv. Mater. 2012, 24, 2409–2412. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shephard, N.E.; Rhodes, S.M.; Chen, Z. Headgroup effect on silane structures at buried polymer/silane and polymer/polymer interfaces and their relations to adhesion. Langmuir 2012, 28, 6052–6059. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Chang, L.; Guo, W.-J.; Chen, Y.; Wang, Z. Influence of silane surface modification of veneer on interfacial adhesion of wood-plastic plywood. Appl. Surf. Sci. 2014, 288, 682–689. [Google Scholar] [CrossRef]
- Abdelmouleh, M.; Boufi, S.; Belgacem, M.N.; Duarte, A.P.; Ben Salah, A.; Gandini, A. Modification of cellulosic fibres with functionalised silanes: Development of surface properties. Int. J. Adhes. Adhes. 2004, 24, 43–54. [Google Scholar] [CrossRef]
- Valentini, L.; Macan, J.; Armentano, I.; Mengoni, F.; Kenny, J.M. Modification of fluorinated single-walled carbon nanotubes with aminosilane molecules. Carbon 2006, 44, 2196–2201. [Google Scholar] [CrossRef]
- Hayn, R.A.; Owens, J.R.; Boyer, S.A.; McDonald, R.S.; Lee, H.J. Preparation of highly hydrophobic and oleophobic textile surfaces using microwave-promoted silane coupling. J. Mater. Sci. 2011, 46, 2503–2509. [Google Scholar] [CrossRef]
- Karakoy, M.; Gultepe, E.; Pandey, S.; Khashab, M.A.; Gracias, D.H. Silane surface modification for improved bioadhesion of esophageal stents. Appl. Surf. Sci. 2014, 311, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Bloodworth, R.; Penners, G.; Podszun, W.; Reiners, J.; Schulze, H. Silane-Modified Ethers or Polyethers; Stable Emulsifiers for Textiles, Metal Working; Mixtures. U.S. Patent US5171476, 15 December 1992. [Google Scholar]
- Matienzo, L.J.; Egitto, F.D.; Logan, P.E. The use of silane coupling agents in the design of electrically stable interfaces of 6061 T6 aluminum alloy surfaces and epoxy-based electrically conductive adhesives. J. Mater. Sci. 2003, 38, 4831–4842. [Google Scholar] [CrossRef]
- Thickett, S.C.; Neto, C.; Harris, A.T. Biomimetic surface coatings for atmospheric water capture prepared by dewetting of polymer films. Adv. Mater. 2011, 23, 3718–3722. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.P.; White, C.C.; Vogt, B.D. Correlating interfacial moisture content and adhesive fracture energy of polymer coatings on different surfaces. Adv. Eng. Mater. 2006, 8, 114–118. [Google Scholar] [CrossRef]
- Li, X.-W.; Zhang, Q.-X.; Guo, Z.; Yu, J.-G.; Tang, M.-K.; Huang, X.-J. Low-cost and large-scale fabrication of a superhydrophobic 5052 aluminum alloy surface with enhanced corrosion resistance. RSC Adv. 2015, 5, 29639–29646. [Google Scholar] [CrossRef]
- Schiros, T.; Takahashi, O.; Andersson, K.J.; Ostrom, H.; Pettersson, L.G.M.; Nilsson, A.; Ogasawara, H. The role of substrate electrons in the wetting of a metal surface. J. Chem. Phys. 2010, 132. [Google Scholar] [PubMed]
- Zhai, L.; Berg, M.C.; Cebeci, F.C.; Kim, Y.; Milwid, J.M.; Rubner, M.F.; Cohen, R.E. Patterned superhydrophobic surfaces: Toward a synthetic mimic of the namib desert beetle. Nano Lett. 2006, 6, 1213–1217. [Google Scholar] [CrossRef] [PubMed]
- Genzer, J.; Efimenko, K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review. Biofouling 2006, 22, 339–360. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Cebeci, F.Ç.; Cohen, R.E.; Rubner, M.F. Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett. 2004, 4, 1349–1353. [Google Scholar] [CrossRef]
- Andriot, M.; Chao, S.H.; Colas, A.; Cray, S.; de Buyl, F.; DeGroot, J.V.; Dupont, A.; Easton, T.; Garaud, J.L.; Gerlach, E.; et al. Silicones in Industrial Applications. In Inorganic Polymers; Jaeger, R.D., Gleria, M., Eds.; Nova Science Publishers: New York, NY, USA, 2007. [Google Scholar]
- Samyn, P. Wetting and hydrophobic modification of cellulose surfaces for paper applications. J. Mater. Sci. 2013, 48, 6455–6498. [Google Scholar] [CrossRef]
- Wong, T.-S.; Kang, S.H.; Tang, S.K.Y.; Smythe, E.J.; Hatton, B.D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.; Yuen, C.; Leung, M.; Ku, S.; Lam, H. Selected applications of nanotechnology in textiles. AUTEX Res. J. 2006, 6, 1–8. [Google Scholar]
