Microstructure and Corrosion Resistance of WC-Based Cermet/Fe-Based Amorphous Alloy Composite Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Parameters of HVOF
2.2. Microstructural Characterization
2.3. Corrosion Behavior
3. Results and Discussion
3.1. Powder Morphology
3.2. Characterization of the Coatings
3.2.1. Phase Constitution
3.2.2. Microstructure
3.3. Electrochemical Corrosion Behavior
3.3.1. Electrochemical Corrosion Behavior in 3.5 wt % NaCl Solution
3.3.2. Electrochemical Corrosion Behavior in 1 M HCl Solution
3.3.3. Electrochemical Corrosion Behavior in 1 M NaOH Solution
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agüero, A.; Camón, F.; De Blas, J.G.; Del Hoyo, J.C.; Muelas, R.; Santaballa, A.; Ulargui, S.; Vallés, P. HVOF-deposited WCCoCr as replacement for hard Cr in landing gear actuators. J. Therm. Spray Technol. 2011, 20, 1292–1309. [Google Scholar] [CrossRef] [Green Version]
- Lalit Thakura, N.A. Sliding and abrasive wear behavior of WC–CoCr coatings with different carbide sizes. J. Mater. Eng. Perform. 2013, 22, 574–583. [Google Scholar] [CrossRef]
- Fauchais, P.L.; Heberlein, J.V.R.; Boulos, M. Thermal Spray Fundamentals: From Powder to Part; Springer: Boston, MA, USA, 2014; p. 640. [Google Scholar]
- Brious, S.; Belmokre, K.; Debout, V.; Jacquot, P.; Conforto, E.; Touzain, S.; Creus, J. Corrosion behavior in artificial seawater of thermal-sprayed WC–CoCr coatings on mild steel by electrochemical impedance spectroscopy. J. Solid State Electrochem. 2012, 16, 633–648. [Google Scholar] [CrossRef]
- Oksa, M.; Turunen, E.; Suhonen, T.; Varis, T.; Simo-Pekka, H. Optimization and characterization of high velocity oxy-fuel sprayed coatings: Techniques, materials, and application. Coatings 2011, 1, 17–52. [Google Scholar] [CrossRef]
- Thiele, S.; Sempf, K.; Jaenicke-Roessler, K.; Berge, L.-M.; Spatzier, J. Thermophysical and microstructural studies on thermally sprayed tungsten carbide-cobalt coatings. J. Therm. Spray Technol. 2011, 20, 358–365. [Google Scholar] [CrossRef]
- Wu, Y.; Hong, S.; Zhang, J.; He, Z.; Guo, W.; Wang, Q.; Li, G. Microstructure and cavitation erosion behavior of WC–Co–Cr coating on 1Cr18Ni9Ti stainless steel by HVOF thermal spraying. Int. J. Refract. Met. Hard Mater. 2012, 32, 21–26. [Google Scholar] [CrossRef]
- Aw, P.K.; Tan, A.L.K.; Tan, T.P.; Qiu, J. Corrosion resistance of tungsten carbide based cermet coatings deposited by high velocity oxy-fuel spray process. Thin Solid Films 2008, 516, 5710–5715. [Google Scholar] [CrossRef]
- Verdon, C.; Karimi, A.; Martin, J.L. Microstructural and analytical study of thermally sprayed WC–Co coatings in connection with their wear resistance. Mater. Sci. Eng. A 1997, 234, 731–734. [Google Scholar] [CrossRef]
- Hong, S.; Wu, Y.; Zheng, Y.; Wang, B.; Gao, W.; Lin, J. Microstructure and electrochemical properties of nanostructured WC–10Co–4Cr coating prepared by HVOF spraying. Surf. Coat. Technol. 2013, 235, 582–588. [Google Scholar] [CrossRef]
- Basak, A.K.; Celis, J.P.; Vardavoulias, M.; Matteazzi, P. Effect of nanostructuring and Al alloying on friction and wear behaviour of thermal sprayed WC–Co coatings. Surf. Coat. Technol. 2012, 206, 3508–3516. [Google Scholar] [CrossRef]
- Lin, N.; He, Y.; Wu, C.; Liu, S.; Xiao, X.; Jiang, Y. Influence of TiC additions on the corrosion behaviour of WC–Co hardmetals in alkaline solution. Int. J. Refract. Met. Hard Mater. 2014, 46, 52–57. [Google Scholar] [CrossRef]
- Human, A.M.; Exner, H.E. Electrochemical behaviour of tungsten-carbide hardmetals. Mater. Sci. Eng. A 1996, 209, 180–191. [Google Scholar] [CrossRef]
