Mechanisms of the Antibacterial Effects of TiO2–FeOx under Solar or Visible Light: Schottky Barriers versus Surface Plasmon Resonance
Abstract
:1. Introduction
2. TiO2–FeOx Surfaces Leading to Bacterial Inactivation under Solar Light with a Faster Kinetics Compared to Either TiO2 or FeOx Films
3. Sputtering of TiO2–Fe2O3 Microstructure to Accelerate the Bacterial Inactivation Kinetics: Process Optimization
4. Optical and Surface Properties of Co-Sputtered and Sequentially Sputtered TiO2–FeOx Films Active in Bacterial Inactivation
5. Evidence by XPS of Bacterial Inactivation Inducing Differentiated Redox Interactions with TiO2–FeOx Samples
6. The Role of the Microstructure Controlling the Bacterial Inactivation Mechanism: Critical Issues
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
cb | conduction band |
vb | valence band |
cbe− | photo-generated electrons in the conduction band |
vbh+ | photo-generated holes in the valence band |
FeOx | iron oxides |
TiO2 | titanium dioxide |
PE | polyethylene |
TiO2/FeOx–PE | sequentially sputtered TiO2 followed by FeOx deposition |
TiO2–FeOx–PE | co-deposition of TiO2 and FeOx (at the same time) |
EPR | electron paramagnetic resonance |
IFCT | interfacial charge transfer |
ROS | reactive oxygen species |
XPS | X-ray Photo-electron Spectroscopy |
Rg | roughness |
DRS | diffuse reflectance spectroscopy |
SSA | specific surface area |
TRPAS | time-resolved photo-acoustic spectroscopy |
References
- Byrne, J.A.; Dunlop, P.S.M.; Hamilton, J.W.J.; Fernandez-Ibanes, P.; Polo-Lopez, I.; Sharma, K.P.; Vennard, M.S.A. A review of heterogeneous photocatalysis for water and surface disinfection. Molecules 2015, 20, 5574–5615. [Google Scholar] [CrossRef] [PubMed]
- Rtimi, S.; Sanjines, R.; Pulgarin, C.; Kulik, A.; Kiwi, J. Innovative transparent non-scattering TiO2 bactericide films inducing increased E. coli cell fluidity. Surf. Coat. Technol. 2014, 254, 333–343. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, A.J.; O’Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 2012, 125, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Pillai, C.S.; Falaras, P.; O’Shea, K.; Byrne, A.-J.; Dionysiou, D. New insights into the mechanism of visible light photocatalysis. J. Phys. Chem. Lett. 2014, 5, 2543–2554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, S.; Dionysiou, D.; Pillai, C.S. Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal. B 2015, 176–177, 396–428. [Google Scholar] [CrossRef]
- Foster, H.; Ditta, I.; Varghese, S.; Steele, A. Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Appl. Microbiol. Biotechnol. 2011, 90, 1847–1868. [Google Scholar] [CrossRef] [PubMed]
- Yadav, H.; Kiwi, J.; Pawar, S.H. Development in photocatalytic antibacterial activity of nano TiO2: A review. Korean J. Chem. 2016, 33, 1989–1998. [Google Scholar] [CrossRef]
- Rtimi, S.; Pulgarin, C.; Kiwi, J. Recent developments in accelerated antibacterial inactivation on 2D Cu-titania surfaces under indoor visible light. Coatings 2017, 7, 20. [Google Scholar] [CrossRef]
- Kubacka, A.; Diez, M.; Rojo, D.; Ciordia, S.; Zapico, I.; Albar, J.; Barbas, C.; Martins dos Santos, V.; Fernandez-Garrcia, M.; Ferrer, M. Understanding the Antimicrobial mechanism of TiO2 based nano-composite films in a pathogenic bacterium. Sci. Rep. 2014, 4, 4134–4143. [Google Scholar] [CrossRef] [PubMed]
- Verdier, T.; Coutand, M.; Bertron, A. Antibacterial activity of TiO2 photocatalyst alone or in coatings on E. coli: The influence of methodological aspects. Coatings 2014, 4, 670–686. [Google Scholar] [CrossRef]
- Alhadrami, H.A.; Al-Hazmi, F. Antibacterial activities of titanium oxide nanoparticles. J. Bioelectron. Nanotechnol. 2017, 2, 5. [Google Scholar]