- Chen, X.; Li, C.; Shao, W.; Du, H.; Burnell-Gray, J. The anti-static poly (ethylene terephthalate) nanocomposite fiber by in situ polymerization: The thermo-mechanical and electrical properties. J. Appl. Polym. Sci. 2007, 105, 1490–1495. [Google Scholar] [CrossRef]
- Yu, M.; Gu, G.; Meng, W.-D.; Qing, F.-L. Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent. Appl. Surf. Sci. 2007, 253, 3669–3673. [Google Scholar] [CrossRef]
- Dastjerdi, R.; Montazer, M.; Shahsavan, S. A new method to stabilize nanoparticles on textile surfaces. Colloids Surf. A. 2009, 345, 202–210. [Google Scholar] [CrossRef]
- Hashem, M.; Ibrahim, N.A.; El-Shafei, A.; Refaie, R.; Hauser, P. An eco-friendly–novel approach for attaining wrinkle–free/soft-hand cotton fabric. Carbohydr. Polym. 2009, 78, 690–703. [Google Scholar] [CrossRef]
- Wang, Z. Nanolayer Self-Assembly on Ionic Fibers. Ph.D. Thesis, NC State University, Raleigh, NC, USA, 2009. [Google Scholar]
- Dastjerdi, R.; Montazer, M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B 2010, 79, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hauser, P.J.; Rojas, O.J. Study on charge distribution of carboxymethylated cotton fabric by streaming potential/current measurements. AATCC J. Res. 2015, 2, 13–19. [Google Scholar]
- Hauser, P.J. Reducing pollution and energy requirements in cotton dyeing. Text. Chem. Color. Am. Dyest. Report. 2000, 32, 44–48. [Google Scholar]
- Wang, Z.; Hauser, P.J.; Laine, J.; Rojas, O.J. Multilayers of low charge density polyelectrolytes on thin films of carboxymethylated and cationic cellulose. J. Adhes. Sci. Technol. 2011, 25, 643–660. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, X.; Hu, B.; Wang, J.; Xin, D.; Wang, Z.; Qiu, Y. Hydrophobic surface modification of ramie fibers with ethanol pretreatment and atmospheric pressure plasma treatment. Surf. Coat. Technol. 2011, 205, 4205–4210. [Google Scholar] [CrossRef]
- Norton, F.J. Waterproofing Treatment of Materials. U.S. Patent US2386259 A, 9 October 1945. [Google Scholar]
- Matuana, L.; Balatinecz, J.; Park, C.; Sodhi, R. X-ray photoelectron spectroscopy study of silane-treated newsprint-fibers. Wood Sci. Technol. 1999, 33, 259–270. [Google Scholar] [CrossRef]
- Zhu, Q.; Gao, Q.; Guo, Y.; Yang, C.Q.; Shen, L. Modified silica sol coatings for highly hydrophobic cotton and polyester fabrics using a one-step procedure. Ind. Eng. Chem. Res. 2011, 50, 5881–5888. [Google Scholar] [CrossRef]
- Shirgholami, M.A.; Khalil-Abad, M.S.; Khajavi, R.; Yazdanshenas, M.E. Fabrication of superhydrophobic polymethylsilsesquioxane nanostructures on cotton textiles by a solution-immersion process. J. Colloid Interface Sci. 2011, 359, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Oyola-Reynoso, S.; Chen, J.; Cinar, S.; Bloch, J.F.; Thuo, M.M. Application of surface-adsorbed water as a co-monomer to create micro- and nano-sized particles in amphiphobic materials fabrication. J. Am. Chem. Soc. Submitted.
- Brazel, C.S.; Rosen, S.L. Fundamental Principles of Polymeric Materials; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Chen, S.; Li, L.; Zhao, C.; Zheng, J. Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer 2010, 51, 5283–5293. [Google Scholar] [CrossRef]
- Çınar, S.; Anderson, D.D.; Akinc, M. Combined effect of fructose and NaCl on the viscosity of alumina nanopowder suspensions. J. Eur. Ceram. Soc. 2015, 35, 377–382. [Google Scholar] [CrossRef]
- Israelachvili, J.; Wennerstrom, H. Role of hydration and water structure in biological and colloidal interactions. Nature 1996, 379, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Lefèvre, G.; Duc, M.; Lepeut, P.; Caplain, R.; Fédoroff, M. Hydration of γ-alumina in water and its effects on surface reactivity. Langmuir 2002, 18, 7530–7537. [Google Scholar] [CrossRef]
- Leng, C.; Han, X.; Shao, Q.; Zhu, Y.; Li, Y.; Jiang, S.; Chen, Z. In situ probing of the surface hydration of zwitterionic polymer brushes: Structural and environmental effects. J. Phys. Chem. C 2014, 118, 15840–15845. [Google Scholar] [CrossRef]
- Li, L.; Ren, L.; Wang, L.; Liu, S.; Zhang, Y.; Tang, L.; Wang, Y. Effect of water state and polymer chain motion on the mechanical properties of a bacterial cellulose and polyvinyl alcohol (BC/PVA) hydrogel. RSC Adv. 2015, 5, 25525–25531. [Google Scholar] [CrossRef]
