Fungicides Films of Low-Density Polyethylene (LDPE)/Inclusion Complexes (Carvacrol and Cinnamaldehyde) Against Botrytis Cinerea
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of β-CD Inclusion Complexes (β-CD-Carvacrol or β-CD-Cinnamaldehyde).
2.3. Inclusion Complex Characterization
2.3.1. Surface Analysis
2.3.2. Infrared Analysis
2.3.3. Encapsulation Yield and Efficiency
2.4. Preparation of Polymer/Active Agent Compound by the Melting Process
Preparation of Films by Melt Pressing
2.5. Fils Characterization
2.5.1. Thermal Analysis
2.5.2. Mechanical Properties
2.5.3. Active Agent Release
2.5.4. Fungicidal Activity
3. Results
3.1. Inclusion Complex Characterization
3.1.1. Morphological Analysis of β-CD-Carvacrol and Trans-Cinnamaldehyde
3.1.2. Fourier transform infrared (FTIR) spectroscopy
3.1.3. Encapsulation Yield (E.Y.) and Encapsulation Efficiency (E.E.) of Active compound in the β-CD
3.2. Film Characterization of Neat LDPE, LDPE + Carvacrol, LDPE + β-CD-Carvacrol, LDPE + Cinnamaldehyde and LDPE + β-CD-Cinnamaldehyde
3.2.1. Infrared Analysis
3.2.2. Surface Analysis.
3.2.3. Thermal Analysis.
3.2.4. Mechanical Properties.
3.2.5. Active Agent Release
3.2.6. Fungicidal Activity
4. Conclusions
- The co-precipitation method was used successfully to complex the carvacrol or trans-cinnamaldehyde with β-CD. The encapsulation efficiency (E.E.) increased with stirring speed. This indicates that stirring facilitates the inclusion of the active substances into the cavity of the β-CD, achieving ca. 90% E.E. at 750 rpm.
- The LDPE + carvacrol and LDPE + cinnamaldehyde showed excellent antifungal effects against B. cinerea with 99% efficiency. The incorporation of carvacrol, trans-cinnamaldehyde, and their corresponding inclusion complexes with β-cyclodextrin did not affect the thermal and mechanical properties of LDPE. The release of carvacrol was generally higher than that of trans-cinnamaldehyde, where the factor to be highlighted is the solubility in water—a factor that is directly related to the rate of migration from the polymer matrix. The films containing the inclusion complexes (β-CD) have a small biocidal effect, reaching 31.4% and 10.9% for the carvacrol and trans-cinnamaldehyde complexes, respectively.
- The biocidal results were related to the release of carvacrol and trans-cinnamaldehyde from the matrix over time. The results confirm the applicability of carvacrol, trans-cinnamaldehyde, and their corresponding inclusion complexes in the preparation of active packaging and its use in the food delivery industry.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rosslenbroich, H.-J.; Stuebler, D. Botrytis cinerea history of chemical control and novel fungicides for its management. Crop Prot. 2010, 19, 557–561. [Google Scholar] [CrossRef]
- López-Rubio, A.; Almenar, E.; Hernandez-Muñoz, P.; Lagarón, J.M.; Catalá, R.; Gavara, R. Overview of active polymer-based packaging technologies for food applications. Food Rev. Int. 2004, 20, 357–387. [Google Scholar] [CrossRef]
- Bravo, J. Boletín Frutícola, Avance Enero, Publicación de la Oficina de Estudios y Políticas Agrarias (ODEPA); Ministerio de Agricultura, Gobierno de Chile: Santiago, Chile, 2013.