- Matsunaga, T.; Tomoda, R.; Nakajima, T.; Wake, H. Photoelectrochemcal sterilization of microbial cells by semiconductor powders. FEMS Microbiol. Lett. 1985, 29, 211–214. [Google Scholar] [CrossRef]
- Jones, D.P. Redefining oxidative stress. Antioxid. Redox Signal. 2006, 8, 1865–1879. [Google Scholar] [CrossRef] [PubMed]
- Yogi, A.; Varshney, D. Magnetic and structural properties of pure and Cr-doped hematite: α-Fe2−xCrxO3 (0 ≤ x ≤ 1). J. Adv. Ceram. 2013, 2, 360–369. [Google Scholar] [CrossRef]
- Basnet, P.; Larsen, G.K.; Jadeja, R.P.; Hung, Y.C.; Zhao, Y. α-Fe2O3 nano-columns and nano-rods fabricated by electron beam evaporation for visible light photocatalytic and antimicrobial applications. ACS Appl. Mater. Inter. 2013, 5, 2085–2095. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Rittmann, B.; Chen, Y. Size effects on adsorption of hematite nanoparticles on E. coli cells. Environ. Sci. Technol. 2011, 45, 2172–2178. [Google Scholar] [CrossRef] [PubMed]
- Ubale, A.U.; Belkehdkar, M.R. Size dependent physical properties of nanostructured α-Fe2O3 thin films grown by successive ionic-layer deposition and reaction method for antibacterial application. J. Mater. Sci. Technol. 2015, 31, 1–9. [Google Scholar]
- Jana, T.K.; Pal, A.; Mandal, A.K.; Sarwar, S.; Chakrabarti, P.; Chatterjee, K. Photocatalytic and antibacterial performance of α-Fe2O3 nanostructures. ChemistrySELECT 2017, 2, 3068–3077. [Google Scholar]
- Golbamaki, N.; Rasuley, B.; Cassano, A.; Robinson, N.; Benfebati, E.; Leszczynski, J.; Cronin, T. Genotoxicity of metal oxide nanomaterials: Review of recent data and discussion of possible mechanisms. Nanoscale 2015, 14, 2154–2198. [Google Scholar] [CrossRef] [PubMed]
- Bhabra, B. Nanoparticles can cause DNA damage across a cellular barrier. Nat. Nanotechnol. 2009, 4, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Schulz, E.; Wenzel, P.H.; Munzel, T.H.; Daiber, A. Mitochondrial redox signaling: Interaction of mitochondrial reactive oxygen species with other sources of oxidative stress. Antioxid. Redox Signal. 2014, 20, 308–324. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.; Sommer, A.; Distel, V.; Hazeman, L.; Kroner, W.; Neuhuber, W.; Muller, P.; Proux, O.; Kryshxhi, C. Superparamagnetic iron oxide nanoparticles as novel X-ray enhancer for low-dose radiation therapy. J. Phys. Chem. B 2014, 118, 6159–6166. [Google Scholar] [CrossRef] [PubMed]
- Wachs, I. Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catal. Today 2005, 100, 79–94. [Google Scholar] [CrossRef]
- Pal, B.; Maheshwar, S.; Gyoichi, N. Preparation and characterization of TiO2/Fe2O3 binary mixed oxides and its photocatalytic properties. Mater. Chem. Phys. 1999, 59, 254–261. [Google Scholar] [CrossRef]
- Rong, L.; Jia, Y.; Bu, N.; Wu, J.; Zhen, Q. Photocatalytic degradation of methyl blue using Fe2O3/TiO2 composite ceramics. J. Alloy. Compd. 2015, 643, 88–93. [Google Scholar]
- Tung, W.; Daoud, W. New approach toward nanozised ferrous ferric oxide and Fe3O4-doped titanium dioxide photocatalysts. Appl. Mat. Interfaces 2009, 11, 2453–2461. [Google Scholar] [CrossRef] [PubMed]
- Lazar, M.; Daoud, W. Achieving selectivity in TiO2-based photocatalysis. RSC Adv. 2013, 3, 4130–4135. [Google Scholar] [CrossRef]
- Camarasa-Mena, A.; Rtimi, S.; Pulgarin, C.; Lavanchy, C.-J.; Kiwi, J. Grafted semiconductors on PE-films leading to bacterial inactivation: Synthesis characterization and mechanism. Colloids Surf. A 2017, 519, 231–237. [Google Scholar] [CrossRef]
- Wardman, P. Reduction potentials of one electron couples involving free radicals in aqueous solutions. J. Phys. Chem. Ref. Data 1989, 18, 1637–1755. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Reps. 2008, 63, 515–546. [Google Scholar] [CrossRef]