- Rubasinghege, G.; Grassian, V.H. Role(s) of adsorbed water in the surface chemistry of environmental interfaces. Chem. Commun. 2013, 49, 3071–3094. [Google Scholar] [CrossRef] [PubMed]
- Fraxedas, J. Water at Interfaces: A Molecular Approach; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Israelachvili, J.N. Intermolecular and Surface Forces, 3rd ed.; Academic Press: Saint Louis, MO, USA, 2011; p. 706. [Google Scholar]
- Michot, L.J.; Villiéras, F.; François, M.; Bihannic, I.; Pelletier, M.; Cases, J.M. Water organisation at the solid-aqueous solution interface. Comptes Rendus Geosci. 2002, 334, 611–631. [Google Scholar] [CrossRef]
- Argyris, D.; Ashby, P.D.; Striolo, A. Structure and orientation of interfacial water determine atomic force microscopy results: Insights from molecular dynamics simulations. ACS Nano 2011, 5, 2215–2223. [Google Scholar] [CrossRef] [PubMed]
- Ping, Z.H.; Nguyen, Q.T.; Chen, S.M.; Zhou, J.Q.; Ding, Y.D. States of water in different hydrophilic polymers—DSC and FTIR studies. Polymer 2001, 42, 8461–8467. [Google Scholar] [CrossRef]
- Tanaka, M.; Hayashi, T.; Morita, S. The roles of water molecules at the biointerface of medical polymers. Polym. J. 2013, 45, 701–710. [Google Scholar] [CrossRef]
- Verdaguer, A.; Sacha, G.M.; Bluhm, H.; Salmeron, M. Molecular structure of water at interfaces: Wetting at the nanometer scale. Chem. Rev. 2006, 106, 1478–1510. [Google Scholar] [CrossRef] [PubMed]
- Bullard, J.W.; Jennings, H.M.; Livingston, R.A.; Nonat, A.; Scherer, G.W.; Schweitzer, J.S.; Scrivener, K.L.; Thomas, J.J. Mechanisms of cement hydration. Cem. Concr. Res. 2011, 41, 1208–1223. [Google Scholar] [CrossRef]
- Marie-Pierre, G.; Michiel, S.; Marialore, S. Oxide/water interfaces: How the surface chemistry modifies interfacial water properties. J. Phys. Condens. Matter. 2012, 24, 124106. [Google Scholar]
- Schönhoff, M.; Ball, V.; Bausch, A.R.; Dejugnat, C.; Delorme, N.; Glinel, K.; Klitzing, R.V.; Steitz, R. Hydration and internal properties of polyelectrolyte multilayers. Colloids Surf. A. 2007, 303, 14–29. [Google Scholar] [CrossRef]
- Gontard, N.; Guilbert, S.; Cuq, J.-L. Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. J. Food Sci. 1993, 58, 206–211. [Google Scholar] [CrossRef]
- Mali, S.; Sakanaka, L.S.; Yamashita, F.; Grossmann, M.V.E. Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydr. Polym. 2005, 60, 283–289. [Google Scholar] [CrossRef]
- Oyola-Reynoso, S.; Tevis, I.D.; Chen, J.; Bloch, J.-F.; Thuo, M.M. Fabrication of namib beetle inspired biomimetic amphiphobic surfaces using adsorbed water as a co-monomer. Procedia Eng. 2016. accepted. [Google Scholar]
- Song, J.; Rojas, O.J. Approaching super-hydrophobicity from cellulosic materials: A review. Nord. Pulp Pap. Res. J. 2013, 28, 216–238. [Google Scholar] [CrossRef]
- Nishino, T.; Meguro, M.; Nakamae, K.; Matsushita, M.; Ueda, Y. The lowest surface free energy based on -CF3 alignment. Langmuir 1999, 15, 4321–4323. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oyola-Reynoso, S.; Wang, Z.; Chen, J.; Çınar, S.; Chang, B.; Thuo, M. Revisiting the Challenges in Fabricating Uniform Coatings with Polyfunctional Molecules on High Surface Energy Materials. Coatings 2015, 5, 1002-1018. https://doi.org/10.3390/coatings5041002
Oyola-Reynoso S, Wang Z, Chen J, Çınar S, Chang B, Thuo M. Revisiting the Challenges in Fabricating Uniform Coatings with Polyfunctional Molecules on High Surface Energy Materials. Coatings. 2015; 5(4):1002-1018. https://doi.org/10.3390/coatings5041002
Chicago/Turabian StyleOyola-Reynoso, Stephanie, Zhengjia Wang, Jiahao Chen, Simge Çınar, Boyce Chang, and Martin Thuo. 2015. "Revisiting the Challenges in Fabricating Uniform Coatings with Polyfunctional Molecules on High Surface Energy Materials" Coatings 5, no. 4: 1002-1018. https://doi.org/10.3390/coatings5041002
APA StyleOyola-Reynoso, S., Wang, Z., Chen, J., Çınar, S., Chang, B., & Thuo, M. (2015). Revisiting the Challenges in Fabricating Uniform Coatings with Polyfunctional Molecules on High Surface Energy Materials. Coatings, 5(4), 1002-1018. https://doi.org/10.3390/coatings5041002