- Esterio, M.; Auger, J.; Ramos, C.; Araneda, M. Proyecto Innova Chile de CORFO; Código Innova: 07CN13IBM-14; Universidad de Chile: Santiago, Chile, 2013. [Google Scholar]
- Clemente, I.; Aznar, A.; Silva, F.; Nerín, C. Antimicrobial properties and mode of action of mustard and cinnamon essential oils and their combination against foodborne bacteria. Innov. Food Sci. Emerg. Technol. 2016, 36, 26–33. [Google Scholar] [CrossRef]
- Garavand, F.; Rouhi, M.; Razavi, S.H.; Cacciotti, I.; Mohammadi, R. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. Int. J. Biol. Macromol. 2017, 104, 687–707. [Google Scholar] [CrossRef]
- Zapata, P.; Palza, H. Polyethylene-based-Bio and nanocomposites for packaging applications. In Polyethylene-Based Biocomposites and Bionanocomposites; Visakh, P.M., Lüftl, S., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2016; pp. 365–403, Chapter 10. [Google Scholar]
- Zapata, P.A.; Tamayo, L.; Cerda, E.; Páez, M.; Rabagliati, F. Nanocomposites based on polyethylene and nanosilver particles produced by metallocenic “in situ” polymerization: Synthesis, characterization, and antimicrobial behavior. Eur. Polym. J. 2010, 478, 1541–1549. [Google Scholar] [CrossRef]
- Yañez, D.; Rabagliati, F.M.; Guerrero, S.; Lieberwirth, I.; Ulloa, M.T.; Gomez, T.; Zapata, P.A. Photocatalytic inhibition of bacteria by TiO2 nanotubes-doped polyethylene composites. Appl. Catal. A 2015, 489, 255–261. [Google Scholar] [CrossRef]
- Rojas, K.; Canales, D.; Amigo, N.; Montoille, L.; Cament, A.; Rivas, L.; Gil-Castell, O.; Reyes, P.; Ulloa, M.T.; Ribes-Greus, A.; et al. Effective antimicrobial materials based on Low-density polyethylene (LDPE) with zinc oxide (ZnO) nanoparticles. Compos. Part B 2019, 172, 173–178. [Google Scholar] [CrossRef]
- Quijada, R.; Palma, R.; Palza, H. Polypropylene with embedded copper metal or copper oxide nanoparticles as novel plastics antimicrobial agent. Lett. Appl. Microbiol. 2011, 53, 50–54. [Google Scholar] [CrossRef]
- Zapata, P.; Delgado, K.; Palza, H.; Rabagliati, F.M. Novel antimicrobial polyethylene composites prepared by metallocenic in situ polymerization with TiO2-based nanoparticles. J. Polym. Sci. 2012, 50, 4055–4062. [Google Scholar] [CrossRef]
- Maneerat, C.; Hayata, Y. Antifungal activity of TiO2 photocatalysis against Penicillum expansum in vitro and fruits test. Int. J. Food Microbiol. 2006, 107, 99–103. [Google Scholar] [CrossRef]
- Zapata, P.; Palza, H.; Cruz, L.; Lieberwith, I.; Catalina, F.; Corrales, T.; Rabagliati, F. Poliethylene and poly (ethylene-co-1-octadecene) composites with TiO2 based nanoparticles by metallocene in situ polymerization. Polymer 2013, 54, 2690–2698. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Caccioti, I.; Mori, S.; Cherubini, V.; Nanni, F. Eco-sustainable systems based on poly (lactic acid), diatomite and coffee grounds extract for food packaging. Int. J. Biol. Macromol. 2018, 112, 567–575. [Google Scholar] [CrossRef]
