A Comparative Study of Corrosion Resistance for HVAF-Sprayed Fe- and Co-Based Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Material
2.2. Coating Materials
2.3. Solution Preparation
2.4. Thermal Spraying Experiments
2.5. Porosity, Microhardness, and Surface Roughness Measurements
2.6. Corrosion Tests
2.6.1. OCP (Open-Circuit Potential)
2.6.2. Potentiodynamic Polarization and EIS Measurements
2.7. Coating Characterization
3. Results
3.1. Characterizing the Coatings
3.2. OCP
3.3. Potentiodynamic Measurements
3.4. EIS (Electrochemical Impedance Spectroscopy)
3.5. Surface Morphology
5. Conclusions
- (1)
- The high-alloyed Fe-based coating showed the best corrosion protection performance protecting the underlying substrate better than both the low-alloyed Fe-based and the Co-based coatings.
- (2)
- The corrosion resistance of the Fe-based coatings was significantly improved by adding Cr.
- (3)
- The coating thickness was shown to be an important parameter affecting the diffusion of the corrosive electrolyte. Thin Co-based coating permitted the corrosive ions to diffuse, while thin Fe-based coating showed better corrosion behavior compared to thick Fe-based coatings.
- (4)
- Increasing the average in-flight particle temperature from 1400 °C to 1500 °C resulted in a denser coating, which seemed to improve the corrosion resistance of the Fe based coatings.
- (5)
- Pores, cracks, and interlamellar boundaries were shown as preferred sites for corrosion nucleation and growths.
- (6)
- The high-alloyed Fe-based coatings showed, in general, the best corrosion performance and can thus be recommended as a potential alternative to Co-based coatings.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, X.Q.; Zheng, Y.G.; Chang, X.C.; Hou, W.L.; Wang, J.Q.; Tang, Z.; Burgess, A. Microstructure and properties of Fe-based amorphous metallic coating produced by high velocity axial plasma spraying. J. Alloys Compd. 2009, 484, 300–307. [Google Scholar] [CrossRef]
- Guo, R.Q.; Zhang, C.; Yang, Y.; Peng, Y.; Liu, L. Corrosion and wear resistance of a Fe-based amorphous coating in underground environment. Intermetallics 2012, 30, 94–99. [Google Scholar] [CrossRef]
- Lu, W.; Wu, Y.; Zhang, J.; Hong, S.; Zhang, J.; Li, G. Microstructure and Corrosion Resistance of Plasma Sprayed Fe-Based Alloy Coating as an Alternative to Hard Chromium. J. Therm. Spray Technol. 2010, 20, 1063–1070. [Google Scholar] [CrossRef]
- Brandolt, C.S.; Ortega Vega, M.R.; Menezes, T.L.; Schroeder, R.M.; Malfatti, C.F. Corrosion behavior of nickel and cobalt coatings obtained by high-velocity oxy-fuel (HVOF) thermal spraying on API 5CT P110 steel. Mater. Corros. 2015. [Google Scholar] [CrossRef]
- Liu, W.H.; Shieu, F.S.; Hsiao, W.T. Enhancement of wear and corrosion resistance of iron-based hard coatings deposited by high-velocity oxygen fuel (HVOF) thermal spraying. Surf. Coat. Technol. 2014, 249, 24–41. [Google Scholar] [CrossRef]
- Gao, Y.; Xiong, J.; Gong, D.; Li, J.; Ding, M. Improvement of solar absorbing property of Ni–Mo based thermal spray coatings by laser surface treatment. Vacuum 2015, 121, 64–69. [Google Scholar] [CrossRef]
- Picas, J.A.; Rupérez, E.; Punset, M.; Forn, A. Influence of HVOF spraying parameters on the corrosion resistance of WC–CoCr coatings in strong acidic environment. Surf. Coat. Technol. 2013, 225, 47–57. [Google Scholar] [CrossRef]
