Mechanical and Thermal Properties of Epoxy Composites Containing Zirconium Oxide Impregnated Halloysite Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preraration of Zr/HNT and Epoxy Composites
2.3. Characterizations
2.3.1. Characterizations of Zr/HNT filler
2.3.2. Thermal and Mechanical Tests on Zr/HNT-Epoxy Composites
3. Results and Discussion+
3.1. Characterization of Zr/HNT Filler
3.2. Thermal Properties of Zr/HNT-Epoxy Composites
3.3. Mechanical Properties of Zr/HNT-Epoxy Composites
4. Conclusions
5. Patents
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yasmin, A.; Luo, J.J.; Abot, J.L.; Danie, I.M. Mechanical and thermal behavior of clay/epoxy nanocomposites. Compos. Sci. Technol. 2006, 66, 2415–2422. [Google Scholar] [CrossRef]
- Liu, M.; Guo, B.; Du, M.; Lei, Y.; Jia, D. Natural inorganic nanotubes reinforced epoxy resin nanocomposites. J. Polym. Res. 2008, 15, 205–212. [Google Scholar] [CrossRef]
- Shiu, S.C.; Tsai, J.L. Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Compos. Part B 2014, 56, 691–697. [Google Scholar] [CrossRef]
- Zhu, J.; Wei, S.; Yadav, A.; Guo, Z. Rheological behaviors and electrical conductivity of epoxy resin nanocomposites suspended with in-situ stabilized carbon nanofibers. Polymer 2010, 51, 2643–2651. [Google Scholar] [CrossRef]
- Sun, D.; Chu, C.-C.; Sue, H.-J. Simple approach for preparation of epoxy hybrid nanocomposites based on carbon nanotubes and a model clay. Chem. Mater. 2010, 22, 3773–3778. [Google Scholar] [CrossRef]
- Kim, H.J.; Jung, D.H.; Cifuentes, J.I.; Rhee, K.Y.; Hui, D. Enhancement of mechanical properties of aluminium/epoxy composites with silane functionalization of aluminium powder. Compos. Part B 2012, 43, 1743–1748. [Google Scholar] [CrossRef]
- Yu, W.; Fu, J.; Dong, X.; Chen, L.; Jia, H.; Shi, L. Highly populated and nearly monodispersed nanosilica particles in an organic medium and their epoxy nanocomposites. ACS Appl. Mater. Interfaces 2013, 5, 8897–8906. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.S.; Bouveret, B.; Suhr, J.; Gibson, R.F. Combined numerical/experimental investigation of particle diameter and interphase effects on coefficient of thermal expansion and young’s modulus of SiO2/epoxy nanocomposites. Polym. Compos. 2012, 33, 1415–1423. [Google Scholar] [CrossRef]
- Chen, K.; Tian, C.; Lu, A.; Zhou, Q.; Jia, X.; Wang, J. Effect of SiO2 on rheology, morphology, thermal, and mechanical properties of high thermal stable epoxy foam. J. Appl. Polym. 2014, 131. [Google Scholar] [CrossRef]
- Liu, M.; Jia, Z.; Jia, D.; Zhou, C. Recent advance in research on halloysite nanotubes–polymer nanocomposite. Prog. Polym. Sci. 2014, 39, 1498–1525. [Google Scholar] [CrossRef]
- Copuroglu, M.; Sen, M. Synthesis and characterization of a Zr-containing silicate-based epoxy-functional polymer nanocomposite system. Polym. Eng. Sci. 2015, 55, 792–798. [Google Scholar] [CrossRef]
- Halder, S.; Ahmed, S.; Das, S.; Wang, J. Epoxy/glass fiber laminated composites integrated with amino functionalized ZrO2 for advanced structural applications. ACS Appl. Mater. Interfaces 2016, 8, 1695–1706. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Guo, F.; Sun, L.; Li, A. Surface modification of ZrO2:Er3+ nanoparticles to attenuate aggregation and enhance upconversion fluorescence. J. Phys. Chem. C 2008, 112, 2836–2844. [Google Scholar] [CrossRef]
- Kim, T.H.; Kim, D.; Lim, C.S.; Seo, B. Studies of the physical properties of cycloaliphatic epoxy resin reacted with anhydride curing agents. Key Eng. Mater. 2017, 737, 248–255. [Google Scholar] [CrossRef]
- ASTM D790M Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials (Metric); ASTM International: West Conshohocken, PA, USA, 2010.