- Wang, T.; Li, B.; Si, H.; Lin, L.; Chen, L. Release Characteristics and antibacterial activity of solid state eugenol/β-Cyclodextrin inclusion complex. J. Incl. Phenom. Macrocycl. Chem. 2011, 71, 207–213. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wang, Y.; Jiang, P.; Siew Young, Q. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 2016, 59, 282–289. [Google Scholar] [CrossRef]
- Vahedikia, N.; Garavand, F.; Tajeddin, B.; Cacciotti, I.; Jafari, S.; Omidi, T.; Zahedi, Z. Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes. Colloids Surf. B Biointerfaces 2019, 177, 25–32. [Google Scholar] [CrossRef]
- Chen, H.; Li, L.; Ma, Y.; Mcdonald, T.P.; Wang, Y. Development of active packaging film containing bioactive components encapsulated in β-cyclodextrin and its application. Food Hydrocoll. 2019, 90, 360–366. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, J.; Zhang, R.; Kong, R.; Lu, W.; Wang, X. Characterization and application of the microencapsulated carvacrol/sodium alginate films as food packaging materials. Int. J. Biol. Macromol. 2019, 141, 259–267. [Google Scholar] [CrossRef]
- Petrovic, G.; Stojanovic, G.; Radulovic, N. Encapsulation of cinnamon oil in β-Cyclodextrin. J. Med. Plants Res. 2010, 4, 1382–1390. [Google Scholar] [CrossRef]
- Hill, L.; Gomez, C.; Tylor, T. Characterization of beta-Cyclodextrin inclusion complex containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. Food Sci. Technol. 2013, 51, 86–93. [Google Scholar] [CrossRef]
- Kordali, S.; Cakir, A.; Ozer, H.; Cakmakci, R.; Mete, E. Antifungal phytotoxic and insecticidal properties of essential oils isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour. Technol. 2008, 99, 8788–8795. [Google Scholar] [CrossRef]
- Nostro, A.; Scaffaro, R.; D´Arrigo, M.; Botta, L.; Filocamo, A.; Marino, A.; Bisignano, G. Study on carvacrol and cinnamaldehyde polymeric films: Mechanical properties, release kinetics and antibacterial and antibiofilm activities. Appl. Microbiol. Biotechnol. 2012, 96, 1029–1038. [Google Scholar] [CrossRef]
- Szente, L.; Szejtli, C. Cyclodextrin as food ingredients. Trends Food Sci. Technol. 2004, 15, 137–142. [Google Scholar] [CrossRef]
- Kader, E.; Aggor, A. Microencapsulation of Flaxseed Oil by β-Cyclodextrin. J. Appl. Sci. Res. 2013, 9, 2951–2958. [Google Scholar]
- Wen, P.; Zhu, D.-H.; Feng, D.; Liu, F.-J.; Lou, W.-Y.; Li, N.; Zong, M.-H.; Wu, H. Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem. 2016, 196, 996–1004. [Google Scholar] [CrossRef]
- Chen, G.; Liu, B. Cellulose sulfate based film with slow-release antimicrobial properties prepared by incorporation of mustard essential oil and β-cyclodextrin. Food Hydrocoll. 2016, 55, 100–107. [Google Scholar] [CrossRef]
- Wei, L.; Tang, T.; Huang, B. Synthesis and characterization of polyethylene/clay–silica nanocomposites: A montmorillonite/silica-hybrid-supported catalyst and in situ polymerization. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 941–949. [Google Scholar] [CrossRef]
- Kormin, S.; Kormin, F.; Beg, M.; Piah, M. Physycal and mechanical properties of LDPE incorporated with different starch souces. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 226, p. 012157. [Google Scholar] [CrossRef]