- Sá Brito, V.R.S.; Bastos, I.N.; Costa, H.R.M. Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel. Mater. Des. 2012, 41, 282–288. [Google Scholar] [CrossRef]
- Berger, L.M. Application of hard metals as thermal spray coatings. Int. J. Refract. Met. Hard Mater. 2015, 49, 350–364. [Google Scholar] [CrossRef]
- Milanti, A.; Koivuluoto, H.; Vuoristo, P. Influence of the Spray Gun Type on Microstructure and Properties of HVAF Sprayed Fe-Based Corrosion Resistant Coatings. J. Therm. Spray Technol. 2015, 24, 1312–1322. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, L.; Wang, F.; Liu, Y. Formation and corrosion behavior of Fe-based amorphous metallic coatings prepared by detonation gun spraying. Trans. Nonferrous Met. Soc. China 2009, 19, 634–638. [Google Scholar] [CrossRef]
- Bolelli, G.; Bonferroni, B.; Laurila, J.; Lusvarghi, L.; Milanti, A.; Niemi, K.; Vuoristo, P. Micromechanical properties and sliding wear behaviour of HVOF-sprayed Fe-based alloy coatings. Wear 2012, 276, 29–47. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, L.; Chan, K.C.; Chen, Q.; Tang, C.Y. Wear behavior of HVOF-sprayed Fe-based amorphous coatings. Intermetallics 2012, 29, 80–85. [Google Scholar] [CrossRef]
- Farmer, J.; Choi, J.S.; Saw, C.; Haslam, J.; Day, D.; Hailey, P.; Lian, T.; Rebak, R.; Perepezko, J.; Payer, J.; et al. Iron-Based Amorphous Metals: High-Performance Corrosion-Resistant Material Development. Metall. Mater. Trans. A 2009, 40, 1289–1305. [Google Scholar]
- Maddala, D.R.; Hebert, R.J. Sliding wear behavior of Fe50−xCr15Mo14C15B6Erx (x=0, 1, 2 at %) bulk metallic glass. Wear 2012, 294, 246–256. [Google Scholar] [CrossRef]
- Guo, W.; Wu, Y.; Zhang, J.; Hong, S.; Li, G.; Ying, G.; Guo, J.; Qin, Y. Fabrication and Characterization of Thermal-Sprayed Fe-Based Amorphous/Nanocrystalline Composite Coatings: An Overview. J. Therm. Spray Technol. 2014, 23, 1157–1180. [Google Scholar] [CrossRef]
- Qiu, M.M.; Wang, H.; Wu, X.; Tang, H.Q.; Su, G.C. Study on the Corrosion Resistance of High Boron Iron-Based Alloy. Appl. Mech. Mater. 2012, 268, 326–329. [Google Scholar] [CrossRef]
- Pokhmurskii, V.; Student, M.; Gvozdeckii, V.; Stypnutskyy, T.; Student, O.; Wielage, B.; Pokhmurska, H. Arc-Sprayed Iron-Based Coatings for Erosion-Corrosion Protection of Boiler Tubes at Elevated Temperatures. J. Therm. Spray Technol. 2013, 22, 808–819. [Google Scholar] [CrossRef]
- Zhang, S.D.; Zhang, W.L.; Wang, S.G.; Gu, X.J.; Wang, J.Q. Characterisation of three-dimensional porosity in an Fe-based amorphous coating and its correlation with corrosion behaviour. Corros. Sci. 2015, 93, 211–221. [Google Scholar] [CrossRef]
- Katakam, S.; Hwang, J.Y.; Paital, S.; Banerjee, R.; Vora, H.; Dahotre, N.B. In Situ Laser Synthesis of Fe-Based Amorphous Matrix Composite Coating on Structural Steel. Metall. Mater. Trans. A 2012, 43, 4957–4966. [Google Scholar] [CrossRef]
- Lampke, T.; Wielage, B.; Pokhmurska, H.; Rupprecht, C.; Schuberth, S.; Drehmann, R.; Schreiber, F. Development of particle-reinforced nanostructured iron-based composite alloys for thermal spraying. Surf. Coat. Technol. 2011, 205, 3671–3676. [Google Scholar] [CrossRef]
