Tailoring a High Temperature Corrosion Resistant FeNiCrAl for Oxy-Combustion Application by Thermal Spray Coating and HIP
Abstract
:1. Introduction
2. Experimental Section
Torch | Nozzle | Stand Off | Air | Propane | O2 | N2 | Powder Feed |
---|---|---|---|---|---|---|---|
DJ | 2701 | 230 mm | 400 L/min | 62.4 L/min | 290 L/min | 12.5 L/min | 50 g/min |
Alloy | Cr | Ni | Mo | Nb | Fe | Other |
---|---|---|---|---|---|---|
TP347HFG | 18.3 | 11.7 | 0.23 | 0.92 | bal. | 1.64 Mn, 0.33 Cu, 0.4 Si, 0.07 C |
Sanicro 25 | 22.3 | 24.9 | – | 0.5 | bal. | 3.4 W, 1.5 Co, 2.9 Cu, 0.2 Si, 0.3 Mn, 0.24 N, 0.06C |
3. Results
3.1. Powder Manufacturing and Consolidation
Fe | Ni | Cr | Al | |
---|---|---|---|---|
Target | Bal | 30.0 | 14.5 | 3.5 |
EDX analysis | Bal | 24.8 | 13.5 | 3.5 |
Difference (%) | – | −17.3 | −6.9 | 0.0 |
Coating Method | Hardness (HV0.3) | STDEV | E (Mpa) | STDEV | n |
---|---|---|---|---|---|
DJ Hybrid | 361 | 40 | 160 | 10 | 6 |
3.2. Exposure at 650 °C
Layer | HVOF (DJ) | TP347HFG | Sanicro 25 |
---|---|---|---|
Outer layer(s) | 60 | 100 | 200–500 |
Internal | 20 | 30 | 20–50 |
3.3. Exposure at 720 °C
Layer | HVOF (DJ) | HIP | TP347HFG | Sanicro 25 |
---|---|---|---|---|
Outer layer(s) | 240 | 50+ | 100+ | 300+ |
Internal | 250 | 50–170 | 100 | 300–500 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- International Energy Agency. World Energy Outlook Special Report 2015: Energy and Climate Change; International Energy Agency: Paris, France, 2015; Available online: http://www.iea.org/publications/freepublications/publication/WEO2015SpecialReportonEnergyandClimateChange.pdf (accessed on 3 September 2015).
- Zheng, L. Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture; Woodhead Publishing: Cambridge, UK, 2011; p. 374. [Google Scholar]
- Bordenet, B. Influence of novel cycle concepts on the high-temperature corrosion of power plants. Mater. Corros. 2008, 59, 361–366. [Google Scholar] [CrossRef]
- Scheffknecht, G.; Al-Makhadmeh, L.; Schnell, U.; Maier, J. Oxy-fuel coal combustion—A review of the current state-of-the-art. Int. J. Greenh. Gas Control 2011, 5, S16–S35. [Google Scholar] [CrossRef]
- Kranzmann, A.; Neddemeyer, T.; Ruhl, A.S.; Huenert, D.; Bettge, D.; Oder, G.; Saliwan-Neumann, R. The challenge in understanding the corrosion mechanisms under oxyfuel combustion conditions. Int. J. Greenh. Gas Control 2011, 5, S168–S178. [Google Scholar] [CrossRef]
- Stein-Brzozowska, G.; Maier, J.; Scheffknecht, G. Impact of the oxy-fuel combustion on the corrosion behaviour of advanced austenitic superheater materials. Energy Procedia 2011, 4, 2035–2042. [Google Scholar] [CrossRef]
- Pint, B.A.; Thomson, J.K. Effect of oxy-firing on corrosion rates at 600–650 °C. Mater. Corros. 2014, 65, 132–140. [Google Scholar] [CrossRef]
- Covino, B.S., Jr.; Matthes, S.A.; Bullard, S.J. Effect of Oxyfuel Combustion on Superheater Corrosion. In Proceedings of the NACE CORROSION 2008 Conference & Expo, New Orleans, LA, USA, 16–19 March 2008; p. 8456.
- Montgomery, M.; Bjurman, M.; Hjørnhede, A.; Rombrecht, H.B.; Lisk, A.; Krautz, H.J. High temperature corrosion investigation in an oxyfuel combustion test rig. Mater. Corros. 2015, 66, 257–269. [Google Scholar] [CrossRef]
- Yu, D.; Morris, W.J.; Erickson, R.; Wendt, J.O.L.; Fry, A.; Senior, C.L. Ash and deposit formation from oxy-coal combustion in a 100 kW test furnace. Int. J. Greenh. Gas Control 2011, 5, S159–S167. [Google Scholar] [CrossRef]
- Gagliano, M.S.; Hack, H.; Stanko, G. Update on the fireside corrosion resistance of proposed advanced ultrasupercritical superheater and reheater materials: Laboratory and field test results. In Proceedings of the Clearwater Coal Conference 34th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, FL, USA, 31 May–4 June 2009.