- Kotronia, M.; Kavetzou, E.; Loupassaki, S.; Kikionis, S.; Vouyiovka, S.; Detsi, A. Encapsulation of Oregano (Origanum onites L.) Essential Oil in β-Cyclodextrin (β-CD): Synthesis and Characterization of the Inclusion Complexes. Bioengineering 2017, 4, 74. [Google Scholar] [CrossRef]
- Campos, C.A.; Lima, B.S.; Trindade, G.G.G.; Souza, E.P.B.S.S.; Heimfarth, L.; Quintans, J.S.S.; Quintans-Junior, L.J.; Sussuchi, E.M.; Sarmiento, V.H.V.; Carvalho, F.M.S.; et al. Anti- hyperalgesic and anti-inflammatory effects of citral with β-cyclodextrin and hydroxypropyl-β-cyclodextrin inclusion complexes in animal models. Life Sci. 2019, 229, 139–148. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Wang, F.; Wang, L.X. Preparation and properties of ginger essential oil β-cyclodextrin/chitosan inclusion complexes. Coatings 2018, 8, 305. [Google Scholar] [CrossRef]
- Reesha, K.V.; Panda, S.K.; Bindu, J.; Varghese, T.O. Development and characterization of an LDPE/chitosan composite antimicrobial film for chilled fish storage. Int. J. Biol. Macromol. 2015, 79, 934–942. [Google Scholar] [CrossRef]
- Arrieta, M.P.; Peltzer, M.A.; Garrigós, M.; Jiménez, A. Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. J. Food Eng. 2013, 114, 486–494. [Google Scholar] [CrossRef] [Green Version]
- Cannavà, C.; Crupi, V.; Ficarra, P.; Guardo, M.; Majolino, D.; Stancanelli, R.; Venuti, V. Physicochemical characterization of coumestrol/β-cyclodextrins inclusion complexes by UV–vis and FTIR-ATR spectroscopies. Vib. Spectrosc. 2008, 48, 172–178. [Google Scholar] [CrossRef]
- Yang, Z.; Chai, K.; Ji, H. Selective inclusion and separation of cinnamaldehyde and benzaldehyde by insoluble β-cyclodextrin polymer. Sep. Purif. Technol. 2011, 80, 208–2016. [Google Scholar] [CrossRef]
- Muller, J.; González-Martínez, C.; Chiralt, A. Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. Eur. Polym. J. 2017, 95, 56–70. [Google Scholar] [CrossRef]
- Murray, K.; Kennedy, J.; McEvoy, B.; Vrain, O.; Ryan, D.; Higginbotham, C. The effects of high energy electron beam irradiation on the thermal and structural properties of low density polyethylene. Radiat. Phys. Chem. 2012, 81, 962–966. [Google Scholar] [CrossRef]
- Petterson, P.; Vyazovkin, S.; Wight, C. Kinetics, thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol. Chem. Phys. 2001, 202, 775–784. [Google Scholar] [CrossRef]
- Mulla, M.; Ahmed, J.; Al-Attar, H.; Castro-Aguirre, E.; Arfat, Y.; Auras, R. Antimicrobial efficacy of clove essential oil infused into chemically modified LLDPE film for chicken meat packaging. Food Control 2017, 63, 663–671. [Google Scholar] [CrossRef]
- Sung, S.; Sin, L.; Tee, T.; Bee, S.; Rahmat, A.R. Effects of Allium sativum essence oil as antimicrobial agent for food packaging plastic film. Innov. Food Sci. Emerg. Technol. 2014, 26, 406–414. [Google Scholar] [CrossRef]
- Sangsuwan, J.; Rattanapanone, N.; Rachtanapun, P. Effects of vanillin and plasticizer on properties of chitosan-methyl cellulose based film. Appl. Polym. Sci. 2008, 109, 3540–3545. [Google Scholar] [CrossRef]