- Li, R.; Li, Z.; Zhu, Y.; Qi, K. Structure and corrosion resistance properties of Ni-Fe-B-Si-Nb amorphous composite coatings fabricated by laser processing. J. Alloys Compd. 2013, 580, 327–331. [Google Scholar] [CrossRef]
- Bolelli, G.; Berger, L.M.; Börner, T.; Koivuluoto, H.; Lusvarghi, L.; Lyphout, C.; Markocsan, N.; Matikainen, V.; Nylén, P.; Sassatelli, P.; et al. Tribology of HVOF- and HVAF-sprayed WC-10Co4Cr hardmetal coatings: A comparative assessment. Surf. Coat. Technol. 2015, 265, 125–144. [Google Scholar] [CrossRef] [Green Version]
- Milanti, A.; Matikainen, V.; Koivuluoto, H.; Bolelli, G.; Lusvarghi, L.; Vuoristo, P. Effect of spraying parameters on the microstructural and corrosion properties of HVAF-sprayed Fe-Cr-Ni-B-C coatings. Surf. Coat. Technol. 2015, 277, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.B.; Zheng, Y.G.; Sun, W.H.; Wang, J.Q. Erosion-corrosion of HVOF-sprayed Fe-based amorphous metallic coating under impingement by a sand-containing NaCl solution. Corros. Sci. 2013, 76, 337–347. [Google Scholar] [CrossRef]
- Hulka, I.; Şerban, V.A.; Secoşan, I.; Vuoristo, P.; Niemi, K. Wear properties of CrC-37WC-18M coatings deposited by HVOF and HVAF spraying processes. Surf. Coat. Technol. 2012, 210, 15–20. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, S.; Cheng, Y.; Xiang, J.; Zhao, X.; Yang, G. Wear and corrosion performance of WC-10Co4Cr coatings deposited by different HVOF and HVAF spraying processes. Surf. Coat. Technol. 2013, 218, 127–136. [Google Scholar] [CrossRef]
- Guo, R.Q.; Zhang, C.; Chen, Q.; Yang, Y.; Li, N.; Liu, L. Study of structure and corrosion resistance of Fe-based amorphous coatings prepared by HVAF and HVOF. Corros. Sci. 2011, 53, 2351–2356. [Google Scholar] [CrossRef]
- Li, C.J.; Yang, G.J. Relationships between feedstock structure, particle parameter, coating deposition, microstructure and properties for thermally sprayed conventional and nanostructured WC-Co. Int. J. Refract. Met. Hard Mater. 2013, 39, 2–17. [Google Scholar] [CrossRef]
- Liu, S.; Sun, D.; Fan, Z.; Yu, H.; Meng, H. The influence of HVAF powder feedstock characteristics on the sliding wear behaviour of WC-NiCr coatings. Surf. Coat. Technol. 2008, 202, 4893–4900. [Google Scholar]
- Wang, Y.; Xing, Z.Z.; Luo, Q.; Rahman, A.; Jiao, J.; Qu, S.J.; Zheng, Y.G.; Shen, J. Corrosion and erosion-corrosion behaviour of activated combustion high-velocity air fuel sprayed Fe-based amorphous coatings in chloride-containing solutions. Corros. Sci. 2015, 98, 339–353. [Google Scholar] [CrossRef]
- Bolelli, G.; Börner, T.; Milanti, A.; Lusvarghi, L.; Laurila, J.; Koivuluoto, H.; Niemi, K.; Vuoristo, P. Tribological behavior of HVOF- and HVAF-sprayed composite coatings based on Fe-Alloy + WC-12% Co. Surf. Coat. Technol. 2014, 248, 104–112. [Google Scholar] [CrossRef]
- Masuku, Z.H.; Olubambi, P.A.; Potgieter, J.H.; Obadele, B.A. Tribological and Corrosion Behavior of HVOF-Sprayed WC-Co-Based Composite Coatings in Simulated Mine Water Environments. Tribol. Trans. 2015, 58, 337–348. [Google Scholar] [CrossRef]
- Wang, A.P.; Wang, Z.M.; Zhang, J.; Wang, J.Q. Deposition of HVAF-sprayed Ni-based amorphous metallic coatings. J. Alloys Compd. 2007, 440, 225–228. [Google Scholar] [CrossRef]
