Fabrication and Characterization of a Perovskite-Type Solar Cell with a Substrate Size of 70 mm
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
d (mm) | JSC (mA cm−2) | VOC (V) | FF | η (%) |
---|---|---|---|---|
4.2 | 12.24 (12.94) | 0.382 (0.435) | 0.334 (0.352) | 1.55 (1.90) |
9.5 | 12.97 (13.47) | 0.498 (0.612) | 0.342 (0.369) | 2.24 (2.92) |
12.7 | 12.63 (14.46) | 0.546 (0.653) | 0.337 (0.371) | 2.42 (3.15) |
15.3 | 12.79 (13.33) | 0.464 (0.631) | 0.310 (0.323) | 1.85 (2.66) |
17.5 | 12.33 (14.21) | 0.450 (0.569) | 0.318 (0.353) | 1.79 (2.85) |
21.2 | 12.61 (14.23) | 0.408 (0.536) | 0.298 (0.332) | 1.55 (2.53) |
22.8 | 11.89 (13.15) | 0.441 (0.518) | 0.291 (0.311) | 1.54 (1.87) |
25.8 | 12.33 (11.62) | 0.382 (0.494) | 0.284 (0.293) | 1.26 (1.67) |
29.7 | 12.01 (12.51) | 0.304 (0.323) | 0.281 (0.282) | 1.03 (1.13) |
4. Conclusions
Acknowledgments
Author Contributions
Conflict of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Yum, J.-H.; Humphry-Baker, R.; Moser, J.E.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2. [Google Scholar] [CrossRef] [PubMed]
- Grinberg, I.; West, D.V.; Torres, M.; Gou, G.; Stein, D.M.; Wu, L.; Chen, G.; Gallo, E.M.; Akbashev, A.; Davies, P.K.; et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 2013, 503, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.; Lee, B.; He, J.Q.; Chang, R.P.H.; Kanatzidis, M.G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 2012, 485, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Johnston, M.B.; Snaith, H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Kelly, T.L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 2014, 8, 133–138. [Google Scholar] [CrossRef]
- Wang, J.T.-W.; Ball, J.M.; Barea, E.M.; Abate, A.; Alexander-Webber, J.A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H.J.; et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 2014, 14, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowski, K.; Saliba, M.; Leijtens, T.; Abate, A.; Snaith, H.J. Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci. 2014, 7, 1142–1147. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-B.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Oku, T.; Takeda, A.; Nagata, A.; Kidowaki, H.; Kumada, K.; Fujimoto, K.; Suzuki, A.; Akiyama, T.; Yamasaki, Y.; Ōsawa, E. Microstructures and photovoltaic properties of C60-based solar cells with copper oxides, CuInS2, phthalocyanines, porphyrin, PVK, nanodiamond, germanium and exciton-diffusion blocking layers. Mater. Technol. 2013, 28, 21–39. [Google Scholar] [CrossRef]
- Oku, T.; Hori, S.; Suzuki, A.; Akiyama, T.; Yamasaki, Y. Fabrication and characterization of PCBM:P3HT:silicon phthalocyanine bulk heterojunction solar cells with inverted structures. Jpn. J. Appl. Phys. 2014, 53. [Google Scholar] [CrossRef]
- Oku, T.; Kakuta, N.; Kobayashi, K.; Suzuki, A.; Kikuchi, K. Fabrication and characterization of TiO2-based dye-sensitized solar cells. Prog. Nat. Sci. 2011, 21, 122–126. [Google Scholar] [CrossRef]
- Zushi, M.; Suzuki, A.; Akiyama, T.; Oku, T. Fabrication and characterization of TiO2/CH3NH3PbI3-based photovoltaic devices. Chem. Lett. 2014, 43, 916–918. [Google Scholar] [CrossRef]
- Oku, T.; Zushi, M.; Imanishi, Y.; Suzuki, A.; Suzuki, K. Microstructures and photovoltaic properties of perovskite-type CH3NH3PbI3 compounds. Appl. Phys. Express 2014, 7. [Google Scholar] [CrossRef]
- Kanayama, M.; Oku, T.; Suzuki, A.; Yamada, M.; Fukunishi, S.; Kohno, K.; Sakamoto, H. Fabrication and characterization of photovoltaic devices based on perovskite compounds with TiO2 nanoparticles. AIP Conf. Proc. 2015, 1649, 84–88. [Google Scholar]
- Suzuki, K.; Suzuki, A.; Zushi, M.; Oku, T. Microstructures and properties of CH3NH3PbI3-xClx hybrid solar cells. AIP Conf. Proc. 2015, 1649, 96–101. [Google Scholar]
- Oku, T.; Iwata, T.; Suzuki, A. Effects of niobium addition into TiO2 layers on CH3NH3PbI3-based photovoltaic devices. Chem. Lett. 2015, 44, 1033–1035. [Google Scholar] [CrossRef]
- Christians, J.A.; Manser, J.S.; Kamat, P.V. Best practices in perovskite solar cell efficiency measurements. Avoiding the error of making bad cells look good. J. Phys. Chem. Lett., 2015, 6, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970. [Google Scholar] [CrossRef] [PubMed]
- Baikie, T.; Fang, Y.; Kadro, J.M.; Schreyer, M.; Wei, F.; Mhaisalkar, S.G.; Gräetzel, M.; White, T.J. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 2013, 1, 5628–5641. [Google Scholar] [CrossRef]
- Yamada, Y.; Nakamura, T.; Endo, M.; Wakamiya, A.; Kanemitsu, Y. Near-band-edge optical responses of solution-processed organic–inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes. Appl. Phys. Express 2014, 7. [Google Scholar] [CrossRef]
- Yamada, Y.; Nakamura, T.; Endo, M.; Wakamiya, A.; Kanemitsu, Y. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J. Am. Chem. Soc. 2014, 136, 11610–11613. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oku, T.; Matsumoto, T.; Suzuki, A.; Suzuki, K. Fabrication and Characterization of a Perovskite-Type Solar Cell with a Substrate Size of 70 mm. Coatings 2015, 5, 646-655. https://doi.org/10.3390/coatings5040646
Oku T, Matsumoto T, Suzuki A, Suzuki K. Fabrication and Characterization of a Perovskite-Type Solar Cell with a Substrate Size of 70 mm. Coatings. 2015; 5(4):646-655. https://doi.org/10.3390/coatings5040646
Chicago/Turabian StyleOku, Takeo, Taisuke Matsumoto, Atsushi Suzuki, and Kohei Suzuki. 2015. "Fabrication and Characterization of a Perovskite-Type Solar Cell with a Substrate Size of 70 mm" Coatings 5, no. 4: 646-655. https://doi.org/10.3390/coatings5040646
APA StyleOku, T., Matsumoto, T., Suzuki, A., & Suzuki, K. (2015). Fabrication and Characterization of a Perovskite-Type Solar Cell with a Substrate Size of 70 mm. Coatings, 5(4), 646-655. https://doi.org/10.3390/coatings5040646