The Effects of Atmospheric Pressure Argon Plasma Treated Bovine Bone Substitute on Bone Regeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bone Graft Materials Treated with Atmospheric Pressure Plasma (APP)
2.2. In Vitro Study
2.2.1. Scanning Electron Microscopy (SEM)
2.2.2. Cell Culture
2.2.3. Cell Proliferation
2.2.4. Alkaline Phosphatase (ALP) and Alizarin Red S (ARS) Staining
2.2.5. Analysis of Real-Time Polymerase Chain Reaction (PCR)
2.3. In Vivo Study
2.3.1. Experimental Animals
2.3.2. Surgical Procedures
2.3.3. Micro-Computed Tomographic (micro-CT) Analysis
2.3.4. Histologic Specimen Preparation and Histometric Analysis
2.4. Statistical Analysis
3. Results
3.1. In Vitro Study
3.1.1. Observation of Surface Morphology
3.1.2. Cell Proliferation
3.1.3. Alkaline Phosphatase (ALP) and Alizarin Red S (ARS) Staining
3.1.4. Analysis of Real-Time Polymerase Chain Reaction (PCR)
3.2. In Vivo Study
3.2.1. Volumetric Findings
3.2.2. Histologic and Histometric Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Choy, C.S.; Salamanca, E.; Lin, P.Y.; Huang, H.M.; Teng, N.C.; Pan, Y.H.; Chang, W.J. Argon plasma surface modified porcine bone substitute improved osteoblast-like cell behavior. Coatings 2019, 9, 134. [Google Scholar] [CrossRef]
- Ana, I.D. Bone Substituting Materials in Dental Implantology. In Bone Management in Dental Implantology; Springer: Berlin, Germany, 2019; pp. 121–141. [Google Scholar]
- Hoexter, D.L. Bone regeneration graft materials. J. Oral Implantol. 2002, 28, 290–294. [Google Scholar] [CrossRef]
- Greenwald, A.S.; Boden, S.D.; Goldberg, V.M.; Khan, Y.; Laurencin, C.T.; Rosier, R.N. Bone-graft substitutes: Facts, fictions, and applications. JBJS 2001, 83, S98–S103. [Google Scholar] [CrossRef] [PubMed]
- Klinge, B.; Alberius, P.; Isaksson, S.; Jönsson, J. Osseous response to implanted natural bone mineral and synthetic hydroxylapatite ceramic in the repair of experimental skull bone defects. J. Oral Maxillofac. Surg. 1992, 50, 241–249. [Google Scholar] [CrossRef]
- Esposito, M.; Grusovin, M.G.; Kwan, S.; Worthington, H.V.; Coulthard, P. Interventions for replacing missing teeth: Bone augmentation techniques for dental implant treatment. Cochrane Database Syst. Rev. 2008, 16, CD003607. [Google Scholar] [CrossRef]
- Amerio, P.; Vianale, G.; Reale, M.; Muraro, R.; Tulli, A.; Piattelli, A. The effect of deproteinized bovine bone on osteoblast growth factors and proinflammatory cytokine production. Clin. Oral Implants Res. 2010, 21, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Pinholt, E.M.; Bang, G.; Haanaes, H.R. Alveolar ridge augmentation in rats by Bio-Oss. Eur. J. Oral Sci. 1991, 99, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Denissen, H.; De Groot, K.; Makkes, P.C.; Van den Hooff, A.; Klopper, P. Tissue response to dense apatite implants in rats. J. Biomed. Mater. Res. 1980, 14, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Council on Dental Materials, Instruments, and Equipment. ANSI/ADA specification no. 33* for dental terminology. J. Am. Dent. Assoc. 1984, 109, 89. [Google Scholar] [CrossRef]
- Bajaj, S.; Singla, D.; Sakhuja, N. Stability testing of pharmaceutical products. J. App. Pharm. Sci. 2012, 2, 129–138. [Google Scholar]