- Leytner, S.; Hupp, T. Evaluation of the energetics of electron trap states at the nano-crystalline titanium dioxide/aqueous solution interface via time-resolved photo-acoustic spectroscopy. Chem. Phys. Lett. 2000, 330, 231–236. [Google Scholar] [CrossRef]
- Hurum, C.; Agrios, A.; Gray, K.; Rajh, T.; Thurnauer, M. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 2003, 107, 4545–4549. [Google Scholar] [CrossRef]
- Wagner, D.; Riggs, M.; Davis, E.; Mullenberg, G. Handbook of X-ray Photoelectron Spectroscopy; PerkinElmer: Eden Prairie, MN, USA, 1979. [Google Scholar]
- Kelly, P.; Li, H.; Benson, P.; Whitehead, K.; Verran, J.; Arnell, R.; Iordanova, I. Comparison of the tribological and antimicrobial properties of CrN/Ag, ZrN/Ag TiN/Ag and Tin/Cu nanocomposite coatings. Surf. Coat. Technol. 2010, 205, 1606–1610. [Google Scholar] [CrossRef]
- Rtimi, S.; Pulgarin, C.; Sanjines, R.; Kiwi, J. Novel FeOx polyethylene transparent films: Synthesis and mechanism of surface regeneration. RSC Adv. 2015, 5, 80203–80211. [Google Scholar] [CrossRef]
- Fisher, L.; Ostovapour, S.; Kelly, P.; Whitehead, K.; Cooke, K.; Storgards, E.; Verran, J. Molybdenum doped titanium oxide photocatalytic coating; for use as hygienic surfaces: The effect of soiling on antimicrobial activity. Biofouling 2014, 30, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Mathews, W.J. Nucleation of Thin Films. In Epitaxial Growth, 1st ed.; Venables, J., Price, G., Eds.; Elsevier: New York, NY, USA, 1975; pp. 382–435. [Google Scholar]
- Koster, G.; Huijben, M.; Rijnders, G. Epitaxial Growth of Complex Metal Oxides; Elsevier: Burlington, VT, USA, 2015. [Google Scholar]
- Rtimi, S.; Sanjines, R.; Kiwi, J.; Pulgarin, C.; Bensimon, M.; Khmehl, I.; Nadtochenko, V. Innovative photocatalyst (FeOx-TiO2): Transients induced by femtosecond laser pulse leading to bacterial inactivation under visible light. RSC Adv. 2015, 5, 101751–101759. [Google Scholar] [CrossRef]
- Bak, T.; Nowotny, J.; Nowotny, M. Defect Disorder of Titanium Dioxide. J. Phys. Chem. B 2006, 110, 21560–21567. [Google Scholar] [CrossRef] [PubMed]
- Kremenović, A.; Antić, B.; Blanuša, J.; Čomor, M.; Colomban, P.H.; Mazerolles, L.; Bozin, E. Heterogeneity and disorder in Ti1-xFeyO2-d nanocrystal rutile-based flower like aggregates: Detection of anatase. J. Phys. Chem. C 2011, 115, 4395–4403. [Google Scholar] [CrossRef]
- Yu, H.; Irie, H.; Shimodaira, Y.; Hisogi, Y.; Kuroda, Y.; Miyauchi, M.; Hashimoto, K. An efficient visible-light-sensitive Fe(III)-grafted TiO2 photocatalyst. J. Phys. Chem. C 2010, 114, 16481–16486. [Google Scholar] [CrossRef]
- Kusnetsov, N.V.; Serpone, N. Visible light absorption by various titanium dioxide specimens. J. Phys. Chem. B 2006, 110, 25203–25209. [Google Scholar] [CrossRef] [PubMed]
- Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, C.S. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. J. Photochem. Photobiol. C Rev. 2015, 25, 1–29. [Google Scholar] [CrossRef]
- Novabpour, P.; Ostorvapour, S.; Tattershall, C.; Cooke, K.; Kelly, P.; Verran, J.; Whitehead, K.; Hill, C.; Raulio, M.; Priha, O. Photocatalytic TiO2 and doped TiO2 coatings to improve the hygiene of surfaces in food and beverage processing—A study of the physical and chemical resistance of the coatings. Coatings 2014, 4, 433–449. [Google Scholar] [CrossRef]
- Truppi, A.; Petronella, F.; Placido, T.; Striccoli, M.; Agostiano, A.; Curri, M.L.; Comparelli, R. Visible light active TiO2 based hybrid nanocatalyst for environmental applications. Catalysts 2017, 7, 100. [Google Scholar] [CrossRef]
- Shakeri, A.; Yip, D.; Badv, M.; Imani, S.; Sanjari, M.; Didar, T. Self-cleaning ceramic tiles produced via stable coatings of TiO2 nanoparticles. Materials 2018, 11, 1003. [Google Scholar] [CrossRef] [PubMed]
- Wen, K.; Liu, M.; Liu, X.; Deng, C.; Zhou, K. Deposition of photocatalytic coating by modifying the solidification pathway in plasma spraying. Coatings 2017, 7, 169. [Google Scholar] [CrossRef]