- Yingjie, W.; Gengsheng, O.; Lei, Z.; Xiaoping, W.; Hengyu, Z.; Shanlin, W. Corrosion Resistance of Coating with Fe-based Metallic Glass Powders Fabricated by Laser Spraying. J. Appl. Sci. 2013, 13, 1479–1483. [Google Scholar]
- Manish, R.; Davim, J.P. Thermal Sprayed Coatings and Their Tribological Performances; IGI Global: Hershey, PA, USA, 2015. [Google Scholar]
- Lyphout, C.; Sato, K. Screening design of hard metal feedstock powders for supersonic air fuel processing. Surf. Coat. Technol. 2014, 258, 447–457. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Method. 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Jones, D.A. Principles and Prevention of Corrosion: Pearson New International Edition, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1995. [Google Scholar]
- Zhao, L.; Lugscheider, E. Influence of the spraying processes on the properties of 316L stainless steel coatings. Surf. Coat. Technol. 2003, 162, 6–10. [Google Scholar] [CrossRef]
- Redjdal, O.; Zaid, B.; Tabti, M.S.; Henda, K.; Lacaze, P.C. Characterization of thermal flame sprayed coatings prepared from FeCr mechanically milled powder. J. Mater. Process. Technol. 2013, 213, 779–790. [Google Scholar] [CrossRef]
- Zhao, W.M.; Wang, Y.; Dong, L.X.; Wu, K.Y.; Xue, J. Corrosion mechanism of NiCrBSi coatings deposited by HVOF. Surf. Coat. Technol. 2005, 190, 293–298. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, W.G.; Kim, Y.H.; Jang, H. Surface roughness and the corrosion resistance of 21Cr ferritic stainless steel. Corros. Sci. 2012, 63, 404–409. [Google Scholar] [CrossRef]
- Souza, V.A.D.; Neville, A. Linking electrochemical corrosion behaviour and corrosion mechanisms of thermal spray cermet coatings (WC-CrNi and WC/CrC-CoCr). Mater. Sci. Eng. A 2003, 352, 202–211. [Google Scholar] [CrossRef]
- Zhang, C.; Chan, K.C.; Wu, Y.; Liu, L. Pitting initiation in Fe-based amorphous coatings. Acta Mater. 2012, 60, 4152–4159. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, C. Fe-based amorphous coatings: Structures and properties. Thin Solid Films 2014, 561, 70–86. [Google Scholar] [CrossRef]
- Sadeghimeresht, E.; Markocsan, N.; Nylén, P.; Björklund, S. Corrosion performance of bi-layer Ni/Cr2C3-NiCr HVAF thermal spray coating. Appl. Surf. Sci. 2016, 369, 470–481. [Google Scholar] [CrossRef]
- Bergan, Z.; Trdan, U.; Grum, J. Effect of high-temperature furnace treatment on the microstructure and corrosion behavior of NiCrBSi flame-sprayed coatings. Corros. Sci. 2014, 88, 372–386. [Google Scholar] [CrossRef]
- Niaz, A.; Khan, S.U. A Comprehensive Pitting Study of High Velocity Oxygen Fuel Inconel 625 Coating by Using Electrochemical Testing Techniques. J. Mater. Eng. Perform. 2015, 25, 280–289. [Google Scholar] [CrossRef]
- Brioua, S.; Belmokre, K.; Debout, V.; Jacquot, P.; Conforto, E.; Touzain, S.; Creus, J. Corrosion behavior in artificial seawater of thermal-sprayed WC-CoCr coatings on mild steel by electrochemical impedance spectroscopy. J. Solid State Electrochem. 2011, 16, 633–648. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Peng, Y.; Yu, Y.; Liu, L. Effects of crystallization on the corrosion resistance of Fe-based amorphous coatings. Corros. Sci. 2012, 59, 10–19. [Google Scholar] [CrossRef]
- Zhang, J.; Desai, V. Evaluation of thickness, porosity and pore shape of plasma sprayed TBC by electrochemical impedance spectroscopy. Surf. Coat. Technol. 2005, 190, 98–109. [Google Scholar] [CrossRef]
