Evaluation of the Scaffolding Effect of Pt Nanowires Supported on Reduced Graphene Oxide in PEMFC Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PVP-Functionalized rGO
2.3. Preparation of Pt/rGO
2.4. Preparation of Pt(NW)Pd/rGO
2.5. Membrane Electrode Assembly (MEA) Preparation and Physical Characterization
2.6. Single Cell Testing
3. Results
3.1. SEM Analysis of GDEs
3.2. In Situ Testing
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gasteiger, H.A.; Kocha, S.S.; Sompalli, B.; Wagner, F.T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 2005, 56, 9–35. [Google Scholar] [CrossRef]
- Office of Energy Efficiency and Renewable Energy. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan. Section 3.4: Fuel Cells; US Department of Energy: Washington, DC, USA, 2016.
- Norskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jonsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892. [Google Scholar] [CrossRef]
- Nie, Y.; Li, L.; Wei, Z.D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168–2201. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.X.; Du, S.F.; Steinberger-Wilckens, R. One-dimensional nanostructured electrocatalysts for polymer electrolyte membrane fuel cells—A review. Appl. Catal. B 2016, 199, 292–314. [Google Scholar] [CrossRef]
- Sun, S.H.; Jaouen, F.; Dodelet, J.P. Controlled Growth of Pt Nanowires on Carbon Nanospheres and Their Enhanced Performance as Electrocatalysts in PEM Fuel Cells. Adv. Mater 2008, 20, 3900–3904. [Google Scholar] [CrossRef]
- Lu, Y.X.; Du, S.F.; Steinberger-Wilckens, R. Temperature-controlled growth of single-crystal Pt nanowire arrays for high performance catalyst electrodes in polymer electrolyte fuel cells. Appl. Catal. B 2015, 164, 389–395. [Google Scholar] [CrossRef]
- Du, S.F.; Lin, K.J.; Malladi, S.K.; Lu, Y.X.; Sun, S.H.; Xu, W.; Steinberger-Wilckens, R.; Dong, H.S. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells. Sci. Rep. 2014, 4, 6439. [Google Scholar] [CrossRef] [PubMed]
- Antolini, E. Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. B 2009, 88, 1–24. [Google Scholar] [CrossRef]
- Castanheira, L.; Dubau, L.; Mermoux, M.; Berthome, G.; Caque, N.; Rossinot, E.; Chatenet, M.; Maillard, F. Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: From Model Experiments to Real-Life Operation in Membrane Electrode Assemblies. ACS Catal. 2014, 4, 2258–2267. [Google Scholar] [CrossRef]
- Wildgoose, G.G.; Banks, C.E.; Compton, R.G. Metal nanoparticles and related materials supported on carbon nanotubes: Methods and applications. Small 2006, 2, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.S.; Wang, M.X.; Zhang, X.S.; Wu, Y.X.; Li, P.; Zhou, X.G.; Yuan, W.K. Platinum/carbon nanofiber nanocomposite synthesized by electrophoretic deposition as electrocatalyst for oxygen reduction. J. Power Sources 2008, 175, 211–216. [Google Scholar] [CrossRef]
- Jafri, R.I.; Rajalakshmi, N.; Ramaprabhu, S. Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J. Mater. Chem. 2010, 20, 7114–7117. [Google Scholar] [CrossRef]
- Luo, Z.M.; Yuwen, L.H.; Bao, B.Q.; Tian, J.; Zhu, X.R.; Weng, L.X.; Wang, L.H. One-pot, low-temperature synthesis of branched platinum nanowires/reduced graphene oxide (BPtNW/RGO) hybrids for fuel cells. J. Mater. Chem. 2012, 22, 7791–7796. [Google Scholar] [CrossRef]
- Du, S.F.; Lu, Y.X.; Steinberger-Wilckens, R. PtPd nanowire arrays supported on reduced graphene oxide as advanced electrocatalysts for methanol oxidation. Carbon 2014, 79, 346–353. [Google Scholar] [CrossRef]