- Nahvi, S.M.; Jafari, M. Microstructural and mechanical properties of advanced HVOF-sprayed WC-based cermet coatings. Surf. Coat. Technol. 2016, 286, 95–102. [Google Scholar] [CrossRef]
- Sutthiruangwong, S.; Mori, G. Influence of refractory metal carbide addition on corrosion properties of cemented carbides. Mater. Manuf. Process. 2005, 20, 47–56. [Google Scholar] [CrossRef]
- Duarte, M.J.; Klemm, J.; Klemm, S.O.; Mayrhofer, K.J.J.; Stratmann, M.; Borodin, S.; Romero, A.H.; Madinehei, M.; Crespo, D.; Serrano, J. Element-resolved corrosion analysis of stainless-type glass-forming steels. Science 2013, 341, 372–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greer, A.; Rutherford, K.; Hutchings, I. Wear resistance of amorphous alloys and related materials. Int. Mater. Rev. 2002, 47, 87–112. [Google Scholar] [CrossRef]
- Shi, M.; Pang, S.; Zhang, T. Towards improved integrated properties in FeCrPCB bulk metallic glasses by Cr addition. Intermetallics 2015, 61, 16–20. [Google Scholar] [CrossRef]
- Farmer, J.; Choi, J.-S.; Saw, C.; Haslam, J.; Day, D.; Hailey, P.; Lian, T.; Rebak, R.; Perepezko, J.; Payer, J. Iron-based amorphous metals: High-performance corrosion-resistant material development. Metall. Mater. Trans. A 2009, 40, 1289–1305. [Google Scholar] [CrossRef]
- Liu, W.-H.; Shieu, F.-S.; Hsiao, W.-T. Enhancement of wear and corrosion resistance of iron-based hard coatings deposited by high-velocity oxygen fuel (HVOF) thermal spraying. Surf. Coat. Technol. 2014, 249, 24–41. [Google Scholar] [CrossRef]
- Ozdemir, I.; Ogawa, K.; Sato, K. Iron boron based powders sprayed by high velocity spray processes. Surf. Coat. Technol. 2014, 240, 373–379. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, Y.; Sun, W.; Wang, J. Effect of applied potential on passivation and erosion–corrosion of a Fe-based amorphous metallic coating under slurry impingement. Corros. Sci. 2014, 82, 115–124. [Google Scholar] [CrossRef]
- Wang, G.; Xing, C.; Tao, F.; Ding, P.; Huang, Z. Enhancement in the corrosion resistance of WC coating by adding a Fe-based alloy in simulated seawater. Surf. Coat. Technol. 2016, 305, 62–66. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, L.; Wang, F.C.; Zhang, H.F.; Liu, Y.B.; Xu, S.H. Formation and corrosion behavior of Fe-based amorphous metallic coatings by HVOF thermal spraying. Surf. Coat. Technol. 2009, 204, 563–570. [Google Scholar] [CrossRef]
- Milanti, A.; Koivuluoto, H.; Vuoristo, P.; Bolelli, G.; Bozza, F.; Lusvarghi, L. Wear and corrosion resistance of high-velocity oxygen-fuel sprayed iron-based composite coatings. In Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, San Diego, CA, USA, 15–21 November 2013. [Google Scholar]
- Terajima, T.; Takeuchia, F.; Nakata, K.; Adachi, S.; Nakashima, K.; Igarashi, T. Composite coating containing WC/12Co cermet and Fe-based metallic glass deposited by high-velocity oxygen fuel spraying. J. Alloys Compd. 2010, 504, S288–S291. [Google Scholar] [CrossRef]
- Tan, M.W.; Akiyama, E.; Habazaki, H.; Kawashima, A.; Asami, K.; Hashimoto, K. The role of chromium and molybdenum in passivation of amorphous Fe–Cr–Mo–PC alloys in deaerated 1 M HCl. Corros. Sci. 1996, 38, 2137–2151. [Google Scholar] [CrossRef]
- Bjordal, M.; Bardal, E.; Rogne, T.; Eggen, T. Erosion and corrosion properties of WC coatings and duplex stainless steel in sand-containing synthetic sea water. Wear 1995, 186, 508–514. [Google Scholar] [CrossRef]