- Lvovich, V.F. Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
Powder | Composition (wt %) | Apparent Density (g/cm3) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cr | Ni | C | W | Si | Mo | Mn | Fe | Co | ||
1 | 28.0 | 16.0 | 1.85 | – | 1.2 | 4.4 | 1.5 | Bal. | – | 4.2 |
2 | 17.0 | 12.0 | 0.01 | – | - | 2.5 | 1.5 | Bal. | – | 4.1 |
3 | 28.0 | 1.5 | 1.00 | 4.4 | 1.1 | – | – | 0.5 | Bal. | 4.6 |
Parameter | Value |
---|---|
Nozzle | 4L4 |
Spray distance (mm) | 350 |
Gun traverse velocity (m/min) | 100 |
Powder feed rate (g/min) | 50 |
Nitrogen carrier gas flow (L/min) | 60 |
Air pressure (MPa) | 0.80 |
Fuel 1 pressure-Propane (MPa) | 0.7 |
Fuel 2 pressure-Propane (MPa) | 0.7 |
Coding | Powder Used | In-Flight Particle Temperature (°C) | Thickness * |
---|---|---|---|
FeCrNiC1 | Fe-based powder 1 | 1515 | Low |
FeCrNiC2 | Fe-based powder 1 | 1515 | High |
FeCrNiC3 | Fe-based powder 1 | 1400 | High |
FeCrNi | Fe-based powder 2 | 1400 | High |
CoCrC1 | Co-based powder 3 | 1400 | Low |
CoCrC2 | Co-based powder 3 | 1400 | High |
Coding | Thickness (μm) | Roughness (μm) | Microhardness (HV0.3) |
---|---|---|---|
FeCrNiC1 | 183 ± 10 | 6 ± 0.6 | 632 ± 20 |
FeCrNiC2 | 378 ± 8 | 5 ± 0.8 | 658 ± 26 |
FeCrNiC3 | 304 ± 3 | 9 ± 0.3 | 611 ± 15 |
FeCrNi | 308 ± 8 | 5 ± 0.5 | 350 ± 10 |
CoCrC1 | 272 ± 13 | 8 ± 0.6 | 863 ± 19 |
CoCrC2 | 315 ± 5 | 7 ± 0.3 | 833 ± 15 |
Coding | icorr (μA cm−2) | Ecorr (V vs. SCE) | βa (V dec−1) | −βc (V dec−1) | Rp (kΩ cm2) |
---|---|---|---|---|---|
FeCrNiC1 | 0.9 ± 0.1 | −0.25 ± 0.02 | 0.26 ± 0.03 | 0.18 ± 0.03 | 43.9 ± 0.5 |
FeCrNiC2 | 1.9 ± 0.2 | −0.31 ± 0.03 | 0.21 ± 0.02 | 0.13 ± 0.02 | 18.3 ± 0.2 |
FeCrNiC3 | 9.4 ± 1.3 | −0.36 ± 0.03 | 0.24 ± 0.03 | 0.16 ± 0.02 | 4.4 ± 0.1 |
FeCrNi | 7.7 ± 0.6 | −0.37 ± 0.03 | 0.16 ± 0.01 | 0.09 ± 0.01 | 3.2 ± 0.1 |
CoCrC1 | 8.1 ± 0.5 | −0.32 ± 0.03 | 0.17 ± 0.01 | 0.14 ± 0.02 | 4.1 ± 0.2 |
CoCrC2 | 4.7 ± 0.5 | −0.38 ± 0.04 | 0.12 ± 0.01 | 0.11 ± 0.02 | 5.3 ± 0.3 |
Coating | Rs (Ω·cm2) | Rct (kΩ·cm2) | CPE-T (μF·cm−2) | n | Cdl (μF·cm−2) |
---|---|---|---|---|---|
FeCrNiC1 | 9.9 | 20.1 | 0.05 | 0.79 | 120 |
FeCrNiC2 | 10.2 | 6.8 | 0.17 | 0.80 | 4000 |
FeCrNiC3 | 9.9 | 4.4 | 0.07 | 0.78 | 5020 |
FeCrNi | 10.0 | 0.8 | 0.05 | 0.79 | 925 |
CoCrC1 | 10.0 | 2.1 | 0.08 | 0.76 | 5115 |
CoCrC2 | 10.1 | 2.8 | 0.08 | 0.75 | 5040 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadeghimeresht, E.; Markocsan, N.; Nylén, P. A Comparative Study of Corrosion Resistance for HVAF-Sprayed Fe- and Co-Based Coatings. Coatings 2016, 6, 16. https://doi.org/10.3390/coatings6020016
Sadeghimeresht E, Markocsan N, Nylén P. A Comparative Study of Corrosion Resistance for HVAF-Sprayed Fe- and Co-Based Coatings. Coatings. 2016; 6(2):16. https://doi.org/10.3390/coatings6020016
Chicago/Turabian StyleSadeghimeresht, Esmaeil, Nicolaie Markocsan, and Per Nylén. 2016. "A Comparative Study of Corrosion Resistance for HVAF-Sprayed Fe- and Co-Based Coatings" Coatings 6, no. 2: 16. https://doi.org/10.3390/coatings6020016
APA StyleSadeghimeresht, E., Markocsan, N., & Nylén, P. (2016). A Comparative Study of Corrosion Resistance for HVAF-Sprayed Fe- and Co-Based Coatings. Coatings, 6(2), 16. https://doi.org/10.3390/coatings6020016