- Li, S.; Ni, J.; Liu, X.; Zhang, X.; Yin, S.; Rong, M.; Guo, Z.; Zhou, L. Surface characteristics and biocompatibility of sandblasted and acid-etched titanium surface modified by ultraviolet irradiation: An in vitro study. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 1587–1598. [Google Scholar] [CrossRef] [PubMed]
- Hori, N.; Ueno, T.; Suzuki, T.; Iwasa, F.; Yamada, M.; Att, W.; Okada, S.; Ohno, A.; Aita, H.; Kimoto, K. Ultraviolet light treatment for the restoration of age-related degradation of titanium bioactivity. Int. J. Oral Maxillofac. Implant. 2010, 25, 49–62. [Google Scholar]
- Al Qahtani, M.S.; Wu, Y.; Spintzyk, S.; Krieg, P.; Killinger, A.; Schweizer, E.; Stephan, I.; Scheideler, L.; Geis-Gerstorfer, J.; Rupp, F. UV-A and UV-C light induced hydrophilization of dental implants. Dent. Mater. 2015, 31, e157–e167. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Lee, J.I.; Yang, S.S.; Kim, B.S.; Kim, B.C.; Lee, J. The effect of alendronate soaking and ultraviolet treatment on bone–implant interface. Clin. Oral Implant. Res. 2017, 28, 1164–1172. [Google Scholar] [CrossRef]
- Puligundla, P.; Mok, C. Potential applications of nonthermal plasmas against biofilm-associated micro-organisms in vitro. J. Appl. Microbiol. 2017, 122, 1134–1148. [Google Scholar] [CrossRef]
- Guastaldi, F.P.; Yoo, D.; Marin, C.; Jimbo, R.; Tovar, N.; Zanetta-Barbosa, D.; Coelho, P.G. Plasma treatment maintains surface energy of the implant surface and enhances osseointegration. Int. J. Biomater. 2013, 2013, 354125. [Google Scholar] [CrossRef]
- De Geyter, N.; Morent, R. Nonthermal plasma sterilization of living and nonliving surfaces. Annu. Rev. Biomed. Eng. 2012, 14, 255–274. [Google Scholar] [CrossRef]
- Fridman, G.; Friedman, G.; Gutsol, A.; Shekhter, A.B.; Vasilets, V.N.; Fridman, A. Applied plasma medicine. Plasma Process. Polym. 2008, 5, 503–533. [Google Scholar] [CrossRef]
- Heo, N.S.; Lee, M.K.; Kim, G.W.; Lee, S.J.; Park, J.Y.; Park, T.J. Microbial inactivation and pesticide removal by remote exposure of atmospheric air plasma in confined environments. J. Biosci. Bioeng. 2014, 117, 81–85. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, M.A.; Han, G.J.; Cho, B.H. Plasma in dentistry: A review of basic concepts and applications in dentistry. Acta Odontol. Scand. 2014, 72, 1–12. [Google Scholar] [CrossRef]
- Chu, P.K.; Chen, J.; Wang, L.; Huang, N. Plasma-surface modification of biomaterials. Mater. Sci. Eng. R Rep. 2002, 36, 143–206. [Google Scholar] [CrossRef]
- Jimbo, R.; Sawase, T.; Baba, K.; Kurogi, T.; Shibata, Y.; Atsuta, M. Enhanced initial cell responses to chemically modified anodized titanium. Clin. Implant Dent. Relat. Res. 2008, 10, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, H.S.; Marin, C.; Witek, L.; Freitas, A., Jr.; Silva, N.R.; Lilin, T.; Tovar, N.; Janal, M.N.; Coelho, P.G. Assessment of a chair-side argon-based non-thermal plasma treatment on the surface characteristics and integration of dental implants with textured surfaces. J. Mech. Behav. Biomed. Mater. 2012, 9, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Elias, A.B.; Simão, R.A.; Prado, M.; Cesar, P.F.; Dos Santos, G.B.; Da Silva, E.M. Effect of different times of nonthermal argon plasma treatment on the microtensile bond strength of self-adhesive resin cement to yttria-stabilized tetragonal zirconia polycrystal ceramic. J. Prosthet. Dent. 2019, 121, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Mauer, G.; Vaßen, R.; Stöver, D. Atmospheric plasma spraying of yttria-stabilized zirconia coatings with specific porosity. Surf. Coat. Technol. 2009, 204, 172–179. [Google Scholar] [CrossRef]