- Syed, A.U.; Simms, N.J.; Oakey, J.E. Fireside corrosion of superheaters: Effects of air and oxy-firing of coal and biomass. Fuel 2012, 101, 62–73. [Google Scholar] [CrossRef]
- Holcomb, G.R.; McGhee, B.F.; Fry, A.T.; Simms, N.J.; Davis, K. Boiler corrosion and monitoring. Mater. High Temp. 2013, 30, 271–286. [Google Scholar] [CrossRef]
- Hussain, T.; Syed, A.Y.; Simms, N.J. Trends in fireside corrosion damage to superheaters in air and oxy-firing of coal/biomass. Fuel 2013, 113, 787–797. [Google Scholar] [CrossRef] [Green Version]
- Huczkowski, P.; Olszewski, T.; Schiek, M.; Lutz, B.; Holcomb, G.R.; Shemet, V.; Nowak, W.; Meier, G.H.; Singheiser, L.; Quadakkers, W.J. Effect of SO2 on oxidation of metallic materials in CO2/H2O-rich gases relevant to oxyfuel environments. Mater. Corros. 2014, 65, 121–131. [Google Scholar] [CrossRef]
- Bellucci, A.; Bellini, S.; Pileggi, R.; Stocchi, D.; Tuurna, S. Effect of Al Enrichment by Pack Cementation of FeCr Coatings Deposited by HVOF. J. Therm. Spray Technol. 2015, 24, 244–251. [Google Scholar] [CrossRef]
- Oksa, M.; Metsäjoki, J.; Kärki, J. Thermal spray coatings for high-temperature corrosion protection in biomass co-fired boilers. J. Therm. Spray Technol. 2015, 24, 194–205. [Google Scholar] [CrossRef]
- Nielsen, H.P.; Frandsen, F.J.; Dam-Johansen, K.; Baxter, L.L. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers. Prog. Energy Combust. Sci. 2000, 26, 283–298. [Google Scholar] [CrossRef]
- Haanappel, V.A.C.; Haanappel, N.W.J.; Fransen, T.; van Corbach, H.D.; Gellings, P.J. Corrosion Kinetics of Low- and High-Alloy Steels in Chlorine-Containing Gas Atmospheres. Corrosion 1992, 48, 812–821. [Google Scholar] [CrossRef]
- Montgomery, M.; Karlsson, A. In-situ corrosion investigation at Masnedø CHP plant—A straw-fired power plant. Mater. Corros. 1999, 50, 579–584. [Google Scholar] [CrossRef]
- Galetz, M.C.; Bauer, J.T.; Schutze, M.; Noguchi, M.; Takatoh, C.; Cho, H. The Influence of Copper in Ash Deposits on the Corrosion of Boiler Tube Alloys for Waste-to-Energy Plants. Mater. Corros. 2012, 63, 1–8. [Google Scholar] [CrossRef]
- Oksa, M.; Tuurna, S.; Varis, T. Increased lifetime for biomass and waste to energy power plant boilers with HVOF coatings—High temperature corrosion testing under chlorine-containing molten salt. J. Therm. Spray Technol. 2013, 22, 783–796. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metsäjoki, J.; Oksa, M.; Tuurna, S.; Lagerbom, J.; Virta, J.; Yli-Olli, S.; Suhonen, T. Tailoring a High Temperature Corrosion Resistant FeNiCrAl for Oxy-Combustion Application by Thermal Spray Coating and HIP. Coatings 2015, 5, 709-723. https://doi.org/10.3390/coatings5040709
Metsäjoki J, Oksa M, Tuurna S, Lagerbom J, Virta J, Yli-Olli S, Suhonen T. Tailoring a High Temperature Corrosion Resistant FeNiCrAl for Oxy-Combustion Application by Thermal Spray Coating and HIP. Coatings. 2015; 5(4):709-723. https://doi.org/10.3390/coatings5040709
Chicago/Turabian StyleMetsäjoki, Jarkko, Maria Oksa, Satu Tuurna, Juha Lagerbom, Jouko Virta, Sanni Yli-Olli, and Tomi Suhonen. 2015. "Tailoring a High Temperature Corrosion Resistant FeNiCrAl for Oxy-Combustion Application by Thermal Spray Coating and HIP" Coatings 5, no. 4: 709-723. https://doi.org/10.3390/coatings5040709
APA StyleMetsäjoki, J., Oksa, M., Tuurna, S., Lagerbom, J., Virta, J., Yli-Olli, S., & Suhonen, T. (2015). Tailoring a High Temperature Corrosion Resistant FeNiCrAl for Oxy-Combustion Application by Thermal Spray Coating and HIP. Coatings, 5(4), 709-723. https://doi.org/10.3390/coatings5040709