- Pasin, L.; Meyer, J.; Eiche, E.; Kasper, G. On the activity enhancing role of iron oxide for noble metal oxidation catalysts: A CVD-based study with differently structured combinations of Pt and FeOx coatings on Al2O3. Coatings 2018, 8, 217. [Google Scholar] [CrossRef]
- Ehiasarian, A. High-power impulse magnetron sputtering and its applications. Pure Appl. Chem. 2010, 82, 1247–1258. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, D.A.; Wang, G.; Ling, Y.; Li, Y.; Zhang, J.Z. Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 2012, 5, 6682–6702. [Google Scholar] [CrossRef]
- Docampo, P.; Guldin, S.; Steiner, U.; Snaith, H.J. charge transport limitations in self-assembled TiO2 photo-anodes for dye-sensitized solar cells. J. Phys. Chem. Lett. 2013, 4, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.; Brus, L.; Chidsey, C.; Creager, S.; Creutz, C.; Kagan, C.H.; KamatV, P.; Lieberman, M.; Lindsay, S.; Marcus, M.; et al. Charge transfer on the nanoscale: Current status. J. Phys. Chem. B 2003, 107, 6668–6697. [Google Scholar] [CrossRef]
- Rtimi, S.; Pulgarin, C.; Nadtochenko, V.A.; Gostev, F.E.; Shelaev, I.V.; Kiwi, J. FeOx-TiO2 film with different microstructures leading to femtosecond transients with different properties: Biological implications under visible light. Sci. Reps. 2016, 6, 30113–30123. [Google Scholar] [CrossRef] [PubMed]
- Hung, W.-H.; Chien, T.-M.; Tseng, C.-M. Enhanced photocatalytic water splitting by plasmonic TiO2–Fe2O3 cocatalyst under visible light irradiation. J. Phys. Chem. C 2014, 118, 12676–12681. [Google Scholar] [CrossRef]
- Ghuman, K. Mechanistic insights into water absorption and dissociation on amorphous TiO2-based catalysts. Sci. Technol. Adv. Mater. 2018, 19, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Zhou, W.; Tian, G.; Fu, H. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem. Soc. Rev. 2013, 42, 9509–9549. [Google Scholar] [CrossRef] [PubMed]
- Rtimi, S.; Kiwi, J. Bactericide effects of transparent polyethylene photocatalytic films coated by oxides under visible light. Appl. Catal. B 2017, 213, 62–73. [Google Scholar] [CrossRef]
- Takeuchi, M.; Yamashita, H.; Matsuoka, M.; Anpo, M.; Hirao, T.; Itoh, N.; Iwamoto, N. Photocatalytic decomposition of NO under visible light irradiation on the Cr-ion-implanted TiO2 thin film photocatalyst. Catal. Lett. 2000, 67, 135–137. [Google Scholar] [CrossRef]
- Rtimi, S. Indoor light enhanced photocatalytic ultra-thin films on flexible non-heat resistant substrates reducing bacterial infection risks. Catalysts 2017, 7, 57. [Google Scholar] [CrossRef]
Element | Before | After |
---|---|---|
Fe2p | 7.87 | 7.39 |
O1s | 31.11 | 35.27 |
C1s | 61.02 | 57.34 |
N2p | 0.9 | 1.19 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiwi, J.; Rtimi, S. Mechanisms of the Antibacterial Effects of TiO2–FeOx under Solar or Visible Light: Schottky Barriers versus Surface Plasmon Resonance. Coatings 2018, 8, 391. https://doi.org/10.3390/coatings8110391
Kiwi J, Rtimi S. Mechanisms of the Antibacterial Effects of TiO2–FeOx under Solar or Visible Light: Schottky Barriers versus Surface Plasmon Resonance. Coatings. 2018; 8(11):391. https://doi.org/10.3390/coatings8110391
Chicago/Turabian StyleKiwi, John, and Sami Rtimi. 2018. "Mechanisms of the Antibacterial Effects of TiO2–FeOx under Solar or Visible Light: Schottky Barriers versus Surface Plasmon Resonance" Coatings 8, no. 11: 391. https://doi.org/10.3390/coatings8110391
APA StyleKiwi, J., & Rtimi, S. (2018). Mechanisms of the Antibacterial Effects of TiO2–FeOx under Solar or Visible Light: Schottky Barriers versus Surface Plasmon Resonance. Coatings, 8(11), 391. https://doi.org/10.3390/coatings8110391