- Beutel, B.G.; Danna, N.R.; Gangolli, R.; Granato, R.; Manne, L.; Tovar, N.; Coelho, P.G. Evaluation of bone response to synthetic bone grafting material treated with argon-based atmospheric pressure plasma. Mater. Sci. Eng. C 2014, 45, 484–490. [Google Scholar] [CrossRef]
- Niaounakis, M. Biopolymers: Processing and Products; William Andrew: New York, NY, USA, 2014. [Google Scholar]
- Cools, P.; Asadian, M.; Nicolaus, W.; Declercq, H.; Morent, R.; De Geyter, N. Surface treatment of PEOT/PBT (55/45) with a dielectric barrier discharge in air, helium, argon and nitrogen at medium pressure. Materials 2018, 11, 391. [Google Scholar] [CrossRef]
- Giro, G.; Tovar, N.; Witek, L.; Marin, C.; Silva, N.R.; Bonfante, E.A.; Coelho, P.G. Osseointegration assessment of chairside argon-based nonthermal plasma-treated Ca-P coated dental implants. J. Biomed. Mater. Res. Part A 2013, 101, 98–103. [Google Scholar] [CrossRef]
- Canullo, L.; Genova, T.; Naenni, N.; Nakajima, Y.; Masuda, K.; Mussano, F. Plasma of argon enhances the adhesion of murine osteoblasts on different graft materials. Ann. Anat. Anat. Anz. 2018, 218, 265–270. [Google Scholar] [CrossRef]
- Nasr, H.F.; Aichelmann-Reidy, M.E.; Yukna, R.A. Bone and bone substitutes. Periodontol. 2000 1999, 19, 74–86. [Google Scholar] [CrossRef]
- Khurana, K.; Müller, F.; Jacobs, K.; Faidt, T.; Neurohr, J.U.; Grandthyll, S.; Mücklich, F.; Canal, C.; Ginebra, M.P. Plasma polymerized bioceramics for drug delivery: Do surface changes alter biological behaviour? Eur. Polym. J. 2018, 107, 25–33. [Google Scholar] [CrossRef]
- Genova, T.; Pesce, P.; Mussano, F.; Tanaka, K.; Canullo, L. The influence of bone-graft bio-functionalization with plasma of argon on bacterial contamination. J. Biomed. Mater. Res. Part A 2019, 107, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Hsieh, J.P.; Chen, Y.C.; Kang, L.L.; Hwang, C.S.; Chuang, S.F. Promoting porcelain–zirconia bonding using different atmospheric pressure gas plasmas. Dent. Mater. 2018, 34, 1188–1198. [Google Scholar] [CrossRef] [PubMed]
- Duske, K.; Koban, I.; Kindel, E.; Schröder, K.; Nebe, B.; Holtfreter, B.; Jablonowski, L.; Weltmann, K.D.; Kocher, T. Atmospheric plasma enhances wettability and cell spreading on dental implant metals. J. Clin. Periodontol. 2012, 39, 400–407. [Google Scholar] [CrossRef]
- Foest, R.; Kindel, E.; Ohl, A.; Stieber, M.; Weltmann, K. Non-thermal atmospheric pressure discharges for surface modification. Plasma Phys. Control. Fusion 2005, 47, B525–B536. [Google Scholar] [CrossRef]
- Trounson, A.; McDonald, C. Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell 2015, 17, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Krampera, M.; Pizzolo, G.; Aprili, G.; Franchini, M. Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 2006, 39, 678–683. [Google Scholar] [CrossRef]
- Waser-Althaus, J.; Salamon, A.; Waser, M.; Padeste, C.; Kreutzer, M.; Pieles, U.; Müller, B.; Peters, K. Differentiation of human mesenchymal stem cells on plasma-treated polyetheretherketone. J. Mater. Sci. Mater. Med. 2014, 25, 515–525. [Google Scholar] [CrossRef]