- Yeh, H.F.; Luo, C.Y.; Lin, C.Y.; Cheng, S.S.; Hsu, Y.R.; Chang, S.T. Methods for Thermal Stability Enhancement of Leaf Essential Oils and Their Main Constituents from Indigenous Cinnamon (Cinnamomum osmophloeum). J. Agric. Food Chem. 2013, 61, 6293–6298. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Sun, B.; Wang, C. Physicochemical and release characterization of garlic oil β-Cyclodextrin inclusion complex. Food Chem. 2011, 127, 1680–1685. [Google Scholar] [CrossRef]
- Menezes, P.; Serafini, R.; Barbosa, Y.; Soares, D.; Santos, B.; Quintans-Júnior, L.; Neves, R.; Mendonca, T.; Rodrigues, A.; Scotti, L.; et al. Kinetic and physical-chemical study of the inclusion complex of β-Cyclodextrin containing carvacrol. J. Mol. Struct. 2016, 1125, 323–330. [Google Scholar] [CrossRef]
- Da Silva, C.G.; Kano, F.S.; dos Santos Rosa, D. Thermal stability of the PBAT biofilms with cellulose nanostructures/ essential oils for active packaging. J. Therm. Anal. Calorim. 2019. [Google Scholar] [CrossRef]
- Pelissari, F.; Grossmann, M.; Yamashita, F.; Pineda, E. Antimicrobial, Mechanical, and Barrier Properties of Cassava Starch-Chitosan Films Incorporated with Oregano Essential Oil. J. Agric. Food Chem. 2009, 57, 7499–7504. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, J.; Xue, J. Characterization of antimicrobial poly (lactic acid)/ poly (trimethylene carbonate) films with cinnamaldehyde. J. Mater. Sci. 2015, 50, 1150–1158. [Google Scholar] [CrossRef]
- Persico, P.; Ambrogi, V.; Carfanga, C.; Cerruti, P.; Ferrocino, I.; Mauriello, G. Nanocomposite polymer films containing carvacrol for antimicrobial active packaging. Polym. Eng. Sci. 2009, 49. [Google Scholar] [CrossRef]
- Dong, Z.; Xu, F.; Ahmed, I.; Li, Z.; Lin, H. Characterization and preservation performance of active polyethylene films containing rosemary and cinnamon essential oils for Pacific white shrimp packaging. Food Control 2018, 92, 37–46. [Google Scholar] [CrossRef]
- Chen, H.; Davidson, P.M.; Zhong, Q. Impacts of sample preparation methods on solubility and antilisterial characteristics of essential oil components in milk. Appl. Environ. Microbiol. 2014, 80, 907–916. [Google Scholar] [CrossRef] [Green Version]
- Ashakirin, S.N.; Tripathy, M.; Patil, U.K.; Majeed, B.A. Chemistry and bioactivity of cinnamaldehyde: A natural molecule medicinal importance. Int. J. Pharm. Sci. Res. 2017, 8, 2333–2340. [Google Scholar] [CrossRef]
- Amini, M.; Safaie, N.; Salmani, M.J.; Shams-Bakhsh, M. Antifungal activity of three medicinal plant essential oil against some phytopathogenic Trakia. J. Sci. 2012, 10, 1–8. [Google Scholar]
- Cheng, S.S.; Liu, J.Y.; Hsui, Y.R.; Chang, S.T. Chemical polymorphism and antifungal activity of essential oils from leaves of different provenances of indigenous cinnamon (Cinnamomum osmophloeum). Bioresour. Technol. 2006, 97, 306–312. [Google Scholar] [CrossRef]
- Cheng, S.S.; Liu, J.Y.; Chang, E.H.; Chang, S.T. Antifungal activity of cinnamaldehyde and eugenol con- geners against wood-rot fungi. Bioresour. Technol. 2008, 99, 5145–5149. [Google Scholar] [CrossRef]