- Antolini, E. Graphene as a new carbon support for low-temperature fuel cell catalysts. Appl. Catal. B 2012, 123, 52–68. [Google Scholar] [CrossRef]
- Wang, R.Y.; Higgins, D.C.; Hoque, M.A.; Lee, D.; Hassan, F.; Chen, Z.W. Controlled Growth of Platinum Nanowire Arrays on Sulfur Doped Graphene as High Performance Electrocatalyst. Sci. Rep. 2013, 3, 2431–2437. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.C.; Samulski, E.T. Exfoliated Graphene Separated by Platinum Nanoparticles. Chem. Mater. 2008, 20, 6792–6797. [Google Scholar] [CrossRef]
- Vu, T.H.T.; Tran, T.T.T.; Le, H.N.T.; Tran, L.T.; Nguyena, P.H.T.; Nguyen, M.D.; Quynh, B.H. Synthesis of Pt/rGO catalysts with two different reducing agents and their methanol electrooxidation activity. Mater. Res. Bull. 2016, 73, 197–203. [Google Scholar] [CrossRef]
- Millington, B.; Du, S.F.; Pollet, B.G. The effect of materials on proton exchange membrane fuel cell electrode performance. J. Power Sources 2011, 196, 9013–9017. [Google Scholar] [CrossRef]
- Úbeda, D.; Lobato, J.; Cañizares, P.; Pinar, F.J.; Zamora, H.; Fernández-Marchante, C.M.; Rodrigo, M.A. Using Current Distribution Measurements to Characterize the Behavior of HTPEMFCs. Chem. Eng. Trans. 2014, 41, 229–234. [Google Scholar] [CrossRef]
- Mardle, P.; Du, S.F. Materials for PEMFC Electrodes. In Reference Module in Materials Science and Materials Engineering; Hashmi, S., Ed.; Elsevier: Amsterdam, The Netherland, 2017; pp. 1–13. ISBN 978-0-12-803581-8. [Google Scholar]
- Sun, S.; Zhang, G.; Geng, D.; Chen, Y.; Cai, M.; Sun, X. A Highly Durable Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells: Multiarmed Starlike Nanowire Single Crystal. Angew. Chem. Int. Ed. 2011, 50, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.X.; Du, S.F.; Steinberger-Wilckens, R. Three-dimensional catalyst electrodes based on PtPd nanodendrites for oxygen reduction reaction in PEFC applications. Appl. Catal. B 2016, 187, 108–114. [Google Scholar] [CrossRef]
- Sun, K.G.; Chung, J.S.; Hur, S.H. Durability Improvement of Pt/RGO Catalysts for PEMFC by Low-Temperature Self-Catalyzed Reduction. Nanoscale Res. Lett. 2015, 10, 257–263. [Google Scholar] [CrossRef] [PubMed]
Cathode | Power Density (0.6 V) [W cm−2] | ECSA [m2 gPt−1] | i0.9V [mA] | S.A.0.9V [μA cm−2] | M.A.0.9V [A mgPt−1] |
---|---|---|---|---|---|
Pt/C 20% (JM) (0.4 mgPt cm−2) | 0.314 | 19.84 | 263.520 | 208 | 0.041 |
Pt/rGO (0.4 mgPt cm−2) | 0.128 | 2.65 | 104.480 | 616 | 0.016 |
Pt/rGO (0.6 mgPt cm−2) | 0.132 | 2.22 | 146.720 | 689 | 0.015 |
Pt(NW)Pd/rGO (0.4 mgPt cm−2) | 0.206 | 2.97 | 278.560 | 1466 | 0.044 |
Pt(NW)Pd/rGO (0.6 mgPt cm−2) | 0.226 | 2.71 | 453.920 | 1744 | 0.047 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mardle, P.; Fernihough, O.; Du, S. Evaluation of the Scaffolding Effect of Pt Nanowires Supported on Reduced Graphene Oxide in PEMFC Electrodes. Coatings 2018, 8, 48. https://doi.org/10.3390/coatings8020048
Mardle P, Fernihough O, Du S. Evaluation of the Scaffolding Effect of Pt Nanowires Supported on Reduced Graphene Oxide in PEMFC Electrodes. Coatings. 2018; 8(2):48. https://doi.org/10.3390/coatings8020048
Chicago/Turabian StyleMardle, Peter, Oliver Fernihough, and Shangfeng Du. 2018. "Evaluation of the Scaffolding Effect of Pt Nanowires Supported on Reduced Graphene Oxide in PEMFC Electrodes" Coatings 8, no. 2: 48. https://doi.org/10.3390/coatings8020048
APA StyleMardle, P., Fernihough, O., & Du, S. (2018). Evaluation of the Scaffolding Effect of Pt Nanowires Supported on Reduced Graphene Oxide in PEMFC Electrodes. Coatings, 8(2), 48. https://doi.org/10.3390/coatings8020048