- Barradas, A.M.; Lachmann, K.; Hlawacek, G.; Frielink, C.; Truckenmoller, R.; Boerman, O.C.; Van Gastel, R.; Garritsen, H.; Thomas, M.; Moroni, L. Surface modifications by gas plasma control osteogenic differentiation of MC3T3-E1 cells. Acta Biomater. 2012, 8, 2969–2977. [Google Scholar] [CrossRef]
- Liu, W.; Cai, Q.; Zhang, F.; Wei, Y.; Zhang, X.; Wang, Y.; Deng, X.; Deng, X. Dose-dependent enhancement of bone marrow stromal cells adhesion, spreading and osteogenic differentiation on atmospheric plasma-treated poly (L-lactic acid) nanofibers. J. Bioact. Compat. Polym. 2013, 28, 453–467. [Google Scholar] [CrossRef]
- Lin, C.H.; Lee, S.Y.; Lin, Y.M. Plasma treatment in conjunction with EGM-2 medium increases endothelial and osteogenic marker expressions of bone marrow mesenchymal stem cells. J. Mater. Sci. 2016, 51, 9145–9154. [Google Scholar] [CrossRef]
- Coelho, P.G.; Giro, G.; Teixeira, H.S.; Marin, C.; Witek, L.; Thompson, V.P.; Tovar, N.; Silva, N.R. Argon-based atmospheric pressure plasma enhances early bone response to rough titanium surfaces. J. Biomed. Mater. Res. Part A 2012, 100, 1901–1906. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R.; Janeway, C.A., Jr. Innate immunity: Impact on the adaptive immune response. Curr. Opin. Immunol. 1997, 9, 4–9. [Google Scholar] [CrossRef]
Target Genes | Sequences |
---|---|
Actin | F: 5’- ACTCTTCCAGCCTTCCTTCC -3’ |
R: 5’- TGTTGGCGTACAGGTCTTTG -3’ | |
Runx2 | F: 5’- TGCTTTGGTCTTGAAATCACA -3’ |
R: 5’- TCTTAGAACAAATTCTGCCCTTT -3’ | |
BMP2 | F: 5’- AACACTGTGCGCAGCTTCC -3’ |
R: 5’- CTCCGGGTTGTTTTCCCAC -3’ | |
ALP | F: 5’- ATTTCTCTTGGGCAGGCAGAGAGT -3’ |
R: 5’- ATCCAGAATGTTCCACGGAGGCTT -3’ | |
OCN | F: 5’- CAGCGAGGTAGTGAAGAGAC -3’ |
R: 5’- TGAAAGCCGATGTGGTCAG -3’ | |
OPN | F: 5’- AGACACATATGATGGCCGAGG -3’ |
R: 5’- GGCCTTGTATGCACCATTCAA -3’ |
Group | New Bone Volume (%) |
---|---|
Non/expired | 17.48 ± 6.22 |
Expired | 14.83 ± 3.74 |
Ar/Expired | 23.05 ± 6.21 |
p value | 0.091 |
Group | New Bone Volume (%) |
---|---|
Non/expired | 12.71 ± 4.99 |
Expired | 13.22 ± 5.76 |
Ar/Expired | 13.77 ± 10.62 |
p value | 0.091 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, J.-J.; Yoo, J.-H.; Bae, E.-B.; Kim, G.-C.; Hwang, J.J.; Lee, W.-S.; Kim, H.-J.; Huh, J.-B. The Effects of Atmospheric Pressure Argon Plasma Treated Bovine Bone Substitute on Bone Regeneration. Coatings 2019, 9, 790. https://doi.org/10.3390/coatings9120790
Ahn J-J, Yoo J-H, Bae E-B, Kim G-C, Hwang JJ, Lee W-S, Kim H-J, Huh J-B. The Effects of Atmospheric Pressure Argon Plasma Treated Bovine Bone Substitute on Bone Regeneration. Coatings. 2019; 9(12):790. https://doi.org/10.3390/coatings9120790
Chicago/Turabian StyleAhn, Jong-Ju, Ji-Hyun Yoo, Eun-Bin Bae, Gyoo-Cheon Kim, Jae Joon Hwang, Wan-Sun Lee, Hyung-Joon Kim, and Jung-Bo Huh. 2019. "The Effects of Atmospheric Pressure Argon Plasma Treated Bovine Bone Substitute on Bone Regeneration" Coatings 9, no. 12: 790. https://doi.org/10.3390/coatings9120790
APA StyleAhn, J. -J., Yoo, J. -H., Bae, E. -B., Kim, G. -C., Hwang, J. J., Lee, W. -S., Kim, H. -J., & Huh, J. -B. (2019). The Effects of Atmospheric Pressure Argon Plasma Treated Bovine Bone Substitute on Bone Regeneration. Coatings, 9(12), 790. https://doi.org/10.3390/coatings9120790