Effect of Heat Treatment on the Microstructure and Phase Composition of ZrB2–MoSi2 Coating
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Devi, G.; Rao, K. Carbon-carbon Composites—An Overview. Def. Sci. J. 1993, 43, 369–383. [Google Scholar] [CrossRef]
- Sheehan, J.E.; Buesking, K.W.; Sullivan, B.J. Carbon-Carbon Composites. Annu. Rev. Mater. Sci. 2003, 24, 19–44. [Google Scholar] [CrossRef]
- Jacobson, N.S.; Curry, D.M. Oxidation Microstructure Studies of Reinforced Carbon/Carbon. Carbon 2006, 44, 1142–1150. [Google Scholar] [CrossRef]
- Lalit, M.M. High Performance Carbon–carbon Composites. Sadhana 2003, 28, 349–358. [Google Scholar] [CrossRef]
- Windhorst, T.; Blount, G. Carbon-Carbon Composites: A Summary of Recent Developments and Applications. Mater. Des. 1997, 18, 11–15. [Google Scholar] [CrossRef]
- Smeacetto, F.; Ferraris, M.; Salvo, M. Multilayer Coating with Self-sealing Properties for Carbon–carbon Composites. Carbon 2003, 41, 2105–2111. [Google Scholar] [CrossRef]
- Park, S.-J.; Seo, M.-K. The Effect of MoSi2 on the Oxidation Behavior of Carbon/Carbon Composites. Carbon 2001, 39, 1229–1235. [Google Scholar] [CrossRef]
- Sciti, D.; Brach, M.; Bellosi, A. Oxidation Behavior of a Pressureless Sintered ZrB2-MoSi2 Ceramic Composite. Mater. Res. Soc. 2005, 20, 922–930. [Google Scholar] [CrossRef]
- Mao, J.Y.; Liu, M.; Mao, J. Oxidation-resistance of ZrB2-MoSi2 Composite Coatings Prepared by Atmospheric Plasma Spraying. J. Inorg. Mater. 2015, 39, 282–286. [Google Scholar]
- Liu, X.; Han, W.; Wen, K.; Deng, C.; Liu, M.; Zhou, K. Bimodal Microstructure ZrB2-MoSi2 Coating Prepared by Atmospheric Plasma Spraying for Carbon/carbon Composites Against Long-term Ablation. Ceram. Int. 2017, 43, 16659–16667. [Google Scholar] [CrossRef]
- Zhang, W.Z.; Yi, Z.; Lemuel, G.; Xiang, X.; Bai-yun, H. Preparation and Oxidation Property of ZrB2-MoSi2/SiC Coating on Carbon/carbon Composites. Trans. Nonferrous Met. Soc. China 2011, 21, 1538–1544. [Google Scholar] [CrossRef]
- Yang, X.; Wei, L.; Song, W.; Bi-Feng, Z.; Zhao-Hui, C. ZrB2/SiC as a Protective Coating for C/SiC Composites: Effect of High Temperature Oxidation on Mechanical Properties and Anti-ablation Property. Compos. Part B-Eng. 2013, 45, 1391–1396. [Google Scholar] [CrossRef]
- Yang, X.; Feng, C.; Qing, W. ZrB2-SiC as a Protective Coating for C/SiC Composites: Effect of High Temperature Oxidation on Thermal Shock Property and Protection Mechanism. J. Asian Ceram. 2016, 4, 159–163. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Z.; Li, H.; Ren, J. Ablation Resistance of ZrB2–SiC Coating Prepared by Supersonic Atmosphere Plasma Spraying for SiC-coated Carbon/carbon Composites. Ceram. Int. 2014, 40, 14749–14755. [Google Scholar] [CrossRef]
- Li, C.; Li, G.; Ouyang, H.; Lu, J. ZrB2 Particles Reinforced Glass Coating for Oxidation Protection of Carbon/carbon Composites. J. Adv. Ceram. 2019, 8, 102–111. [Google Scholar] [CrossRef]
- Xu, B.; He, R.; Hong, C.; Ma, Y.; Wen, W.; Li, H.; Cheng, T.; Fang, D.; Yang, Y. Ablation Behavior and Mechanism of Double-layer ZrB2-Based Ceramic Coating for Lightweight Carbon-bonded Carbon fiber Composites Under Oxyacetylene Flame at Elevate Temperature. J. Alloys Compd. 2017, 702, 551–560. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, H.; Li, H.; Zhenga, X.; Ding, C. Dense ZrB2–MoSi2 Composite Coating Fabricated by Low Pressure Plasma Spray (LPPS). Ceram. Int. 2013, 39, 9773–9777. [Google Scholar] [CrossRef]
- Pierre, L.F.; Joachim, V.R.; Maher, I.B. Thermal Spray Fundamentals: From Powder to Part; Springer: Berlin, Germany; New York Inc.: New York, NY, USA, 2013; pp. 943–944. [Google Scholar]