- Schnyder, B.; Stössel-Sittig, C.; Kötz, R.; Hochstrasser-Kurz, S.; Virtanen, S.; Jaeggi, C.; Eichenberger, N.; Siegenthaler, H. Investigation of the electrochemical behaviour of WC–Co hardmetal with electrochemical and surface analytical methods. Surf. Sci. 2004, 566, 1240–1245. [Google Scholar] [CrossRef]
- Picas, J.A.; Rupérez, E.; Punset, M.; Forn, A. Influence of HVOF spraying parameters on the corrosion resistance of WC–CoCr coatings in strong acidic environment. Surf. Coat. Technol. 2013, 225, 47–57. [Google Scholar] [CrossRef]
- Wang, G.; Huang, Z.; Xiao, P.; Zhu, X. Spraying of Fe-based amorphous coating with high corrosion resistance by HVAF. J. Manuf. Process. 2016, 22, 34–38. [Google Scholar] [CrossRef]
- Cho, T.Y.; Chun, H.G.; Joo, Y.K.; Yoon, J.H. A study on HVOF coating of WC-metal powder on super alloy In718 of magnetic bearing shaft material of turbo-blower. Int. J. Precis. Eng. Manuf. 2014, 15, 1479–1484. [Google Scholar] [CrossRef]
- Wang, S.-L.; Cheng, J.-C.; Yi, S.-H.; Ke, L.-M. Corrosion resistance of Fe-based amorphous metallic matrix coating fabricated by HVOF thermal spraying. Trans. Nonferrous Met. Soc. Chin. 2014, 24, 146–151. [Google Scholar] [CrossRef]
- Sadeghimeresht, E.; Markocsan, N.; Nylén, P. A comparative study of corrosion resistance for HVAF-sprayed Fe- and Co-based coatings. Coatings 2016, 6, 16. [Google Scholar] [CrossRef]
- Wang, Q.; Qiao, Y.; Cheng, M.; Jiang, G.; He, G.; Chen, Y.; Zhang, X.; Liu, X. Tantalum implanted entangled porous titanium promotes surface osseointegration and bone ingrowth. Sci. Rep. 2016, 6, 26248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Kharas, B.; Zhang, H.; Sampath, S. Suppression of crystallization during high velocity impact quenching of alumina droplets: Observations and characterization. Mater. Sci. Eng. A 2007, 456, 35–42. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Fuel (kerosene) flow rate, L min−1 | 0.43 |
Oxygen flow rate, L min−1 | 900 |
Carrier gas flow rate, L min−1 | 9.0 |
Spray distance, mm | 380 |
Powder feed rate, g min−1 | 100 (WC–CoCr powder) |
70 (mixed powder) |
Coating | Ecorr (V vs. SCE) | icorr (A cm−2) | Rp (Ω cm2) |
---|---|---|---|
WC–CoCr | −0.556 | 3.86 × 10−5 | 6755 |
Composite | −0.404 | 5.57 × 10−6 | 7399 |
Coating | Ecorr (V vs. SCE) | icorr (A cm−2) | Rp (Ω cm2) |
---|---|---|---|
WC–CoCr | −0.287 | 1.68 × 10−5 | 1549 |
Composite | −0.294 | 2.83 × 10−5 | 923 |
Coating | Ecorr (V vs. SCE) | icorr (A cm−2) | Rp (Ω cm2) |
---|---|---|---|
WC–CoCr | −1.092 | 1.95 × 10−4 | 308 |
Composite | −1.096 | 1.58 × 10−4 | 440 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Song, J.; Zhang, X.; Deng, C.; Liu, M.; Zhou, K. Microstructure and Corrosion Resistance of WC-Based Cermet/Fe-Based Amorphous Alloy Composite Coatings. Coatings 2018, 8, 393. https://doi.org/10.3390/coatings8110393
Xu L, Song J, Zhang X, Deng C, Liu M, Zhou K. Microstructure and Corrosion Resistance of WC-Based Cermet/Fe-Based Amorphous Alloy Composite Coatings. Coatings. 2018; 8(11):393. https://doi.org/10.3390/coatings8110393
Chicago/Turabian StyleXu, Liping, Jinbing Song, Xiaofeng Zhang, Changguang Deng, Min Liu, and Kesong Zhou. 2018. "Microstructure and Corrosion Resistance of WC-Based Cermet/Fe-Based Amorphous Alloy Composite Coatings" Coatings 8, no. 11: 393. https://doi.org/10.3390/coatings8110393
APA StyleXu, L., Song, J., Zhang, X., Deng, C., Liu, M., & Zhou, K. (2018). Microstructure and Corrosion Resistance of WC-Based Cermet/Fe-Based Amorphous Alloy Composite Coatings. Coatings, 8(11), 393. https://doi.org/10.3390/coatings8110393