- Lawtrakul, L.; Inthajak, K.; Toochinda, P. Molecular calculations on β-cyclodextrin inclusion complexes with five essential oil compounds from Ocimun basilicum (Sweet Brasil). Sci. Asia 2014, 40, 145–151. [Google Scholar] [CrossRef]
- Yen, T.B.; Chang, S.T. Synergistic effects of cinnamaldehyde in combination with eugenol against wood decay fungi. Bioresour. Technol. 2008, 99, 232–236. [Google Scholar] [CrossRef]
Stirring Speed (rpm) | β-CD-Carvacrol | β-CD-Cinnamaldehyde | ||
---|---|---|---|---|
E.Y. (%) | E.E. (%) | E.Y. (%) | E.E. (%) | |
250 | 67 | 61 | 65 | 76 |
500 | 68 | 83 | 68 | 77 |
750 | 63 | 94 | 68 | 87 |
1000 | 64 | 92 | 70 | 91 |
Sample | Tm (°C) | Xc (°C) | Tmax(°C) |
---|---|---|---|
Neat β-CD | – | – | 330 |
Carvacrol | – | – | 183 |
trans-cinnamaldehyde | – | – | 200 |
β-CD-carvacrol | – | – | 285 |
β-CD-cinnamaldehyde | – | – | 294 |
Neat LDPE | 111 | 29 | 475 |
LDPE + carvacrol | 111 | 29 | 450 |
LDPE + cinnamaldehyde | 111 | 31 | 476 |
LDPE + β-CD-carvacrol | 111 | 29 | 475 |
LDPE + β-CD-cinnamaldehyde | 111 | 27 | 477 |
Sample | E (MPa) | σy (Mpa) | EBreak (%) |
---|---|---|---|
LDPE | 227 ± 1 | 8.9 ± 0.5 | 53.3 ± 7.5 |
LDPE+carvacrol | 200 ± 6 | 6.8 ± 0.1 | 41.4 ± 1.1 |
LDPE+ trans-cinnamaldehyde | 208 ± 5 | 7.6 ± 0.2 | 44.5 ± 3.8 |
LDPE+β-CD-carvacrol | 208 ± 2 | 7.4 ± 0.4 | 43.4 ± 4.9 |
LDPE+β-CD-cinnamaldehyde | 207 ± 3 | 7.4 ± 0.8 | 54.5 ± 6.9 |
Sample | Active Compound * | Fungicidal Activity (%) |
---|---|---|
wt % | ||
LDPE + carvacrol | 1 | 45.3 |
LDPE + cinnamaldehyde | 1 | 25.4 |
LDPE + carvacrol | 5 | 99.9 |
LDPE + cinnamaldehyde | 5 | 99.9 |
LDPE + β-CD-carvacrol | 1 | 31.4 |
LDPE + β-CD-cinnamaldehyde | 1 | 10.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canales, D.; Montoille, L.; Rivas, L.M.; Ortiz, J.A.; Yañez-S, M.; Rabagliati, F.M.; Ulloa, M.T.; Alvarez, E.; Zapata, P.A. Fungicides Films of Low-Density Polyethylene (LDPE)/Inclusion Complexes (Carvacrol and Cinnamaldehyde) Against Botrytis Cinerea. Coatings 2019, 9, 795. https://doi.org/10.3390/coatings9120795
Canales D, Montoille L, Rivas LM, Ortiz JA, Yañez-S M, Rabagliati FM, Ulloa MT, Alvarez E, Zapata PA. Fungicides Films of Low-Density Polyethylene (LDPE)/Inclusion Complexes (Carvacrol and Cinnamaldehyde) Against Botrytis Cinerea. Coatings. 2019; 9(12):795. https://doi.org/10.3390/coatings9120795
Chicago/Turabian StyleCanales, Daniel, Lissette Montoille, Lina M. Rivas, J. Andrés Ortiz, Mauricio Yañez-S, Franco M. Rabagliati, Maria Teresa Ulloa, Eduardo Alvarez, and Paula A. Zapata. 2019. "Fungicides Films of Low-Density Polyethylene (LDPE)/Inclusion Complexes (Carvacrol and Cinnamaldehyde) Against Botrytis Cinerea" Coatings 9, no. 12: 795. https://doi.org/10.3390/coatings9120795
APA StyleCanales, D., Montoille, L., Rivas, L. M., Ortiz, J. A., Yañez-S, M., Rabagliati, F. M., Ulloa, M. T., Alvarez, E., & Zapata, P. A. (2019). Fungicides Films of Low-Density Polyethylene (LDPE)/Inclusion Complexes (Carvacrol and Cinnamaldehyde) Against Botrytis Cinerea. Coatings, 9(12), 795. https://doi.org/10.3390/coatings9120795