- Vasilik, N.; Tyurin, Y.; Kolisnichenko, O. Method for Gas-Dynamic Detonating Speedup of Powders and Device for its Implementation. RU Patent 2,506,341, 11 July 2012. [Google Scholar]
- Kovaleva, M.; Tyurin, Y.; Vasilik, N.; Kolisnichenko, O.; Prozorova, M.; Arseenko, M.; Danshina, E. Deposition and Characterization of Al2O3 Coatings by Multi-chamber Gas-dynamic Accelerator. Surf. Coat. Technol. 2013, 232, 719–725. [Google Scholar] [CrossRef]
- Kovaleva, M.; Prozorova, M.; Arseenko, M.; Tyurin, Y.; Kolisnichenko, O.; Yapryntsev, M.; Novikov, V.; Vagina, O.; Sirota, V. Zircon-based Ceramic Coatings Formed by a New Multi-chamber Gas-dynamic Accelerator. Coatings 2017, 7, 142. [Google Scholar] [CrossRef]
- Elshalakany, A.B.; Osman, T.A.; Hoziefad, W.; Escudera, A.V.; Amigóa, V. Comparative Study Between High-velocity Oxygen Fuel and Flame Spraying Using MCrAlY Coats on a 304 Stainless Steel Substrate. J. Mater. Res. Technol. 2019, 8, 4253–4263. [Google Scholar] [CrossRef]
- da Cunha, C.A.; Nelson, B.L.; Martinelli, J.R.; da Almeida Bressiani, A.H.; Padial, A.G.F.; Ramanathan, L.V. Microstructure and Mechanical Properties of Thermal Sprayed Nanostructured Cr3C2-Ni20Cr Coatings. Mater. Res. 2008, 11, 137–143. [Google Scholar] [CrossRef]
- Li, C.J.; Ohmori, A. Relationships Between the Microstructure and Properties of Thermally Sprayed Deposits. J. Therm. Spray Technol. 2002, 11, 365–374. [Google Scholar] [CrossRef]
- Lu, W.; Qian-gang, F.; Ning-kun, L.; Sun, J. Improvement of the Adhesion Strength of MoSi2-ZrB2 Coating by Optimizing Particle Spraying and Subsequent Heat Treatment. J. Therm. Spray Technol. 2016, 25, 1280–1288. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, Z.; Zhao, J.; Zheng, X.; Zeng, Y.; Ding, C. Comparison of ZrB2-MoSi2 Composite Coatings Fabricated by Atmospheric and Vacuum Plasma Spray Processes. J. Therm. Spray Technol. 2017, 26, 100–107. [Google Scholar] [CrossRef]
- Fu, Q.G.; Li, H.J.; Shi, X.H.; Li, K.Z.; Sun, G.D. Silicon Carbide Coating to Protect Carbon/Carbon Composites Against Oxidation. Script. Mater. 2005, 52, 923–927. [Google Scholar] [CrossRef]
9 | Barrel Length, mm | Barrel Diameter, mm | Powder Feed Rate, g/h | Flow Rate of Fuel Mixture Components, m3/h | Oxygen/Fuel Ratio | ||
---|---|---|---|---|---|---|---|
Oxygen | C3H8 + C4H10 | Air | |||||
60 | 500 | 16 | 600 | * 4.00/** 3.60 | * 0.75/** 0.68 | * 0.12/** 0.12 | 5.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovaleva, M.; Goncharov, I.; Novikov, V.; Yapryntsev, M.; Vagina, O.; Pavlenko, I.; Sirota, V.; Tyurin, Y.; Kolisnichenko, O. Effect of Heat Treatment on the Microstructure and Phase Composition of ZrB2–MoSi2 Coating. Coatings 2019, 9, 779. https://doi.org/10.3390/coatings9120779
Kovaleva M, Goncharov I, Novikov V, Yapryntsev M, Vagina O, Pavlenko I, Sirota V, Tyurin Y, Kolisnichenko O. Effect of Heat Treatment on the Microstructure and Phase Composition of ZrB2–MoSi2 Coating. Coatings. 2019; 9(12):779. https://doi.org/10.3390/coatings9120779
Chicago/Turabian StyleKovaleva, Marina, Igor Goncharov, Vseslav Novikov, Maxim Yapryntsev, Olga Vagina, Ivan Pavlenko, Viacheslav Sirota, Yuri Tyurin, and Oleg Kolisnichenko. 2019. "Effect of Heat Treatment on the Microstructure and Phase Composition of ZrB2–MoSi2 Coating" Coatings 9, no. 12: 779. https://doi.org/10.3390/coatings9120779
APA StyleKovaleva, M., Goncharov, I., Novikov, V., Yapryntsev, M., Vagina, O., Pavlenko, I., Sirota, V., Tyurin, Y., & Kolisnichenko, O. (2019). Effect of Heat Treatment on the Microstructure and Phase Composition of ZrB2–MoSi2 Coating. Coatings, 9(12), 779. https://doi.org/10.3390/coatings9120779