- Sohn, J.R.; Lee, D.G. Characterization of zirconium sulfate on TiO2 and activity for acid catalysis. Korean J. Chem. Eng. 2003, 20, 1030–1036. [Google Scholar] [CrossRef]
- Imai, T.; Sawa, F.; Nakao, T.; Ozaki, T.; Shimizu, T.; Kozako, M.; Tanaka, T. Effects of nano- and micro-filler mixture on electrical insulation properties of epoxy based composites. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 319–326. [Google Scholar] [CrossRef]
- Giddappanavar, S.V.; Pol, A.S.; Shikkeri, S.B. Study of thermal properties by influence of filler material on carbon-epoxy composites. Int. Res. J. Eng. Technol. 2015, 2, 836–842. [Google Scholar]
- Ash, B.J.; Rogers, D.F.; Wiegand, C.J.; Schadler, L.S.; Siegel, R.W.; Benicewicz, B.C.; Apple, T. Mechanical properties of Al2O3/polymethylmethacrylate nanocomposites. Polym. Compos. 2002, 23, 1014–1025. [Google Scholar] [CrossRef]
Composite | Tpeak (°C) | Tonset (°C) | Tcure (°C) |
---|---|---|---|
Pristine epoxy resin | 181.22 | 160.21 | 170.72 |
Epoxy resin + HNT (5 wt %) | 178.56 | 160.55 | 169.56 |
Epoxy resin + Zr/HNT (5 wt %) | 176.32 | 161.17 | 168.75 |
Filler Content (wt %) | Tg (°C) | a1 (μm/(m·°C)) | ||
---|---|---|---|---|
HNT | Zr/HNT | HNT | Zr/HNT | |
0 | 146.14 | 82.32 | ||
2.5 | 145.33 | 143.57 | 74.70 | 79.29 |
5 | 142.30 | 141.15 | 73.00 | 73.72 |
7.5 | 141.29 | 144.89 | 72.18 | 68.86 |
10 | 134.86 | 148.42 | 68.68 | 60.94 |
Filler Content (wt %) | Flexural Strength (MPa) | Flexural Modulus (MPa) | ||
---|---|---|---|---|
HNT | Zr/HNT | HNT | Zr/HNT | |
0 | 124.23 ± 0.3 | 3740 ± 9 | ||
2.5 | 125.18 ± 1.97 | 124.11 ± 0.86 | 3747 ± 30 | 3746 ± 13 |
5 | 132.08 ± 0.67 | 130.15 ± 1.10 | 3899 ± 42 | 3981 ± 9 |
7.5 | 132.40 ± 0.46 | 132.21 ± 1.36 | 4013 ± 82 | 4060 ± 72 |
10 | 132.16 ± 1.11 | 134.16 ± 0.73 | 4229 ± 57 | 4249 ± 20 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.I.; Kim, S.; Kim, T.; Lee, D.K.; Seo, B.; Lim, C.-S. Mechanical and Thermal Properties of Epoxy Composites Containing Zirconium Oxide Impregnated Halloysite Nanotubes. Coatings 2017, 7, 231. https://doi.org/10.3390/coatings7120231
Kim MI, Kim S, Kim T, Lee DK, Seo B, Lim C-S. Mechanical and Thermal Properties of Epoxy Composites Containing Zirconium Oxide Impregnated Halloysite Nanotubes. Coatings. 2017; 7(12):231. https://doi.org/10.3390/coatings7120231
Chicago/Turabian StyleKim, Moon Il, Suhyun Kim, Taehee Kim, Dong Koo Lee, Bongkuk Seo, and Choong-Sun Lim. 2017. "Mechanical and Thermal Properties of Epoxy Composites Containing Zirconium Oxide Impregnated Halloysite Nanotubes" Coatings 7, no. 12: 231. https://doi.org/10.3390/coatings7120231
APA StyleKim, M. I., Kim, S., Kim, T., Lee, D. K., Seo, B., & Lim, C. -S. (2017). Mechanical and Thermal Properties of Epoxy Composites Containing Zirconium Oxide Impregnated Halloysite Nanotubes. Coatings, 7(12), 231. https://doi.org/10.3390/coatings7120231